Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T18:15:25.990Z Has data issue: false hasContentIssue false

Lexical processing deficits in children with developmental language disorder: An event-related potentials study

Published online by Cambridge University Press:  06 May 2015

Sergey A. Kornilov
Affiliation:
University of Connecticut Yale University Haskins Laboratories Moscow State University Saint-Peterburg State University
James S. Magnuson
Affiliation:
University of Connecticut Haskins Laboratories
Natalia Rakhlin
Affiliation:
Yale University Wayne State University
Nicole Landi
Affiliation:
University of Connecticut Yale University Haskins Laboratories
Elena L. Grigorenko*
Affiliation:
Yale University Haskins Laboratories Saint-Peterburg State University Columbia University Moscow City University for Psychology and Education
*
Address correspondence and reprint requests to: Elena L. Grigorenko, Child Study Center, Yale University, 230 South Frontage Road, New Haven, CT 06519; E-mail: [email protected].

Abstract

Lexical processing deficits in children with developmental language disorder (DLD) have been postulated to arise as sequelae of their grammatical deficits (either directly or via compensatory mechanisms) and vice versa. We examined event-related potential indices of lexical processing in children with DLD (n = 23) and their typically developing peers (n = 16) using a picture–word matching paradigm. We found that children with DLD showed markedly reduced N400 amplitudes in response both to auditorily presented words that had initial phonological overlap with the name of the pictured object and to words that were not semantically or phonologically related to the pictured object. Moreover, this reduction was related to behavioral indices of phonological and lexical but not grammatical development. We also found that children with DLD showed a depressed phonological mapping negativity component in the early time window, suggesting deficits in phonological processing or early lexical access. The results are partially consistent with the overactivation account of lexical processing deficits in DLD and point to the relative functional independence of lexical/phonological and grammatical deficits in DLD, supporting a multidimensional view of the disorder. The results also, although indirectly, support the neuroplasticity account of DLD, according to which language impairment affects brain development and shapes the specific patterns of brain responses to language stimuli.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addis, L., Friederici, A. D., Kotz, S. A., Sabisch, B., Barry, J., Richter, N., et al. (2010). A locus for an auditory processing deficit and language impairment in an extended pedigree maps to 12p13.31–q14.3. Genes, Brain and Behavior, 9, 545561.CrossRefGoogle Scholar
American Psychiatric Association. (2001). Diagnostic and statistical manual of mental disorders (4th ed., text revision). Washington, DC: Author.Google Scholar
Baddeley, A., Gathercole, S., & Papagno, C. (1998). The phonological loop as a language learning device. Psychological Review, 105, 158173.CrossRefGoogle ScholarPubMed
Batterink, L., & Neville, H. (2013). Implicit and explicit second language training recruit common neural mechanisms for syntactic processing. Journal of Cognitive Neuroscience, 25, 936951.CrossRefGoogle ScholarPubMed
Bedore, L. M., & Leonard, L. B. (2001). Grammatical morphology deficits in Spanish-speaking children with specific language impairment. Journal of Speech, Language, and Hearing Research, 44, 905924.CrossRefGoogle ScholarPubMed
Bishop, D. V. M. (2007). Using mismatch negativity to study central auditory processing in developmental language and literacy impairments: Where are we, and where should we be going? Psychological Bulletin, 133, 651672.CrossRefGoogle ScholarPubMed
Bishop, D. V. M. (2013). Cerebral asymmetry and language development: Cause, correlate, or consequence? Science, 340, 1230531.CrossRefGoogle ScholarPubMed
