Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T20:00:12.116Z Has data issue: false hasContentIssue false

Methylation of the oxytocin receptor gene mediates the effect of adversity on negative schemas and depression

Published online by Cambridge University Press:  20 June 2016

Ronald L. Simons*
Affiliation:
University of Georgia
Man Kit Lei
Affiliation:
University of Georgia
Steven R. H. Beach
Affiliation:
University of Georgia
Carolyn E. Cutrona
Affiliation:
Iowa State University
Robert A. Philibert
Affiliation:
University of Iowa
*
Address correspondence and reprint requests to: Ronald L. Simons, Department of Sociology, University of Georgia, Athens, GA 30602; E-mail: [email protected].

Abstract

Building upon various lines of research, we posited that methylation of the oxytocin receptor gene (OXTR) would mediate the effect of adult adversity on increased commitment to negative schemas and in turn the development of depression. We tested our model using structural equation modeling and longitudinal data from a sample of 100 middle-aged, African American women. The results provided strong support for the model. Analysis of the 12 CpG sites available for the promoter region of the OXTR gene identified four factors. One of these factors was related to the study variables, whereas the others were not. This factor mediated the effect of adult adversity on schemas relating to pessimism and distrust, and these schemas, in turn, mediated the impact of OXTR methylation on depression. All indirect effects were statistically significant, and they remained significant after controlling for childhood trauma, age, romantic relationship status, individual differences in cell types, and average level of genome-wide methylation. These finding suggest that epigenetic regulation of the oxytocin system may be a mechanism whereby the negative cognitions central to depression become biologically embedded.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by the National Institute on Drug Abuse (R21DA034457), the National Institute of Mental Health (R01MH62699 and R01MH62666), and the National Heart, Lung, Blood Institute (HL118045). Additional support for this study was provided by the Center for Translational and Prevention Science (P30DA02782) funded by the National Institute on Drug Abuse. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

