Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T14:40:02.020Z Has data issue: false hasContentIssue false

Mechanisms of comorbidity, continuity, and discontinuity in anxiety-related disorders

Published online by Cambridge University Press:  14 October 2016

Neil McNaughton*
Affiliation:
University of Otago
Philip J. Corr
Affiliation:
City University London
*
Address correspondence and reprint requests to: Neil McNaughton, Department of Psychology, University of Otago, Dunedin 9054, New Zealand; E-mail: [email protected].

Abstract

We discuss comorbidity, continuity, and discontinuity of anxiety-related disorders from the perspective of a two-dimensional neuropsychology of fear (threat avoidance) and anxiety (threat approach). Pharmacological dissection of the “neurotic” disorders justifies both a categorical division between fear and anxiety and a subdivision of each mapped to a hierarchy of neural modules that process different immediacies of threat. It is critical that each module can generate normal responses, symptoms of another syndrome, or syndromal responses. We discuss the resultant possibilities for comorbid dysfunction of these modules both with each other and with some disorders not usually classified as anxiety related. The simplest case is symptomatic fear/anxiety comorbidity, where dysfunction in one module results in excess activity in a second, otherwise normal, module to generate symptoms and apparent comorbidity. More complex is syndromal fear/anxiety comorbidity, where more than one module is concurrently dysfunctional. Yet more complex are syndromal comorbidities of anxiety that go beyond the two dimensional fear/anxiety systems: depression, substance use disorder, and attention-deficit/hyperactivity disorder. Our account of attention-deficit/hyperactivity disorder–anxiety comorbidity entails discussion of the neuropsychology of externalizing disorders to account for the lack of anxiety comorbidity in some of these. Finally, we link the neuropsychology of disorder to personality variation, and to the development of a biomarker of variation in the anxiety system among individuals that, if extreme, may provide a means of unambiguously identifying the first of a range of anxiety syndromes.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamec, R. (1997). Transmitter systems involved in neural plasticity underlying increased anxiety and defense—Implications for understanding anxiety following traumatic stress. Neuroscience & Biobehavioral Reviews, 21, 755765.Google Scholar
Adamec, R., Holmes, A., & Blundell, J. (2008). Vulnerability to lasting anxiogenic effects of brief exposure to predator stimuli: Sex, serotonin and other factors-relevance to PTSD. Neuroscience & Biobehavioral Reviews, 32, 12871292.CrossRefGoogle ScholarPubMed
Adamec, R., & Shallow, T. (1993). Lasting effects on rodent anxiety of a single exposure to a cat. Physiology & Behavior, 54, 101109.Google Scholar
Adamec, R., & Young, B. (2000). Neuroplasticity in specific limbic system circuits may mediate specific kindling induced changes in animal affect—Implications for understanding anxiety associated with epilepsy. Neuroscience & Biobehavioral Reviews, 24, 705723.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: Author.Google Scholar
Andrews, G., Stewart, G., Morris-Yates, A., Holt, P., & Henderson, S. (1990). Evidence for a general neurotic syndrome. British Journal of Psychiatry, 157, 612.Google Scholar
Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121, 6594.Google Scholar
Barlow, D. H. (2002). Anxiety and its disorders: The nature and treatment of anxiety and panic. New York: Guilford Press.Google Scholar