Boersma, P., & Weenink, D. (2009). Praat: Doing phonetics by computer (Version 5.1.05). Amsterdam: Institute of Phonetic Sciences.Google Scholar
Brackenbury, T., & Pye, C. (2005). Semantic deficits in children with language impairments: Issues for clinical assessment. Language, Speech, and Hearing Services in School, 36, 516.CrossRefGoogle ScholarPubMed
Brandwein, A. B., Foxe, J. J., Russo, N. N., Altschuler, T. S., Gomes, H., & Molholm, S. (2011). The development of audiovisual multisensory integration across childhood and early adolescence: A high-density electrical mapping study. Cerebral Cortex, 21, 10421055.CrossRefGoogle ScholarPubMed
Cannon, T. D., & Keller, M. C. (2006). Endophenotypes in the genetic analyses of mental disorders. Annual Review of Clinical Psychology, 2, 267290.CrossRefGoogle ScholarPubMed
Carrow-Woolfolk, E. (1999). Comprehensive assessment of spoken language. Circle Pines, MN: American Guidance Service.Google Scholar
Cattell, R. B., & Cattell, A. K. S. (1973). A culture-fair intelligence test. Champaign, IL: Institute for Personality and Ability Testing.Google Scholar
Chen, Z., Liu, P., Wang, E. Q., Larson, C. R., Huang, D., & Liu, H. (2012). ERP correlates of language-specific processing of auditory pitch feedback during self-vocalization. Brain and Language, 121, 2534.CrossRefGoogle ScholarPubMed
Claessen, M., Leitao, S., Kane, R., & Williams, C. (2013). Phonological processing skills in specific language impairment. International Journal of Speech–Language Pathology, 15, 471483.CrossRefGoogle ScholarPubMed
Connolly, J. F., & Phillips, N. A. (1994). Event-related potential components reflect phonological and semantic processing of the terminal word of spoken sentences. Journal of Cognitive Neuroscience, 6, 256266.CrossRefGoogle ScholarPubMed
Conti-Ramsden, G., & Botting, N. (2008). Emotional health in adolescents with and without a history of specific language impairment (SLI). Journal of Child Psychology and Psychiatry and Allied Disciplines, 49, 516525.CrossRefGoogle ScholarPubMed
Conti-Ramsden, G., & Durkin, K. (2008). Language and independence in adolescents with and without a history of specific language impairment (SLI). Journal of Speech, Language, and Hearing Research, 51, 7083.CrossRefGoogle ScholarPubMed
Desroches, A. S., Newman, R. L., & Joanisse, M. F. (2009). Investigating the time course of spoken word recognition: Electrophysiological evidence for the influences of phonological similarity. Journal of Cognitive Neuroscience, 21, 18931906.CrossRefGoogle ScholarPubMed
Dien, J. (2010). The ERP PCA Toolkit: An open source program for advanced statistical analysis of event-related potential data. Journal of Neuroscience Methods, 187, 138145.CrossRefGoogle Scholar
Dien, J. (2012). Applying principal components analysis to event-related potentials: A tutorial. Developmental Neuropsychology, 7, 497517.CrossRefGoogle Scholar
Dollaghan, C. (1998). Spoken word recognition in children with and without specific language impairment. Applied Psycholinguistics, 19, 193207.CrossRefGoogle Scholar
Dromi, E., Leonard, L. B., Adam, G., & Zadunaisky-Ehrlich, S. (1999). Verb agreement morphology in Hebrew-speaking children with specific language impairment. Journal of Speech, Language, and Hearing Research, 42, 1414.CrossRefGoogle ScholarPubMed
Durkin, K., & Conti-Ramsden, G. (2007). Language, social behavior, and the quality of friendships in adolescents with and without a history of specific language impairment. Child Development, 78, 14411457.CrossRefGoogle ScholarPubMed
Durkin, K., Conti-Ramsden, G., & Simkin, Z. (2012). Functional outcomes of adolescents with a history of specific language impairment (SLI) with and without autistic symptomatology. Journal of Autism and Developmental Disorders, 42, 123138.CrossRefGoogle ScholarPubMed
Ebbels, S. H., Dockrell, J. E., & van der Lely, H. K. J. (2012). Non-word repetition in adolescents with specific language impairment (SLI). International Journal of Language and Communication Disorders, 47, 257273.CrossRefGoogle ScholarPubMed