Abramson, L. Y., Metalsky, G. L., & Alloy, L. B. (1989). Hopelessness depression: A theory based on subtype of depression. Psychological Review, 96, 358372.CrossRefGoogle Scholar
Abramson, L. Y., Seligman, M. E. P., & Teasdale, J. (1978). Learned helplessness in humans: Critique and reformulation. Journal of Abnormal Psychology, 87, 4974.CrossRefGoogle ScholarPubMed
Alloy, L. B., Abramson, L. Y., Whitehouse, W. G., Hogan, M. E., Panzaerella, C., & Rose, D. T. (2006). Prospective incidence of first onsets and recurrences of depression in individuals at high and low cognitive risk for depression. Journal of Abnormal Psychology, 115, 145156.CrossRefGoogle ScholarPubMed
Bartz, J. A., & Hollander, E. (2006). The neuroscience of affiliation: Forging links between basic and clinical research on neuropeptides and social behavior. Hormones and Behavior, 50, 518528.CrossRefGoogle ScholarPubMed
Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacker, U., & Fehr, E. (2008). Oxytocin shapes the neural circuitry of trust and trust adaptations in humans. Neuron, 58, 639650.CrossRefGoogle ScholarPubMed
Beach, S. R. H., Lei, M. K., Brody, G. H., Dogan, M., & Philibert, R. A. (2016). Parenting, SES risk, and later young adult health: Exploration of opposing indirect effects via DNA methylation. Child Development, 87, 111121.CrossRefGoogle ScholarPubMed
Beach, S. R. H., Lei, M. K., Brody, G. H., Dogan, M., & Philibert, R. A. (in press). Higher levels of protective parenting are associated with better young adult health: Exploration of mediation through epigenetic influences on pro-inflammatory processes. Frontiers in Psychology.Google Scholar
Beauregard, M. (2014). Functional neuroimaging studies of the effects of psychotherapy. Dialogues in Clinical Neuroscience, 16, 7581.CrossRefGoogle ScholarPubMed
Beck, A. T. (1967). Depression: Causes and treatment. Philadelphia, PA: University of Pennsylvania Press.Google Scholar
Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurological correlates. American Journal of Psychiatry, 165, 969977.CrossRefGoogle Scholar
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238246.CrossRefGoogle ScholarPubMed
Bertsch, K., Schmidinger, I., Neumann, I. D., & Herpertz, S. C. (2012). Reduced plasma oxytocin levels in female patients with borderline personality disorder. Hormones and Behavior, 63, 424429.CrossRefGoogle ScholarPubMed
Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods and Research, 21, 230258.CrossRefGoogle Scholar
Butler, A. C., Chapman, J. E., Forman, E. M., & Beck, A. T. (2006). The empirical status of cognitive-behavioral therapy: A review of meta-analyses. Clinical Psychology Review, 26, 1731.CrossRefGoogle ScholarPubMed
Cardoso, C., Ellenbogen, M. A., Orlando, M. A., Bacon, S. L., & Joober, R. (2012). Intranasal oxytocin attenuates the cortisol response to physical stress: A dose-response study. Psychoneuroendocrinology, 38, 399407.CrossRefGoogle Scholar
Carey, N. (2012). The epigenetics revolution: How modern biology is rewriting our understanding of genetics, disease, and inheritance. New York: Columbia University Press.Google Scholar
Cecil, C. A. M., Lysenko, L. J., Jaffee, S. R., Pingault, J.-B., Smith, R. G., Relton, C. L., et al. (2014). Environmental risk, oxytocin receptor gene (OXTR) methylation and youth callous-unemotional traits: A 13-year longitudinal study. Molecular Psychiatry, 19, 10711077.CrossRefGoogle ScholarPubMed
Clark, D. A., & Beck, A. T. (2010). Cognitive theory and therapy of anxiety and depression: Convergence with neurobiological findings. Trends in Cognitive Sciences, 14, 418424.CrossRefGoogle ScholarPubMed
Clark, L. A., & Watson, D. (1997). The Mini Mood and Anxiety Symptom Questionnaire (Mini-MASQ). Unpublished manuscript, University of Iowa.Google Scholar
Cochran, D., Fallon, D., Hill, M., & Frazier, J. A. (2013). The role of oxytocin in psychiatric disorders: A review of biological and therapeutic findings. Harvard Review of Psychiatry, 21, 219247.CrossRefGoogle Scholar
Conger, R. D., & Elder, G. H. (1994). Families in troubled times: Adapting to change in rural America. New York: Aldine De Gruyter.Google Scholar
Dadds, M. R., Moul, C., Cauchi, A., Dobbson-Stone, C., Hawes, D. J., Brennan, J., et al. (2014). Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathology. Development and Psychopathology, 26, 3340.CrossRefGoogle Scholar
DeRubeis, R. J., Webb, C. A., Tang, T. Z., & Beck, A. T. (2010). Cognitive therapy. In Dobson, K. S., (Ed.), Handbook of cognitive-behavioral therapies (3rd ed., pp. 277316). New York: Guilford Press.Google Scholar
Disner, S., Beevers, C., Haigh, E. A., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12, 467477.CrossRefGoogle ScholarPubMed
Dogan, M. V., Shields, B., Cutrona, C., Gao, L., Gibbons, F. X., Simons, R., et al. (2014). The effect of smoking on DNA methylation of peripheral blood mononuclear cells from African American women. Genomics, 15, 151164.Google ScholarPubMed
Fraley, R. C., Waller, N. G., & Brennan, K. A. (2000). An item response theory analysis of self-reports measures of adult attachment. Journal of Personality and Social Psychology, 78, 350365.CrossRefGoogle ScholarPubMed