Beauchaine, T. P. (2001). Vagal tone, development, and Gray's motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214.Google Scholar
Beauchaine, T. P., Hinshaw, S. P., & Pang, K. L. (2010). Comorbidity of ADHD and early-onset conduct disorder: Biological, environmental, and developmental mechanisms. Clinical Psychology: Science and Practice, 17, 327336.Google Scholar
Beauchaine, T. P., Katkin, E. S., Strassberg, Z., & Snarr, J. (2001). Disinhibitory psychopathology in male adolescents: Discriminating conduct disorder from attention-deficit/hyperactivity disorder through concurrent assessment of multiple autonomic states. Journal of Abnormal Psychology, 110, 610624.Google Scholar
Beauchaine, T. P., & McNulty, T. (2013). Comorbidities and continuities as ontogenic processes: Toward developmental spectrum model of externalizing behavior. Development and Psychopathology, 25, 15051528.Google Scholar
Blanchard, D. C., & Blanchard, R. J. (1990). Effects of ethanol, benzodiazepines, and serotonin compounds on ethopharmacological models of anxiety. In McNaughton, N. & Andrews, G. (Eds.), Anxiety (pp. 188200). Dunedin, New Zealand: University of Otago Press.Google Scholar
Blanchard, D. C., Blanchard, R. J., Tom, P., & Rodgers, R. J. (1990). Diazepam changes risk assessment in an anxiety/defense test battery. Psychopharmacology (Berl) , 101, 511518.Google Scholar
Blanchard, R. J., & Blanchard, D. C. (1990). An ethoexperimental analysis of defense, fear and anxiety. In McNaughton, N. & Andrews, G. (Eds.), Anxiety (pp. 124133). Dunedin, New Zealand: University of Otago Press.Google Scholar
Broadbear, J. H., Winger, G., & Woods, J. H. (2005). Self-administration of methohexital, midazolam and ethanol: Effects on the pituitary–adrenal axis in rhesus monkeys. Psychopharmacology, 178, 8391.Google Scholar
Carter, C., Maddock, R., Zoglio, M., Lutrin, C., Jella, S., & Amsterdam, E. (1994). Panic disorder and chest pain: A study of cardiac stress scintigraphy patients. American Journal of Cardiology, 74, 296298.Google Scholar
Castellanos, F. X., Lee, P. P., Sharp, W., Jeffries, N. O., Greenstein, D. K., Clasen, L. S., et al. (2002). Developmental trajectories of brain volume abnormalities in children and adolescents with ADHD. Journal of the American Medical Association, 288, 17401748.Google Scholar
Connor, K. M., Davidson, J. R. T., Sutherland, S., & Weisler, R. (1999). Social phobia: Issues in assessment and management. Epilepsia, 40, S60S65.CrossRefGoogle ScholarPubMed
Corr, P. J., & McNaughton, N. (2012). Neuroscience and approach/avoidance personality traits: A two-stage (valuation–motivation) approach. Neuroscience & Biobehavioral Reviews, 36, 23392354.CrossRefGoogle ScholarPubMed
Corr, P. J., & McNaughton, N. (2016). Neural mechanisms of low trait anxiety and risk for externalizing behaviour. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), The Oxford handbook of externalizing spectrum disorders (pp. 122). Oxford: Oxford University Press.Google Scholar
Corr, P. J., & Perkins, A. M. (2006). The role of theory in the psychophysiology of personality: From Ivan Pavlov to Jeffrey Gray. International Journal of Psychophysiology, 62, 367376.CrossRefGoogle Scholar
Costa, P., & Widiger, T. (1994). (Eds). Personality disorders and the five-factor model of personality. Washington, DC: American Psychological Association.Google Scholar
Costello, E. J., Mustillo, S., Erkanli, A., Keeler, G., & Angold, A. (2003). Prevalence and development of psychiatric disorders in childhood and adolescence. Archives of General Psychiatry, 60, 837844.Google Scholar
