Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T03:03:29.352Z Has data issue: false hasContentIssue false

The journey to autism: Insights from neuroimaging studies of infants and toddlers

Published online by Cambridge University Press:  20 June 2017

Jason J. Wolff*
Affiliation:
University of Minnesota
Suma Jacob
Affiliation:
University of Minnesota
Jed T. Elison*
Affiliation:
University of Minnesota
*
Address correspondence and reprint requests to: Jason J. Wolff or Jed T. Elison, University of Minnesota, 250 EdSciB, 56 East River Road, Minneapolis, MN 55455; E-mail: [email protected] or [email protected].
Address correspondence and reprint requests to: Jason J. Wolff or Jed T. Elison, University of Minnesota, 250 EdSciB, 56 East River Road, Minneapolis, MN 55455; E-mail: [email protected] or [email protected].

Abstract

By definition, autism spectrum disorder (ASD) is a neurodevelopmental disorder that emerges during early childhood. It is during this time that infants and toddlers transition from appearing typical across multiple domains to exhibiting the behavioral phenotype of ASD. Neuroimaging studies focused on this period of development have provided crucial knowledge pertaining to this process, including possible mechanisms underlying pathogenesis of the disorder and offering the possibility of prodromal or presymptomatic prediction of risk. In this paper, we review findings from structural and functional brain imaging studies of ASD focused on the first years of life and discuss implications for next steps in research and clinical applications.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by the National Institute of Mental Health under Grants K01 MH101653 (to J.J.W.) and RO1 MH104324 (to J.T.E.) and by a University of Minnesota/Mayo Clinic Partnership Grant (to S.J.)

