Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T06:55:45.764Z Has data issue: false hasContentIssue false

Magnetic resonance imaging methods in developmental science: A primer

Published online by Cambridge University Press:  07 October 2008

Ruskin H. Hunt*
Affiliation:
University of Minnesota
Kathleen M. Thomas
Affiliation:
University of Minnesota
*
Address correspondence and reprint requests to: Ruskin H. Hunt, Institute of Child Development, 51 East River Road, University of Minnesota, Minneapolis, MN 55455; E-mail: [email protected].

Abstract

Structural and functional magnetic resonance imaging (MRI) are increasingly common research methods among investigators interested in typically and atypically developing populations. However, the effective use of these tools requires an understanding of the basis of the magnetic resonance signal, as well as some of the additional experimental complications that arise when collecting MRI data from developmental populations. This primer provides a foundation for investigators who wish to utilize MRI methods in their research and whose primary interest involves typically and atypically developing populations. The basic concepts of MRI physics are introduced, as well as the typical MRI scanner components and their role in MRI data acquisition. In addition, a variety of scan types (structural, functional, diffusion tensor) are discussed, along with a number of important experimental design factors that can impact the quality and utility of the data collected. Special consideration is given to working with pediatric and special populations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, G. K., & D'Esposito, M. (1999). Experimental design for brain fMRI. In Moonen, C. & Bandettini, P. A. (Eds.), Medical radiology: Functional MRI (pp. 369380). New York: Springer–Verlag.Google Scholar
Belliveau, J. W., Kennedy, D. N., McKinstry, R. C., Buchbinder, B. R., Weisskoff, R. M., Cohen, M. S., et al. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254, 716719.CrossRefGoogle ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A new and powerful approach to multiple testing. Journal of the Royal Statistical Society B, 57, 289300.Google Scholar
Bloch, F. (1946). Nuclear induction. Physical Review, 70, 460474.CrossRefGoogle Scholar
Bloch, F., Hansen, W. W., & Packard, M. (1946). Nuclear induction. Physical Review, 69, 127.CrossRefGoogle Scholar
Bottomley, P. A., Foster, T. H., Argersinger, R. E., & Pfeiffer, L. M. (1984). A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz. Medical Physics, 11, 425448.CrossRefGoogle ScholarPubMed
Bottomley, P. A., Hardy, C. J., Argersinger, R. E., & Allen-Moore, G. (1987). A review of hydrogen magnetic resonance relaxation in pathology. Medical Physics, 14, 137.CrossRefGoogle Scholar
Bracewell, R. N. (1965). The Fourier transform and its applications. New York: McGraw–Hill.Google Scholar
Brammer, M. J. (2001). Head motion and its correction. In Jezzard, P., Matthews, P. M., & Smith, S. M. (Eds.), Functional MRI: An introduction to methods (pp. 243250). New York: Oxford.Google Scholar
Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 4962.CrossRefGoogle ScholarPubMed
Brigham, E. O. (1974). The fast Fourier transform. Englewood Cliffs, NJ: Prentice–Hall.Google Scholar
Buckner, R. L., Bandettini, P. A., O'Craven, K. M., Savoy, R. L., Petersen, S. E., Raichle, M. E., et al. (1996). Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proceedings of the National Academy of Science of the United States of America, 93, 1487814883.CrossRefGoogle ScholarPubMed
Buckner, R. L., & Braver, T. S. (1999). Event-related functional MRI. In Moonen, C. & Bandettini, P. A. (Eds.), Medical radiology: Functional MRI (pp. 441452). New York: Springer–Verlag.Google Scholar
Buxton, R. B. (2002). Introduction to functional magnetic resonance imaging: Principles and techniques. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Buxton, R. B., Edelman, R. R., Rosen, B. R., Wismer, G. L., & Brady, T. J. (1987). Contrast in rapid MR imaging: T1- and T2-weighted imaging. Journal of Computer Assisted Tomography, 11, 716.CrossRefGoogle ScholarPubMed