Dantendorfer, K., Amering, M., Baischer, W., Berger, P., Steinberger, K., Windhaber, J., et al. (1995). Is there a pathophysiological and therapeutic link between panic disorder and epilepsy. Acta Psychiatrica Scandanavica, 91, 430432.Google Scholar
Deakin, J. F. W. (1993). A review of clinical efficacy of 5-HT1A agonists in anxiety and depression. Journal of Psychopharmacology, 7, 283289.CrossRefGoogle Scholar
Deakin, J. F. W. (1998). The role of serotonin in depression and anxiety. European Psychiatry, 13(Suppl. 1), 57s63s.Google Scholar
Deakin, J. F. W., & Graeff, F. G. (1991). 5-HT and mechanisms of defence. Journal of Psychopharmacology, 5, 305315.CrossRefGoogle ScholarPubMed
Eysenck, H. J., & Eysenck, S. B. G. (1964). Eysenck Personality Inventory. London: University of London Press.Google Scholar
Finger, E. C., Marsh, A. A., Blair, K. S., Reid, M. E., Sims, C., Ng, P., et al. (2011). Disrupted reinforcement signaling in the orbitofrontal cortex and caudate in youths with conduct disorder or oppositional defiant disorder and a high level of psychopathic traits. American Journal of Psychiatry, 168, 152162.Google Scholar
Franklin, J. A. (1990). Behavioural treatment for panic disorder. In McNaughton, N. & Andrews, G. (Eds.), Anxiety (pp. 8491). Dunedin, New Zealand: University of Otago.Google Scholar
Ginzburg, K., Ein-Dor, T., & Solomon, Z. (2010). Comorbidity of posttraumatic stress disorder, anxiety and depression: A 20-year longitudinal study of war veterans. Journal of Affective Disorders, 123, 249257.Google Scholar
Goisman, R. M., Warshaw, M. G., Steketee, G. S., Fierman, E. J., Rogers, M. P., Goldenberg, I., et al. (1995). DSM-IV and the disappearance of agoraphobia without a history of panic disorder: New data on a controversial diagnosis. American Journal of Psychiatry, 152, 14381443.Google ScholarPubMed
Gray, J. A. (1975). Elements of a two-process theory of learning. London: Academic Press.Google Scholar
Gray, J. A. (1976). The behavioural inhibition system: A possible substrate for anxiety. In Feldman, M. P. & Broadhurst, A. M. (Eds.), Theoretical and experimental bases of behaviour modification (pp. 341). London: Wiley.Google Scholar
Gray, J. A. (1977). Drug effects on fear and frustration: Possible limbic site of action of minor tranquilizers. In Iversen, L. L., Iversen, S. D., & Snyder, S. H. (Eds.), Handbook of psychopharmacology: Vol. 8. Drugs, neurotransmitters and behavior (pp. 433529). New York: Plenum Press.Google Scholar
Gray, J. A. (1982). The neuropsychology of anxiety: An enquiry in to the functions of the septo-hippocampal system. Oxford: Oxford University Press.Google Scholar
Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system (2nd ed.). Oxford: Oxford University Press.Google Scholar
Gresham, F. M., Lane, K. L., & Lambros, K. M. (2000). Comorbidity of conduct problems and ADHD: Identification of fledgling psychopaths. Journal of Emotional and Behavioral Disorders, 8, 8393.Google Scholar
Griffith, J. W., Zinbarg, R. E., Craske, M. G., Mineka, S., Rose, R. D., Waters, A. M., et al. (2010). Neuroticism as a common dimension in the internalizing disorders. Psychological Medicine, 40, 11251136.CrossRefGoogle ScholarPubMed
Gurguis, G. N. M., Antai-Otong, D., Vo, S. P., Blakeley, J. E., Orsulak, P. J., Petty, F., et al. (1999). Adrenergic receptor function in panic disorder—I. Platelet receptors: Gi protein coupling, effects of imipramine, and relationship to treatment outcome. Neuropsychopharmacology, 20, 162176.Google Scholar
Haefely, W. (1992). Ligands of the GABAa receptor-associated benzodiazepine receptor. Neuroscience Facts, 3, 6970.Google Scholar