Eldar, S., & Bar-Haim, Y. (2010). Neural plasticity in response to attention training in anxiety. Psychological Medicine, 40, 667677.CrossRefGoogle ScholarPubMed
Ellis Weismer, S., & Hesketh, L. J. (1996). Lexical learning by children with specific language impairment: Effects of linguistic input presented at varying speaking rates. Journal of Speech, Language, and Hearing Research, 39, 177190.CrossRefGoogle ScholarPubMed
Elman, J. L., Bates, E., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness: A connectionist perspective on development. Cambridge, MA: MIT Press.Google Scholar
Estes, K. G., Evans, J. L., & Else-Quest, N. M. (2007). Differences in the nonword repetition performance of children with and without specific language impairment: A meta-analysis. Journal of Speech, Language, and Hearing Research, 50, 177195.CrossRefGoogle Scholar
Fernandez, M., Tartar, J. L., Padron, D., & Acosta, J. (2013). Neurophysiological marker of inhibition distinguishes language groups on a non-linguistic executive function test. Brain and Cognition, 83, 330336.CrossRefGoogle ScholarPubMed
Föcker, J., Best, A., Hölig, C., & Röder, B. (2012). The superiority in voice processing of the blind arises from neural plasticity at sensory processing stages. Neuropsychologia, 50, 20562067.CrossRefGoogle ScholarPubMed
Fonteneau, E., & van der Lely, H. K. J. (2008). Electrical brain responses in language-impaired children reveal grammar-specific deficits. PLOS ONE, 3.CrossRefGoogle ScholarPubMed
Friedmann, N., & Novogrodsky, R. (2011). Which questions are most difficult to understand? The comprehension of Wh questions in three subtypes of SLI. Lingua, 121, 367382.CrossRefGoogle Scholar
Friedrich, M., & Friederici, A. D. (2006). Early N400 development and later language acquisition. Psychophysiology, 43, 112.CrossRefGoogle ScholarPubMed
Gathercole, S. E. (2006). Nonword repetition and word learning: The nature of the relationship. Applied Psycholinguistics, 27, 513543.CrossRefGoogle Scholar
Graf Estes, K., Evans, J. L., & Else-Quest, N. M. (2007). Differences in the nonword repetition performance of children with and without specific language impairment: A meta-analysis. Journal of Speech, Language, and Hearing Research, 50, 177.CrossRefGoogle ScholarPubMed
Gray, S., Reiser, M., & Brinkley, S. (2012). Effect of onset and rhyme primes in preschoolers with typical development and specific language impairment. Journal of Speech, Language, and Hearing Research, 55, 3244.CrossRefGoogle ScholarPubMed
Haake, C., Kob, M., Wilmes, K., & Domahs, F. (2013). Word stress processing in specific language impairment: Auditory or representational deficits? Clinical Linguistics & Phonetics, 27, 594615.CrossRefGoogle ScholarPubMed
Hick, R. F., Joseph, K. L., Conti-Ramsden, G., Serratrice, L., & Faragher, B. (2002). Vocabulary profiles of children with specific language impairment. Child Language Teaching and Therapy, 18, 165180.CrossRefGoogle Scholar
Karmiloff-Smith, A. (1998). Development itself is the key to understanding developmental disorders. Trends in Cognitive Sciences, 2, 389398.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A. (2009). Nativism versus neuroconstructivism: Rethinking the study of developmental disorders. Developmental Psychology, 45, 5663.CrossRefGoogle Scholar
Kavitskaya, D., Babyonyshev, M., Walls, T., & Grigorenko, E. L. (2011). Investigating the effects of syllable complexity in Russian-speaking children with SLI. Journal of Child Language, 38, 979998.CrossRefGoogle ScholarPubMed
Kornilov, S. A., Landi, N., Rakhlin, N., Fang, S.-Y., Grigorenko, E. L., & Magnuson, J. S. (2014). Attentional but not pre-attentive neural measures of auditory discrimination are atypical in children with developmental language disorder. Developmental Neuropsychology, 39, 543567.CrossRefGoogle Scholar