Cascio, C. J., Gerig, G., & Piven, J. (2007). Diffusion tensor imaging: Application to the study of the developing brain. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 213223.CrossRefGoogle Scholar
Casey, B. J., Forman, S. D., Franzen, P., Berkowitz, A., Braver, T. S., Nystrom, L. E., et al. (2001). Sensitivity of prefrontal cortex to changes in target probability: A functional MRI study. Human Brain Mapping, 13, 2633.CrossRefGoogle ScholarPubMed
Casey, B. J., Trainor, R. J., Orendi, J. L., Schubert, A. B., Nystrom, L. E., Giedd, J. N., et al. (1997). A developmental functional MRI study of prefrontal activation during performance of a go-nogo task. Journal of Cognitive Neuroscience, 9, 835847.CrossRefGoogle Scholar
Castellanos, F. X., Giedd, J. N., Hamburger, S. D., Marsh, W. L., & Rapoport, J. L. (1996). Brain morphometry in Tourette's syndrome: The influence of comorbid attention deficit/hyperactivity disorder. Neurology, 47, 15811583.CrossRefGoogle ScholarPubMed
Chen, D. W. (2001, August 1). Small town reels from boy's MRI death. The New York Times.Google Scholar
Constable, R. T., Skudlarski, P., Mencl, E., Pugh, K. R., Fulbright, R. K., Lacadie, C., et al. (1996). Quantifying and comparing region-of-interest activation patterns in functional brain MR imaging: Methodology considerations. Magnetic Resonance Imaging, 16, 289300.CrossRefGoogle Scholar
Conturo, T. E., Lori, N. F., Cull, T. S., Akbudak, E., Snyder, A. Z., Shimony, J. S., et al. (1999). Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences of the United States of America, 96, 1042210427.CrossRefGoogle ScholarPubMed
Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162173.CrossRefGoogle ScholarPubMed
DeYoe, E. A., Bandettini, P., Neitz, J., Miller, D., & Winans, P. (1994). Functional magnetic resonance imaging (FMRI) of the human brain. Journal of Neuroscience Methods, 54, 171187.CrossRefGoogle ScholarPubMed
Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., & Casey, B. J. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9, 18.CrossRefGoogle ScholarPubMed
Durston, S., Thomas, K. M., Worden, M. S., Yang, Y., & Casey, B. J. (2002). The effect of preceding context on inhibition: An event-related fMRI study. NeuroImage, 16, 449453.CrossRefGoogle ScholarPubMed
Durston, S., Tottenham, N. T., Thomas, K. M., Davidson, M. C., Eigsti, I. M., Yang, Y., et al. (2003). Differential patterns of striatal activation young children with and without ADHD. Biological Psychiatry, 53, 871878.CrossRefGoogle ScholarPubMed
Edelstein, W. A., Hutchison, J. M. S., Johnson, G., & Redpath, T. (1980). Spin warp NMR imaging and applications to human whole body imaging. Journal of Physics in Medicine and Biology, 25, 751756.CrossRefGoogle Scholar
Fox, P. T., Raichle, M. E., Mintun, M. A., & Dence, C. (1988). Nonoxidative glucose consumption during focal physiologic neural activity. Science, 241, 462464.CrossRefGoogle ScholarPubMed
Friston, K. J., Ashburner, J., Frith, C. S., Poline, J.-B., Heather, J. D., & Frackowiak, R. S. J. (1995). Spatial registration and normalization of images. Human Brain Mapping, 2, 165189.CrossRefGoogle Scholar
Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. C., & Fackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2, 189210.CrossRefGoogle Scholar
Friston, K. J., Jezzard, P., & Turner, R. (1994). Analysis of functional MRI time-series. Human Brain Mapping, 1, 153171.CrossRefGoogle Scholar
Friston, K. J., Josephs, O., Rees, G., & Turner, R. (1998). Nonlinear event-related responses in fMRI. Magnetic Resonance in Medicine, 39, 4152.CrossRefGoogle ScholarPubMed
Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15, 870878.CrossRefGoogle ScholarPubMed
Giedd, J. N., Vaituzis, A. C., Hamburger, S. D., Lange, N., Rajapakse, J. C., Kaysen, D., et al. (1996). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: Ages 4–18 years. Journal of Comparative Neruology, 366, 223230.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Hahn, E. L. (1950). Spin echoes. Physical Review, 80, 580594.CrossRefGoogle Scholar
Hajnal, J. V., Myers, R., Oatridge, A., Schwieso, J. E., Young, I. R., & Bydder, G. M. (1994). Artifacts due to stimulus correlated motion in functional imaging of the brain. Magnetic Resonance in Medicine, 31, 283291.CrossRefGoogle ScholarPubMed