Harkness, A. R., & Lilienfeld, S. O. (1997). Individual differences science for treatment planning: Personality traits. Psychological Assessment, 9, 349360.CrossRefGoogle Scholar
Harkness, K. L., Monroe, S. M., Simons, A. D., & Thase, M. (1999). The generation of life events in recurrent and non-recurrent depression. Psychological Medicine, 29, 135144.Google Scholar
Holt, P. (1990). Panic disorder: Some historical trends. In McNaughton, N., & Andrews, G. (Eds.), Anxiety (pp. 5465). Dunedin, New Zealand: University of Otago Press.Google Scholar
Johnson, P. L., Truitt, W., Fitz, S. D., Minick, P. E., Dietrich, A., Sanghani, S., et al. (2010). A key role for orexin in panic anxiety. Nature Medicine, 16, 111115.Google Scholar
Joyce, P. R., & Oakley-Browne, M. A. (1990). The epidemiology of panic and agoraphobia. In McNaughton, N. & Andrews, G. (Eds.), Anxiety (pp. 3238). Dunedin, New Zealand: University of Otago Press.Google Scholar
Kara, S., Yazici, K. M., Güleç, C., & Ünsal, I. (2000). Mixed anxiety-depressive disorder and major depressive disorder: Comparison of the severity of illness and biological variables. Psychiatry Research, 94, 5966.CrossRefGoogle ScholarPubMed
Kaufman, J., & Charney, D. (2000). Comorbidity of mood and anxiety disorders. Depression and Anxiety, 12(Suppl. 1), 6976.Google Scholar
Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1992a). Generalized anxiety disorder in women: A population-based twin study. Archives of General Psychiatry, 49, 267272.Google Scholar
Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1992b). The genetic epidemiology of phobias in women: The interrelationship of agoraphobia, social phobia, situational phobia and simple phobia. Archives of General Psychiatry, 49, 273281.Google Scholar
Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1992c). Major depression and generalized anxiety disorder: Same genes, (partly) different environments? Archives of General Psychiatry, 49, 716722.Google Scholar
Kendler, K. S., Prescott, C. A., Myers, J., & Neale, M. C. (2003). The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Archives of General Psychiatry, 60, 929937.Google Scholar
Kendler, K. S., Thornton, L. M., & Gardner, C. O. (2000). Stressful life events and previous episodes in the etiology of major depression in women: An evaluation of the “kindling” hypothesis. American Journal of Psychiatry, 157, 12431251.CrossRefGoogle ScholarPubMed
Kessler, R. C. (1997). The effects of stressful life events on depression. Annual Review of Psychology, 48, 191214.Google Scholar
Klein, D. F. (1995). Recognising panic disorder. European Journal of Psychiatry, 10(Suppl. 2), 61S63S.Google Scholar
Kostowski, W., & Bienkowski, P. (1999). Discriminative stimulus effects of ethanol: Neuropharmacological characterization. Alcohol, 17, 6380.Google Scholar
Krueger, R. F. (1999). The structure of common mental disorders. Archives General Psychiatry, 56, 921926.Google Scholar
Krueger, R. F., & Markon, K. E. (2006). Reinterpreting comorbidity: A model-based approach to understanding and classifying psychopathology. Annual Review of Clinical Psychology, 2, 111133.Google Scholar
Krueger, R. F., & Tackett, J. L. (2003). Personality and psychopathology: Working toward the bigger picture. Journal of Personality Disorders, 17, 109128.Google Scholar
LeDoux, J. E. (1994). Emotion, memory and the brain. Scientific American, 270, 5059.Google Scholar
LeDoux, J. E. (1996). The emotional brain. New York: Simon & Schuster.Google Scholar
Marks, I. M. (1988). The syndromes of anxious avoidance: Classification of phobic and obsessive-compulsive phenomena. In Noyes, R. Jr., Roth, M., & Burrows, G. D. (Eds.), Handbook of anxiety: Vol 2. Classification, etiological factors and associated disturbances (pp. 109146). Amsterdam: Elsevier.Google Scholar