Kornilov, S. A., Rakhlin, N., & Grigorenko, E. L. (2012). Morphology and developmental language disorders: New tools for Russian. In Zinchenko, Y. P. & Petrenko, V. F. (Eds.), Psychology in Russia: State of the art (pp. 371–387). Moscow: Russian Psychological Society.Google Scholar
Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67, 713727.CrossRefGoogle ScholarPubMed
Kung, C.-C., Hsieh, T.-H., Liou, J.-Y., Lin, K.-J., Shaw, F.-Z., & Liang, S.-F. (2014). Musicians and non-musicians' different reliance of features in consonance perception: A behavioral and ERP study. Clinical Neurophysiology, 125, 971978.CrossRefGoogle ScholarPubMed
Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language comprehension. Trends in Cognitive Sciences, 4, 463470.CrossRefGoogle ScholarPubMed
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621647.CrossRefGoogle ScholarPubMed
Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (De)constructing the N400. Nature Reviews Neuroscience, 9, 920933.CrossRefGoogle Scholar
Lee, J. Y., Harkrider, A. W., & Hedrick, M. S. (2012). Electrophysiological and behavioral measures of phonological processing of auditory nonsense V–CV–VCV stimuli. Neuropsychologia, 50, 666673.CrossRefGoogle ScholarPubMed
Leonard, L. B., & Eyer, J. A. (1996). Deficits of grammatical morphology in children with specific language impairment and their implications for notions of bootstrapping. In Morgan, J. L. & Demuth, K. (Eds.), Signal to syntax: Bootstrapping from speech to grammar in early acquisition (pp. 233–247). Mahwah, NJ: Erlbaum.Google Scholar
Lonka, E., Relander-Syrjänen, K., Johansson, R., Näätänen, R., Alho, K., & Kujala, T. (2013). The mismatch negativity (MMN) brain response to sound frequency changes in adult cochlear implant recipients: A follow-up study. Acta Oto-laryngologica, 133, 853857.CrossRefGoogle ScholarPubMed
Lum, J. A. G., Conti-Ramsden, G., Page, D., & Ullman, M. T. (2012). Working, declarative and procedural memory in specific language impairment. Cortex, 48, 11381154.CrossRefGoogle ScholarPubMed
Magnuson, J. S., Kukona, A., Braze, D., Johns, C. L., Van Dyke, J. A., Tabor, W., et al. (2011). Phonbiological instability in young adult poor readers. In McCardle, P., Miller, B., Lee, J. Y., & Tzeng, O. J. L. (Eds.), Dyslexia across languages: Orthography and brain–gene–behavior link (pp. 184201). Baltimore, MD: Paul H. Brookes.Google Scholar
Malins, J. G., Desroches, A. S., Robertson, E. K., Newman, R. L., Archibald, L. M. D., & Joanisse, M. F. (2013). ERPs reveal the temporal dynamics of auditory word recognition in specific language impairment. Developmental Cognitive Neuroscience, 5, 134148.CrossRefGoogle ScholarPubMed
Marshall, C., Marinis, T., & van der Lely, H. (2007). Passive verb morphology: The effect of phonotactics on passive comprehension in typically developing and grammatical-SLI children. Lingua, 117, 14341447.CrossRefGoogle Scholar
Marton, M., Abramoff, B., & Rosenzweig, S. (2005). Social cognition and language in children with specific language impairment (SLI). Journal of Communication Disorders, 38, 143162.CrossRefGoogle ScholarPubMed
McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 186.CrossRefGoogle ScholarPubMed
McGregor, K., Oleson, J., Bahnsen, A., & Duff, D. (2013). Children with developmental language impairment have vocabulary deficits characterized by limited breadth and depth. International Journal of Language & Communication Disorders, 48, 307319.CrossRefGoogle ScholarPubMed
McMurray, B., Samelson, V. M., Lee, S. H., & Tomblin, B. J. (2010). Individual differences in online spoken word recognition: Implications for SLI. Cognitive Psychology, 60, 139.CrossRefGoogle ScholarPubMed
Meyer, M. (1969). Frog, where are you? New York: Dial Books for Young Readers.Google Scholar
Miller, C. A., Kail, R., & Leonard, L. B. (2001). Speed of processing in children with specific language impairment. Journal of Speech, Language, and Hearing Research, 44, 416433.CrossRefGoogle ScholarPubMed