Huettel, S. A., & McCarthy, G. (2001). The effects of single-trial averaging upon the spatial extent of fMRI activation. NeuroReport, 12, 24112416.CrossRefGoogle ScholarPubMed
Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging. Sunderland, MA: Sinauer Associates.Google ScholarPubMed
Jezzard, P. (1999). Physiological noise: Strategies for correction. In Moonen, C. & Bandettini, P. A. (Eds.), Medical radiology: Functional MRI (pp. 173181). New York: Springer–Verlag.Google Scholar
Jezzard, P., & Balaban, R. S. (1995). Correction for geometric distortion in echo planar images from B0 field distortions. Magnetic Resonance in Medicine, 34, 6573.CrossRefGoogle Scholar
Jezzard, P., & Clare, S. (2001). Principles of nuclear magnetic resonance and MRI. In Jezzard, P., Matthews, P. M., & Smith, S. M. (Eds.), Functional MRI: An introduction to methods (pp. 6792). New York: Oxford University Press.Google Scholar
Kanal, E., Borgstede, J. P., Barkovich, A. J., Bell, C., Bradley, W. G., Etheridge, S., et al. (2004). American College of Radiology white paper on MR safety: 2004 update and revisions. American Journal of Roentgenology, 182, 11111114.CrossRefGoogle ScholarPubMed
Klucznik, R., Carrier, D., & Pyka, R. (1993). Placement of a ferromagnetic intracerebral aneurysm clip in a magnetic field with a fatal outcome. Radiology, 187, 855856.CrossRefGoogle Scholar
Kumar, A., Welti, D., & Ernst, R. (1975). NMR Fourier zeugmatography. Journal of Magnetic Resonance, 18, 6983.Google Scholar
Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models (5th ed.). New York: McGraw–Hill.Google Scholar
Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America, 89, 56755679.CrossRefGoogle ScholarPubMed
Lange, N. (1996). Statistical approaches to human brain mapping by functional magnetic resonance imaging. Statistics in Medicine, 15, 389428.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
LeBihan, D., Mangin, J. F., & Poupon, C., Clark, C. A., Pappata, S., Molko, N., et al. (2001). Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging, 13, 534546.CrossRefGoogle Scholar
Loring, D. W., Meador, K. J., Allison, J. D., Pillai, J. J., Lavin, T., Lee, G. P., et al. (2002). Now you see it, now you don't: Statistical and methodological considerations in fMRI. Epilepsy and Behavior, 3, 539547.CrossRefGoogle ScholarPubMed
Mansfield, P. (1977). Multi-planar image formation using NMR spin echoes. Journal of Physics C: Solid State Physics, 10, L55L58.CrossRefGoogle Scholar
Mansfield, P., & Maudsley, A. A. (1977). Medical imaging by NMR. British Journal of Radiology, 50, 188194.CrossRefGoogle ScholarPubMed
Mansfield, P., & Pykett, I. L. (1978). Biological and medical imaging by NMR. Journal of Magnetic Resonance, 29, 355373.Google Scholar
McRobbie, D. W., Moore, E. A., Graves, M. J., & Prince, M. R. (2003). MRI: From picture to proton. Cambridge: Cambridge University Press.Google Scholar
Miezin, F. M., Maccotta, L., Ollinger, J. M., Petersen, S. E., & Buckner, R. L. (2000). Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage, 11, 735759.CrossRefGoogle ScholarPubMed
Ogawa, S., Lee, T. S., Nayak, A. S. & Glynn, P. (1990). Oxygenation sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine, 26, 6878.CrossRefGoogle Scholar
Parrish, T. B., Gitelman, D. R., LaBar, K. S., & Mesulam, M. M. (2000). Impact of signal-to-noise on functional MRI. Magnetic Resonance in Medicine, 44, 925932.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Poline, J.-B., Worsley, K. J., Evans, A. C., & Friston, K. J. (1997). Combining spatial extent and peak intensity to test for activations in functional imaging. NeuroImage, 5, 8396.CrossRefGoogle ScholarPubMed
Purcell, E. M., Torrey, H. C., & Pound, R. V. (1946). Resonance absorption by nuclear magnetic moments in a solid. Physical Review, 69, 3738.CrossRefGoogle Scholar
Raichle, M. E. (1987). Circulatory and metabolic correlates of brain function in normal humans. In Mountcastle, V. B., Plum, F., & Geiger, S. R. (Eds.), Handbook of physiology: The nervous system. V. Higher Functions of the Brain (pp. 643674). Bethesda, MD: American Physiological Society.Google Scholar