Matthys, W., Vanderschuren, L. J., & Schutter, D. J. (2013). The neurobiology of oppositional defiant disorder and conduct disorder: Altered functioning in three mental domains. Development and Psychopathology, 25, 193207.Google Scholar
Matthys, W., van Goozen, S. H., de Vries, H., Cohen-Kettenis, P. T., & van Engeland, H. (1998). The dominance of behavioural activation over behavioural inhibition in conduct disordered boys with or without attention deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry, 39, 643651.Google Scholar
McNaughton, N. (1989). Biology and emotion. Cambridge: Cambridge University Press.Google Scholar
McNaughton, N. (2002). Aminergic transmitter systems. In D'haenen, H., Den Boer, J. A., Westenberg, H., & Willner, P. (Eds.), Textbook of biological psychiatry (pp. 895914). Chichester: Wiley.Google Scholar
McNaughton, N. (2005). Fears and anxieties: A map of your dark side (Vol. 2). Dunedin, New Zealand: University of Otago.Google Scholar
McNaughton, N. (2008). The neurobiology of anxiety: Potential for comorbidity of anxiety and substance use disorders. In Stewart, S. H. & Conrod, P. J. (Eds.), Anxiety and substance use disorders: The vicious cycle of comorbidity (pp. 1933). New York: Springer Science+Business Media.Google Scholar
McNaughton, N. (2014). Development of a theoretically-derived human anxiety syndrome biomarker. Translational Neuroscience, 5, 137146.Google Scholar
McNaughton, N., & Corr, P. J. (2004). A two-dimensional neuropsychology of defense: Fear/anxiety and defensive distance. Neuroscience & Biobehavioral Reviews, 28, 285305.Google Scholar
McNaughton, N., & Corr, P. J. (2008). RST and personality. In Corr, P. J. (Ed.), The reinforcement theory of personality (pp. 155188). Cambridge: Cambridge University Press.Google Scholar
McNaughton, N., Kocsis, B., & Hajós, M. (2007). Elicited hippocampal theta rhythm: A screen for anxiolytic and pro-cognitive drugs through changes in hippocampal function? Behavioural Pharmacology, 18, 329346.Google Scholar
McNaughton, N., Swart, C., Neo, P. S. H., Bates, V., & Glue, P. (2013). Anti-anxiety drugs reduce conflict-specific “theta”—A possible human anxiety-specific biomarker. Journal of Affective Disorders, 148, 104111.Google Scholar
Meijer, O. C., & de Kloet, E. R. (1994). Corticosterone suppresses the expression of 5-HT1A receptor mRNA in rat dentate gyrus. European Journal of Pharmacology: Molecular Pharmacology, 266, 255261.Google Scholar
Meijer, O. C., Van Oosten, R. V., & de Kloet, E. R. (1997). Elevated basal trough levels of corticosterone suppress hippocampal 5-hydroxytryptamine1A receptor expression in adrenally intact rats: Implication for the pathogenesis of depression. Neuroscience, 80, 419426.Google Scholar
Middleton, H. C., Ashby, M., & Robbins, T. W. (1994). Reduced plasma noradrenaline and abnormal heart rate variability in resting panic disorder patients. Biological Psychiatry, 36, 847849.Google Scholar
Neo, P. S. H., Thurlow, J., & McNaughton, N. (2011). Stopping, goal-conflict, trait anxiety and frontal rhythmic power in the stop-signal task. Cognitive, Affective, and Behavioral Neuroscience, 11, 485493.Google Scholar
Nesse, R. M. (1999). Proximate and evolutionary studies of anxiety, stress and depression: Synergy at the interface. Neuroscience & Biobehavioral Reviews, 23, 895903.CrossRefGoogle ScholarPubMed
Nesse, R. M. (2000). Is depression an adaptation? Archives of General Psychiatry, 57, 1420.Google Scholar