Mills, D. L., Dai, L., Fishman, I., Yam, A., Appelbaum, L. G., St. George, M., et al. (2013). Genetic mapping of brain plasticity across development in Williams syndrome: ERP markers of face and language processing. Developmental Neuropsychology, 38, 613642.CrossRefGoogle ScholarPubMed
Montgomery, J. W. (2003). Working memory and comprehension in children with specific language impairment: What we know so far. Journal of Communication Disorders, 36, 221231.CrossRefGoogle ScholarPubMed
Montgomery, J. W., & Evans, J. L. (2009). Complex sentence comprehension and working memory in children with specific language impairment. Journal of Speech, Language, and Hearing Research, 52, 269288.CrossRefGoogle ScholarPubMed
Nation, K. (2014). Lexical learning and lexical processing in children with developmental language impairments. Philosophical Transactions of the Royal Society: Biological Sciences, 369, 14712970.CrossRefGoogle ScholarPubMed
Neville, H. J., Coffey, S. A., Holcomb, P. J., & Tallal, P. (1993). The neurobiology of sensory and language processing in language-impaired children. Journal of Cognitive Neuroscience, 5, 235253.CrossRefGoogle ScholarPubMed
Newcomer, P., & Hammill, D. (1982). Test of Language Development—Primary. Austin, TX: Pro-Ed.Google Scholar
Ors, M., Lindgren, M., Berglund, C., Hagglund, K., Rosen, I., & Biennow, G. (2001). The N400 component in parents of children with specific language impairment. Brain and Language, 77, 6071.CrossRefGoogle ScholarPubMed
Perfetti, C. A., & Hart, L. (2002). The lexical quality hypothesis. In Verhoeven, L., Elbro, C., & Reitsma, P. (Eds.), Precursors of functional literacy (Vol. 11, pp. 6786). Amsterdam: John Benjamins.Google Scholar
Pflieger, M. E. (2001). Theory of a spatial filter for removing ocular artifacts with preservation of EEG. Paper presented at the EMSE Workshop, Princeton University.Google Scholar
Pizzioli, F., & Schelstraete, M.-A. (2011). Lexico-semantic processing in children with specific language impairment: The overactivation hypothesis. Journal of Communication Disorders, 44, 7590.CrossRefGoogle ScholarPubMed
Poll, G., Betz, S. K., & Miller, C. A. (2010). Identification of clinical markers of specific language impairment in adults. Journal of Speech, Language, and Hearing Research, 53, 414429.CrossRefGoogle ScholarPubMed
Rakhlin, N., Cardoso-Martins, C., Kornilov, S. A., & Grigorenko, E. L. (2013). Spelling well despite developmental language disorder: What makes it possible? Annals of Dyslexia, 63, 253273.CrossRefGoogle ScholarPubMed
Rakhlin, N., Kornilov, S. A., & Grigorenko, E. L. (2014). Gender and gender agreement processing in children with developmental language disorder. Journal of Child Language, 41, 241274.CrossRefGoogle ScholarPubMed
Rakhlin, N., Kornilov, S. A., Palejev, D., Koposov, R. A., Chang, J. T., & Grigorenko, E. L. (2013). The language phenotype of a small geographically isolated Russian-speaking population: Implications for genetic and clinical studies of developmental language disorder. Applied Psycholinguistics, 34, 9711003.CrossRefGoogle Scholar
Rakhlin, N., Kornilov, S. A., Reich, J., Babyonyshev, M., Koposov, R. A., & Grigorenko, E. L. (2011). The relationship between syntactic development and theory of mind: Evidence from a small-population study of a developmental language disorder. Journal of Neurolinguistics, 24, 476496.CrossRefGoogle ScholarPubMed
Ramus, F., Marshall, C. R., Rosen, S., & van der Lely, H. K. J. (2013). Phonological deficits in specific language impairment and developmental dyslexia: Towards a multidimensional model. Brain, 136, 630645.CrossRefGoogle ScholarPubMed
Rice, M. L., Cleave, P. L., & Oetting, J. B. (2000). The use of syntactic cues in lexical acquisition by children with SLI: Specific language impairment. Journal of Speech, Language, and Hearing Research, 43, 582594.CrossRefGoogle ScholarPubMed
Robertson, E. K., & Joanisse, M. F. (2010). Spoken sentence comprehension in children with dyslexia and language impairment: The roles of syntax and working memory. Applied Psycholinguistics, 31, 141165.CrossRefGoogle Scholar