Reber, P. J., Wong, E. C., Buxton, R. B., & Frank, L. R. (1998). Correction of off-resonance related distortion in EPI using EPI based field maps. Magnetic Resonance in Medicine, 39, 328330.CrossRefGoogle ScholarPubMed
Reese, T., Davis, T., & Weisskoff, R. (1995). Automated shimming at 1.5T using echo planar image frequency maps. Journal of Magnetic Resonance Imaging, 5, 739745.CrossRefGoogle Scholar
Rosenberg, D. R., Sweeney, J. A., Gillen, J. S., Kim, J., Varanelli, M. J., O'Hearn, K. M., et al. (1997). Magnetic resonance imaging of children without sedation: Preparation with simulation. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 853859.CrossRefGoogle ScholarPubMed
Smith, S. M. (2001). Preparing fMRI data for statistical analysis. In Jezzard, P., Matthews, P. M., & Smith, S. M. (Eds.), Functional MRI: An introduction to methods (pp. 229250). Oxford: Oxford University Press.Google Scholar
Stark, C. E. L., & Squire, L. R. (2001). When zero is not zero: The problem of ambiguous baseline conditions in fMRI. Proceedings of the National Academy of Sciences of the United States of America, 98, 1276012766.CrossRefGoogle Scholar
Talairach, J., & Tourneoux, P. (1988). Co-planar stereotactic atlas of the human brain: 3-dimensional proportional system: An approach to cerebral imaging. Stuttgart: Thieme.Google Scholar
Taylor, W. D., Hsu, E., Krishnan, K. R. R., & McFall, J. R. (2004). Diffusion tensor imaging: Background, potential, and utility in psychiatric research. Biological Psychiatry, 55, 201207.CrossRefGoogle ScholarPubMed
Thomas, K. M. (2003). Assessing brain development using neurophysiologic and behavioral measures. Journal of Pediatrics, 143, S46S53.CrossRefGoogle ScholarPubMed
Thomas, K. M., & Casey, B. J. (1999). Functional MRI in pediatrics. In Moonen, C. T. W. & Bandettini, P. A. (Eds.), Functional MRI (pp. 513523). New York: Springer.Google ScholarPubMed
Thomas, K. M., & Casey, B. J. (2003). Methods for imaging the developing brain. In Haan, M. de & Johnson, M. K. (Eds.), The cognitive neuroscience of development (pp. 1941). East Sussex: Psychology Press.Google Scholar
Thomas, K. M., Drevets, W. C., Dahl, R. E., Ryan, N. D., Birmaher, B., Eccard, C. H., Axelson, D., Whalen, P. J., & Casey, B. J. (2001). Amygdala response to fearful faces in anxious and depressed children. Archives of General Psychiatry, 58, 10571063.CrossRefGoogle ScholarPubMed
Thomas, K. M., King, S. W., Franzen, P. L., Welsh, T. F., Berkowitz, A. L., Noll, D. C., Birmaher, V., & Casey, B. J. (1999). A developmental functional MRI study of spatial working memory. NeuroImage, 10, 327338.CrossRefGoogle ScholarPubMed
Thulborn, K. R. (1999). Visual feedback to stabilize head position for fMRI. Magnetic Resonance in Medicine, 41, 10391043.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Turner, R., Le Bihan, D., Moonen, C. T. W., Despres, D., & Frank, J. (1991). Echo-planar time course MRI of cat brain oxygenation changes. Magnetic Resonance in Medicine, 22, 159166.CrossRefGoogle ScholarPubMed
Twieg, D. B. (1983). The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods. Medical Physics, 10, 610621.CrossRefGoogle ScholarPubMed
Wood, M. L., & Henkelman, R. M. (1985). MR image artifacts from periodic motion. Medical Physics, 12, 143151.CrossRefGoogle ScholarPubMed
Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R., & Mazziotta, J. C. (1998a). Automated image registration: I. General methods and intrasubject, intramodality validation. Journal of Computer Assisted Tomography, 22, 139152.CrossRefGoogle ScholarPubMed
Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R., & Mazziotta, J. C. (1998b). Automated image registration: II. Intersubject validation of linear and nonlinear models. Journal of Computer Assisted Tomography, 22, 153165.CrossRefGoogle ScholarPubMed
Worsley, K. J., Marrett, S., Neelin, P., & Evans, A.C. (1992). A three-dimensional statistical analysis for CBF activation studies in human brain. Journal of Cerebral Blood Flow and Metabolism, 12, 900918.CrossRefGoogle Scholar
Young, S. W. (1988). Magnetic resonance imaging: Basic principles (2nd ed.). New York: Raven Press.Google Scholar