Frances, R. C. (2011). Epigenetics: How environment shapes our genes. New York: Norton.Google Scholar
Gamer, M., Zurowski, B., & Burchel, C. (2010). Different amygdala subregions mediate valence related and attentional effects of oxytocin in humans. Proceedings of the National Academy of Science, 107, 94009405.CrossRefGoogle ScholarPubMed
Gibb, B. E., Alloy, L. B., Abramson, L. Y., Rose, D. T., Whitehouse, W. G., Donovan, P., et al. (2001). History of childhood maltreatment, negative cognitive styles, and episodes of depression in adulthood. Cognitive Therapy and Research, 25, 435446.CrossRefGoogle Scholar
Gibbons, F. X., Gerrard, M., Cleveland, M. J., Wills, T. A., & Brody, G. (2004). Perceived discrimination and substance use in African American parents and their children: A panel study. Journal of Personality and Social Psychology, 86, 517529.CrossRefGoogle ScholarPubMed
Gonzalo, D., Kleim, B., Donaldson, C., Moorey, S., & Ehlers, A. (2012). How disorder-specific are depressive attributions? A comparison of individuals with depression, post-traumatic stress disorder and healthy controls. Cognitive Therapy Research, 36, 731739.CrossRefGoogle ScholarPubMed
Gregory, S., Connelly, J. J., Towers, A. J., Johnson, J., Biscocho, D., Markunas, C. A., et al. (2009). Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Medicine, 7, 113.CrossRefGoogle ScholarPubMed
Haig, D. (2012). The epidemiology of epigenetics. International Journal of Epidemiology, 41, 1316.CrossRefGoogle ScholarPubMed
Herwig, U., Bruhl, A. B., Kaffenberger, T., Baumgartner, T., Boeker, H., & Jancke, L. (2010). Neural correlates of “pessimistic” attitude in depression. Psychological Medicine, 40, 789800.CrossRefGoogle ScholarPubMed
Hollon, S. D., Stewart, M. O., & Strunk, D. (2006). Enduring effects for cognitive behavior therapy in the treatment of depression and anxiety. Annual Review of Psychology, 57, 285315.CrossRefGoogle ScholarPubMed
Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H., et al. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13, 86101.CrossRefGoogle ScholarPubMed
Huffmeijer, R., Alink, L. R. A., Tops, M., Grewen, K. M., Light, K. C., Bakermans-Kranenburg, M. J., et al. (2013). The impact of oxytocin administration and material love withdrawal on event-related potential (ERP) responses to emotional faces with performance feedback. Hormones and Behavior, 63, 399410.CrossRefGoogle Scholar
IBM Corporation. (2012). IBM SPSS for Windows. Version 22. Armonk, New York: Author.Google Scholar
Jack, A., Connelly, J., & Morris, J. (2012). DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli. Frontiers in Human Neuroscience, 6, Article 280.CrossRefGoogle ScholarPubMed
Kandel, E. R. (2006). In search of memory: The emergence of a new science of mind. New York: Norton.Google Scholar
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DMS-IV disorders in the National Comorbidity Study Replication. Archives of General Psychiatry, 62, 593602.CrossRefGoogle Scholar
Kessler, R. C., Davis, C. G., & Kendler, K. S. (1997). Childhood adversity and adult psychiatric disorder in the U.S. National Comorbidity Survey. Psychological Medicine, 27, 11011119.CrossRefGoogle ScholarPubMed
Kessler, R. C., McGonagle, K. A., Zhao, S., Nelson, C. B., Hughes, M., Eshleman, S., et al. (1994). Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Archives of General Psychiatry, 51, 819.CrossRefGoogle ScholarPubMed
Kilaru, V., Barfield, R. T., Schroeder, J. W., Smith, A. K., & Conneely, K. N. (2012). MethLAB: A graphical user interface package for the analysis of array-based DNA methylation data. Epigenetics, 7, 225229.CrossRefGoogle ScholarPubMed
Kim, Y.-R., Kim, J.-H., Kim, M. J., & Treasure, J. (2014). Differential methylation of the oxytocin receptor gene in patients with anorexia nervosa: A pilot study. PLOS ONE, 9, e88673, 14.Google ScholarPubMed
Kirsch, P., Esslinger, C., Qiang, C., Mier, D., Lis, S., Siddhanti, S., et al. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience, 25, 1148911491.CrossRefGoogle ScholarPubMed
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacker, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435, 673676.CrossRefGoogle ScholarPubMed
Kubzansky, L. D., Mendes, W. B., Appleton, A. A., Block, J., & Adler, G. K. (2012). A heartfelt response: Oxytocin effects on response to social stress in men and women. Biological Psychology, 90, 19.CrossRefGoogle ScholarPubMed
Kumsta, R., Hummel, E., Chen, F. S., & Heinrichs, M. (2013). Epigenetic regulation of the oxytocin receptor gene: Implications for behavior neuroscience. Frontiers in Neuroscience, 7, 18.CrossRefGoogle Scholar
Kusui, C., Kimura, T., Ogita, K., Nakamura, H., Matsumura, Y., & Koyama, M. (2001). DNA methylation of the human oxytocin receptor gene promoter regulates tissue-specific gene suppression. Biochemistry and Biophysics Research Community, 289, 681686.CrossRefGoogle ScholarPubMed