Noyes, R. Jr., Burrows, G. D., Reich, J. H., Judd, F. K., Garvey, M. J., Norman, T. R., et al. (1996). Diazepam versus alprazolam for the treatment of panic disorder. Journal of Clinical Psychiatry, 57, 349355.Google ScholarPubMed
Pariante, C. M. (2003) Depression, stress and the adrenal axis. Neuro-endocrinology Briefings 19. Retrieved from http://www.neuroendo.org.uk/Topics/Stress/19Depression.aspx Google Scholar
Pariante, C. M., & Miller, A. H. (2001). Glucocorticoid receptors in major depression: Relevance to pathophysiology and treatment. Biological Psychiatry, 49, 391404.Google Scholar
Pliszka, S. R. (1998). Comorbidity of ADHD: An overview. Journal of Clinical Psychiatry, 59, 5058.Google Scholar
Quay, H. C. (1997). Inhibition and attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 25, 713.Google Scholar
Randall, P. K., Bremner, J. D., Krystal, J. H., Nagy, L. M., Heninger, G. R., Nicolaou, A. L., et al. (1995). Effects of the benzodiazepine antagonist flumazenil in PTSD. Biological Psychiatry, 38, 319324.Google Scholar
Rapoport, J. L. (1989). The biology of obsessions and compulsions. Scientific American, 260, 6369.Google Scholar
Richardson, D. K., Reynolds, S. M., Cooper, S. J., & Berridge, K. C. (2005). Endogenous opioids are necessary for benzodiazpine palatability enhancement: Naltrexone blocks diazepam-induced increase of sucrose-“liking.” Pharmacology Biochemistry and Behavior, 81, 657663.Google Scholar
Rickels, K., & Rynn, M. (2002). Pharmacotherapy of generalized anxiety disorder. Journal of Clinical Psychiatry, 63, 916.Google Scholar
Roy-Byrne, P. P., Stang, P., Wittchen, H. U., Ustun, B., Walters, E. E., & Kessler, R. C. (2000). Lifetime panic-depression comorbidity in the National Comorbidity Survey. Association with symptoms, impairment, course and help-seeking. British Journal of Psychiatry, 176, 229235.Google Scholar
Sandford, J. J., Argyropoulos, S. V., & Nutt, D. J. (2000). The psychobiology of anxiolytic drugs: Part 1: Basic neurobiology. Pharmacology and Therapeutics, 88, 197212.Google Scholar
Sapolsky, R. M. (2004). Why zebras don't get ulcers (3rd ed.). New York: Henry Holt.Google Scholar
Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1984). Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proceedings of the National Academy of Sciences, 81, 61746177.Google Scholar
Sauder, C., Beauchaine, T. P., Gatzke-Kopp, L. M., Shannon, K. E., & Aylward, E. (2012). Neuroanatomical correlates of heterotypic comorbidity in externalizing male adolescents. Journal of Clinical Child and Adolescent Psychology, 41, 346352.CrossRefGoogle ScholarPubMed
Schmidt, M. V., Abraham, W. C., Maroun, M., Stork, O., & Richter-Levin, G. (2013). Stress-induced metaplasticity: From synapses to behavior. Neuroscience, 250, 112120.Google Scholar
Seidman, L. J., Valera, E. M., & Makris, N. (2005). Structural brain imaging of attention-deficit/hyperactivity disorder. Biological Psychiatry, 57, 12631272.Google Scholar
Shadli, S. M., McIntosh, J., Glue, P., & McNaughton, N. (2015). An improved human anxiety process biomarker: Characterisation of frequency band, personality, and pharmacology. Translational Psychiatry, 5, e699. doi:10.1038/tp.2015.188 CrossRefGoogle ScholarPubMed
Shear, M. K., & Maser, J. D. (1994). Standardized assessment for panic disorder research: A conference report. Archives of General Psychiatry, 51, 346354.Google Scholar
Shipley, M. T., Ennis, M., Rizvi, T. A., & Behbehani, M. M. (1991). Topographical specificity of forebrain inputs to the midbrain periaqueductal gray: Evidence for discrete longitudinally organized input columns. In Depaulis, A. & Bandler, R. (Eds.), The midbrain periaqueductal gray matter (pp. 417448). New York: Plenum Press.Google Scholar