Roeske, D., Ludwig, K. U., Neuhoff, N., Becker, J., Bartling, J., Bruder, J., et al. (2011). First genome-wide association scan on neurophysiological endophenotypes points to trans-regulation effects on SLC2A3 in dyslexic children. Molecular Psychiatry, 16, 107.CrossRefGoogle ScholarPubMed
Semel, E., Wiig, E., & Secord, W. (1995). Clinical evaluation of language fundamentals. San Antonio, TX: Psychological Corporation.Google Scholar
Seppänen, M., Hämäläinen, J., Pesonen, A.-K., & Tervaniemi, M. (2013). Passive sound exposure induces rapid perceptual learning in musicians: Event-related potential evidence. Biological Psychology, 94, 341353.CrossRefGoogle ScholarPubMed
Sharoff, S. (2001). The frequency dictionary for Russian. Retrieved May 10, 2010, from http://bokrcorpora.narod.ru/frqlist/frqlist.htmlGoogle Scholar
Sheng, L., Pena, E. D., Bedore, L. M., & Fiestas, C. F. (2013). Semantic deficits in Spanish–English bilingual children with language impairment. Journal of Speech, Language, and Hearing Research, 55, 115.CrossRefGoogle Scholar
Song, Y., Sun, L., Wang, Y., Zhang, X., Kang, J., Ma, X., et al. (2010). The effect of short-term training on cardinal and oblique orientation discrimination: An ERP study. International Journal of Psychophysiology, 75, 241248.CrossRefGoogle ScholarPubMed
Spironelli, C., Bergamaschi, S., Mondini, S., Villani, D., & Angrilli, A. (2013). Functional plasticity in Alzheimer's disease: Effect of cognitive training on language-related ERP components. Neuropsychologia, 51, 16381648.CrossRefGoogle ScholarPubMed
Spironelli, C., Galfano, G., Umiltà, C., & Angrilli, A. (2011). Word position affects stimulus recognition: Evidence for early ERP short-term plastic modulation. International Journal of Psychophysiology, 82, 217224.CrossRefGoogle ScholarPubMed
Stavrakaki, S. (2001). Comprehension of reversible relative clauses in specifically language impaired and normally developing Greek children. Brain and Language, 77, 419431.CrossRefGoogle ScholarPubMed
Stothard, S. E., Snowling, M. E., Bishop, D. V. M., Chipchase, B. B., & Kaplan, C. A. (1998). Language-impaired preschoolers: A follow-up into adolescence. Journal of Speech, Language, and Hearing Research, 41, 407418.CrossRefGoogle ScholarPubMed
Tomblin, B. J., Records, N. L., Buckwalter, P., Zhang, X., Smith, E., & O'Brien, M. (1997). Prevalence of specific language impairment in kindergarten children. Journal of Speech, Language, and Hearing Research, 40, 12451260.CrossRefGoogle ScholarPubMed
Ullman, M. T., & Pierpont, E. I. (2005). Specific language impairment is not specific to language: The procedural deficit hypothesis. Cortex, 41, 399433.CrossRefGoogle Scholar
van den Brink, D., Brown, T. T., & Hagoort, P. (2001). Electrophysiological evidence for early contextual influences during spoken-word recognition: N200 versus N400 effects. Journal of Cognitive Neuroscience, 13, 967985.CrossRefGoogle ScholarPubMed
Wadman, R., Botting, N., Durkin, K., & Conti-Ramsden, G. (2011). Changes in emotional health symptoms in adolescents with specific language impairment. International Journal of Language and Communication Disorders, 46, 641656.CrossRefGoogle ScholarPubMed
Wadman, R., Durkin, K., & Conti-Ramsden, G. (2008). Self-esteem, shyness, and sociability in adolescents with specific language impairment (SLI). Journal of Speech, Language, and Hearing Research, 51, 938952.CrossRefGoogle ScholarPubMed
Wechsler, D. A. (2003). Wechsler Intelligence Scale for Children (4th ed.). San Antonio, TX: Psychological Corporation.Google Scholar
Wiesner, D. (1997). Tuesday. New York: Sandpiper.Google Scholar
Wiesner, D. (2008). Free fall. New York: HarperCollins.Google Scholar
Wild-Wall, N., Falkenstein, M., & Gajewski, P. D. (2012). Neural correlates of changes in a visual search task due to cognitive training in seniors. Neural Plasticity, 2012, 529057.CrossRefGoogle Scholar