Landecker, H., & Panofsky, A. (2013). From social structure to gene regulation, and back: A critical introduction to environmental epigenetics for sociology. Annual Review of Sociology, 39, 333357.CrossRefGoogle Scholar
Liu, C., & Bates, T. C. (2014). The structure of attributional style: Cognitive styles and optimism-pessimism bias in the Attributional Style Questionnaire. Personality and Individual Differences, 66, 7985.CrossRefGoogle Scholar
MacDonald, K., & MacDonald, T. M. (2010). The peptide that binds: A systematic review of oxytocin and its prosocial effects in humans. Harvard Review of Psychiatry, 18, 121.CrossRefGoogle ScholarPubMed
Mallinckrodt, B., Abraham, W. T., Wei, M., & Russell, D. W. (2006). Advances in testing the statistical significance of mediation effects. Journal of Counselling Psychology, 53, 372378.CrossRefGoogle Scholar
McCullough, M. E., Churchland, P. S., & Mendez, A. J. (2013). Problems with measuring peripheral oxytocin: Can the data on oxytocin and human behaviour be trusted? Neuroscience & Biobehavioral Review, 37, 14851492.CrossRefGoogle ScholarPubMed
Meaney, M. J., & Szyf, M. (2005). Environmental programming of stress responses through DNA methylation: Life at the interface between a dynamic environment and a fixed genome. Dialogues in Clinical Neuroscience, 7, 103123.CrossRefGoogle Scholar
Meloni, M. (2014). The social brain meets the reactive genome: Neuroscience, epigenetics and the new social biology. Frontiers in Human Neuroscience, 8, 112.CrossRefGoogle ScholarPubMed
Miller, G. E., Chen, E., & Parker, K. J. (2011). Psychological stress in childhood and susceptibility to the chronic diseases of aging: Moving towards a model of behavioral and biological mechanism. Psychological Bulletin, 137, 959997.CrossRefGoogle Scholar
Molfese, D. L. (2011). Advancing neuroscience through epigenetics: Molecular mechanisms of learning and memory. Developmental Neuropsychology, 36, 810827.CrossRefGoogle ScholarPubMed
Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus user's guide (7th ed.). Los Angeles: Author.Google Scholar
Olff, M., Frijing, J. L., Kubzansky, L. D., Bradley, B., Ellenbogen, M. A., Cardoso, C., et al. (2013). The role of oxytocin in social bonding, stress regulation and mental health: An update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology, 38, 18831894.CrossRefGoogle ScholarPubMed
Puglia, M. H., Lillard, T. S., Morris, J. P., & Connelly, J. J. (2015). Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain. Proceedings of the National Academy of Science, 112, 33083313.CrossRefGoogle ScholarPubMed
Reinius, L. E., Acevedo, N., Joerink, M., Pershagen, G., Dahlén, S. E., Greco, D., et al. (2012). Differential DNA methylation in purified human blood cells: Implications for cell lineage and studies on disease susceptibility. PLOS ONE, 7, e41361.CrossRefGoogle ScholarPubMed
Romens, S. E., Abramson, L. Y., & Alloy, L. B. (2009). High and low cognitive risk for depression: Stability from late adolescence to early adulthood. Cognitive Therapy Research, 33, 480498.CrossRefGoogle ScholarPubMed
Romens, S. E., McDonald, J., Svaren, J., & Pollak, S. D. (2014). Associations between early life stress and gene methylation in children. Child Development. Advance online publication.Google Scholar
Sampson, R. J., Raudenbush, S. W., & Earls, F. (1997). Neighborhoods and violent crime: A multilevel study of collective efficacy. Science, 277, 918924.CrossRefGoogle ScholarPubMed
Scheier, M. F., & Carver, C. S. (1985). Optimism, coping, and health: Assessment and implications of generalized outcome expectancies. Health Psychology, 4, 219247.CrossRefGoogle ScholarPubMed
Simons, R. L., & Klopack, E. (2015). “The times they are a-changin”: Gene expression, neuroplasticity, and developmental research. Journal of Youth and Adolescence, 44, 575580.CrossRefGoogle ScholarPubMed
Simons, R. L., Lei, M.-K., Beach, S. R. H., Philibert, R. A., Cutrona, C. E., Gibbons, F. X., et al. (2016). Economic hardship and biological weathering: The epigenetics of aging in a U.S. sample of black women. Social Science and Medicine, 150, 192200.CrossRefGoogle Scholar
Simons, R. L., Lei, M. K., Beach, S. R. H., Brody, G. H., Philibert, R. A., & Gibbons, F. X. (2011). Social environment, genes, and aggression: Evidence supporting the differential susceptibility perspective. American Sociological Review, 76, 883912.CrossRefGoogle Scholar
Thoits, P. A. (2010). Stress and health: Major findings and policy implications. Journal of Health and Social Behavior, 51, 4153.CrossRefGoogle ScholarPubMed
Thomaes, K., Dorrepaal, E., Draijer, N., Jansma, E. P., Veltman, D. J., & van Balkom, A. J. (2014). Can pharmacological and psychology treatment change brain structure and function in PTSD? A systematic review. Journal of Psychiatric Research, 50, 115.CrossRefGoogle Scholar
Zak, P. J. (2012). The moral molecule: Vampire economics and the new science of good and evil. New York: Dutton Press.Google Scholar
Supplementary material: File

Simons supplementary material

Tables S1-S3 and Figures S1-S2

Download Simons supplementary material(File)
File 88.8 KB