Smith, D. J., Escott-Price, V., Davies, G., Bailey, M. E. S., Colodro, L. C., Ward., J., et al. (2015). Genome-wide analysis of over 106,000 individuals identifies 9 neuroticism-associated loci. Molecular Psychiatry. Advance online publication.Google Scholar
Sonuga-Barke, E. J. S. (2005). Causal models of attention-deficit/hyperactivity disorder: From common simple deficits to multiple developmental pathways. Biological Psychiatry, 57, 12311238.Google Scholar
Sowell, E. R., Toga, A. W., & Asarnow, R. (2000). Brain abnormalities observed in childhood-onset schizophrenia: A review of the structural magnetic resonance imaging literature. Mental Retardation and Developmental Disabilities Research Reviews, 6, 180185.Google Scholar
Spencer, T., Biederman, J., & Wilens, T. (1999). Attention-deficit/hyperactivity disorder and comorbidity. Pediatric Clinics of North America, 46, 915927.Google Scholar
Stein, D. J., Hollander, E., Mullen, L. S., DeCaria, C. M., & Liebowitz, M. R. (1992). Comparison of clomipramine, alprazolam and placebo in the treatment of obsessive-compulsive disorder. Human Psychopharmacology, 7, 389395.Google Scholar
Stein, D. J., Vythilingum, B., & Seedat, S. (2004). Pharmacotherapy of phobias. In Maj, M. (Ed.), Evidence and experience in psychiatry: Vol. 7. Phobias. Chichester: Wiley.Google Scholar
Stevens, J. C., & Pollack, M. H. (2005). Benzodiazepines in clinical practice: Consideration of their long-term use and alternative agents. Journal of Clinical Psychiatry, 66, 2127.Google Scholar
Stevenson, M., & McNaughton, N. (2013). A comparison of phenylketonuria with attention deficit hyperactivity disorder: Do markedly different aetiologies deliver common phenotypes? Brain Research Bulletin, 99, 6383.Google Scholar
Stewart, S. H., & Conrod, P. J. (Eds.). (2008). Anxiety and substance use disorders: The vicious cycle of comorbidity. New York: Springer Science+Business Media.CrossRefGoogle Scholar
Tackett, J. L. (2006). Evaluating models of the personality–psychopathology relationship in children and adolescents. Clinical Psychology Review, 26, 584599.Google Scholar
Takano, A., Arakawa, R., Hayashi, M., Takahashi, H., Ito, H., & Suhara, T. (2007). Relationship between neuroticism personality trait and serotonin transporter binding. Biological Psychiatry, 62, 588592.Google Scholar
Volkow, N. D., Wang, G.-J., Newcorn, J., Fowler, J. S., Telang, F., Solanto, M. V., et al. (2007a). Brain dopamine transporter levels in treatment and drug naive adults with ADHD. NeuroImage, 34, 11821190.Google Scholar
Volkow, N. D., Wang, G.-J., Newcorn, J., Telang, F., Solanto, M. V., Fowler, J. S., et al. (2007). Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 64, 932940.Google Scholar
Watson, D., Clark, L. A., & Harkness, A. R. (1994). Structure of personality and their relevance to psychopathology. Journal of Abnormal Psychology, 103, 1831.Google Scholar
Westenberg, H. G. M. (1999). Facing the challenge of social anxiety disorder. European Neuropsychopharmacology, 9, S93S99 Google Scholar
Widiger, T. A., & Trull, T. J. (1992). Personality and psychopathology: An application of the five-factor model. Journal of Personality, 60, 363393.Google Scholar
Widiger, T. A., Verheul, R., & van den Brink, W. (1999). Personality and psychopathology. In Pervin, L. A. & John, O. P. (Eds.), Handbook of personality: Theory and research (pp. 347366). New York: Guilford Press.Google Scholar
World Health Organization. (2010). International Statistical Classification of Diseases and Related Health Problems (10th rev.). Retrieved from http://apps.who.int/classifications/icd10/browse/2010/en Google Scholar