References

Akshoomoff, N., Lord, C., Lincoln, A. J., Courchesne, R. Y., Carper, R. A., Townsend, J., & Courchesne, E. (2004). Outcome classification of preschool children with autism spectrum disorders using MRI brain measures. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 349357. doi:10.1097/00004583-200403000-00018Google Scholar
Ben Bashat, D., Kronfeld-Duenias, V., Zachor, D. A., Ekstein, P. M., Hendler, T., Tarrasch, R., … Ben Sira, L. (2007). Accelerated maturation of white matter in young children with autism: A high b value DWI study. NeuroImage, 37, 4047. doi:10.1016/j.neuroimage.2007.04.060Google Scholar
Bloss, C. S., & Courchesne, E. (2007). MRI Neuroanatomy in young girls with autism. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 515523. doi:10.1097/chi.0b013e318030e28bGoogle Scholar
Brian, J., Bryson, S. E., Smith, I. M., Roberts, W., Roncadin, C., Szatmari, P., & Zwaigenbaum, L. (2016). Stability and change in autism spectrum disorder diagnosis from age 3 to middle childhood in a high-risk sibling cohort. Autism, 20, 888892. doi:10.1177/1362361315614979Google Scholar
Buss, R. R., Sun, W., & Oppenheim, R. W. (2006). Adaptive roles of programmed cell death during nervous system development. Annual Review of Neuroscience, 29, 135. doi:10.1146/annurev.neuro.29.051605.112800Google Scholar
Carper, R. A., & Courchesne, E. (2005). Localized enlargement of the frontal cortex in early autism. Biological Psychiatry, 57, 126133. doi:10.1016/j.biopsych.2004.11.005Google Scholar
Carper, R. A., Moses, P., Tigue, Z. D., & Courchesne, E. (2002). Cerebral lobes in autism: Early hyperplasia and abnormal age effects. NeuroImage, 16, 10381051.Google Scholar
Casanova, M. F., van Kooten, I. A. J., Switala, A. E., van Engeland, H., Heinsen, H., Steinbusch, H. W. M., … Schmitz, C. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112, 287303. doi:10.1007/s00401-006-0085-5Google Scholar
Chasson, G. S., Harris, G. E., & Neely, W. J. (2007). Cost comparison of early intensive behavioral intervention and special education for children with autism. Journal of Child and Family Studies, 16, 401413. doi:10.1007/s10826-006-9094-1Google Scholar
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8, 597. doi:10.1017/S0954579400007318Google Scholar
Conti, E., Mitra, J., Calderoni, S., Pannek, K., Shen, K. K., Pagnozzi, A., … Guzzetta, A. (2017). Network over-connectivity differentiates autism spectrum disorder from other developmental disorders in toddlers: A diffusion MRI study. Human Brain Mapping. Advance online publication. doi:10.1002/hbm.23520Google Scholar
Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290, 337. doi:10.1001/jama.290.3.337Google Scholar
Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., … Courchesne, R. Y. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245254.Google Scholar
Courchesne, E., Mouton, P. R., Calhoun, M. E., Semendeferi, K., Ahrens-Barbeau, C., Hallet, M. J., … Pierce, K. (2011). Neuron number and size in prefrontal cortex of children with autism. Journal of the American Medical Association, 306, 20012010. doi:10.1001/jama.2011.1638Google Scholar
Cowan, W. M., Fawcett, J. W., O'Leary, D. D., & Stanfield, B. B. (1984). Regressive events in neurogenesis. Science, 225, 12581265.Google Scholar
Davidovitch, M., Levit-Binnun, N., Golan, D., & Manning-Courtney, P. (2015). Late diagnosis of autism spectrum disorder after initial negative assessment by a multidisciplinary team. Journal of Developmental & Behavioral Pediatrics, 36, 227234. doi:10.1097/DBP.0000000000000133Google Scholar
Davidovitch, M., Patterson, B., & Gartside, P. (1996). Head circumference measurements in children with autism. Journal of Child Neurology, 11, 389393.Google Scholar
Dawson, G. (2008). Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Development and Psychopathology, 20, 775803. doi:10.1017/S0954579408000370Google Scholar
Dawson, G., Rogers, S., Munson, J., Smith, M., Winter, J., Greenson, J., … Varley, J. (2009). Randomized, controlled trial of an intervention for toddlers with autism: The Early Start Denver Model. Pediatrics, 125, e17e23.Google Scholar
Dean, D. C., Dirks, H., O'Muircheartaigh, J., Walker, L., Jerskey, B. A., Lehman, K., … Deoni, S. C. L. (2014). Pediatric neuroimaging using magnetic resonance imaging during non-sedated sleep. Pediatric Radiology, 44, 6472. doi:10.1007/s00247-013-2752-8Google Scholar
Deoni, S. C. L., Mercure, E., Blasi, A., Gasston, D., Thomson, A., Johnson, M., … Murphy, D. G. M. (2011). Mapping infant brain myelination with magnetic resonance imaging. Journal of Neuroscience, 31, 784791. doi:10.1523/jneurosci.2106-10.2011Google Scholar
Dinstein, I., Pierce, K., Eyler, L., Solso, S., Malach, R., Behrmann, M., & Courchesne, E. (2011). Disrupted neural synchronization in toddlers with autism. Neuron, 70, 12181225. doi:10.1016/j.neuron.2011.04.018Google Scholar
Ecker, C. (2017). The neuroanatomy of autism spectrum disorder: An overview of structural neuroimaging findings and their translatability to the clinical setting. Autism, 21, 1828. doi:10.1177/1362361315627136Google Scholar
Elison, J. T., Paterson, S. J., Wolff, J. J., Reznick, J. S., Sasson, N. J., Gu, H., … Piven, J. (2013). White matter microstructure and atypical visual orienting in 7-month-olds at risk for autism. American Journal of Psychiatry, 170, 899908. doi:10.1176/appi.ajp.2012.12091150Google Scholar
Elsabbagh, M., Mercure, E., Hudry, K., Chandler, S., Pasco, G., Charman, T., … BASIS Team. (2012). Infant neural sensitivity to dynamic eye gaze is associated with later emerging autism. Current Biology, 22, 338342. doi:10.1016/j.cub.2011.12.056Google Scholar
Emerson, R. W., Adams, C., Nishino, T., Hazlett, H. C., Wolff, J. J., Zwaigenbaum, L., … Piven, J. (in press). Functional neuroimaging in high-risk 6-month-old infants predicts later autism. Science Translational Medicine.Google Scholar
Estes, A., Munson, J., Rogers, S. J., Greenson, J., Winter, J., & Dawson, G. (2015). Long-term outcomes of early intervention in 6-year-old children with autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 54, 580587. doi:10.1016/j.jaac.2015.04.005Google Scholar
Estes, A., Shaw, D. W. W., Sparks, B. F., Friedman, S., Giedd, J. N., Dawson, G., … Dager, S. R. (2011). Basal ganglia morphometry and repetitive behavior in young children with autism spectrum disorder. Autism Research, 4, 212220. doi:10.1002/aur.193Google Scholar
Eyler, L. T., Pierce, K., & Courchesne, E. (2012). A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain, 135, 949960. doi:10.1093/brain/awr364Google Scholar
Fang, W.-Q., Chen, W.-W., Jiang, L., Liu, K., Yung, W.-H., Fu, A. K., … Ip, N. Y. (2014). Overproduction of upper-layer neurons in the neocortex leads to autism-like features in mice. Cell Reports, 9, 16351643. doi:10.1016/j.celrep.2014.11.003Google Scholar
Fatemi, S. H., Aldinger, K. A., Ashwood, P., Bauman, M. L., Blaha, C. D., Blatt, G. J., … Welsh, J. P. (2012). Consensus paper: Pathological role of the cerebellum in autism. Cerebellum, 11, 777807. doi:10.1007/s12311-012-0355-9Google Scholar
Flanagan, J. E., Landa, R., Bhat, A., & Bauman, M. (2012). Head lag in infants at risk for autism: A preliminary study. American Journal of Occupational Therapy, 66, 577585. doi:10.5014/ajot.2012.004192Google Scholar
Gao, W., Lin, W., Chen, Y., Gerig, G., Smith, J. K., Jewells, V., & Gilmore, J. H. (2009). Temporal and spatial development of axonal maturation and myelination of white matter in the developing brain. American Journal of Neuroradiology, 30, 290296. doi:10.3174/ajnr.A1363Google Scholar
Gao, W., Lin, W., Grewen, K., & Gilmore, J. H. (2016). Functional connectivity of the infant human brain. Neuroscientist, 23, 169184. doi:10.1177/1073858416635986Google Scholar
Geschwind, D. H., & State, M. W. (2015). Gene hunting in autism spectrum disorder: On the path to precision medicine. Lancet Neurology, 14, 11091120. doi:10.1016/S1474-4422(15)00044-7Google Scholar
Goodlett, C. B., Fletcher, P. T., Gilmore, J. H., & Gerig, G. (2009). Group analysis of DTI fiber tract statistics with application to neurodevelopment. NeuroImage, 45, S133S142. doi:10.1016/j.neuroimage.2008.10.060Google Scholar
Hashimoto, T., Tayama, M., Murakawa, K., Yoshimoto, T., Miyazaki, M., Harada, M., & Kuroda, Y. (1995). Development of the brainstem and cerebellum in autistic patients. Journal of Autism and Developmental Disorders, 25, 118.Google Scholar
Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S., Styner, M., Wolff, J. J., … Piven, J. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542, 348351. doi:10.1038/nature21369Google Scholar
Hazlett, H. C., Poe, M. D., Gerig, G., Smith, R. G., Provenzale, J., Ross, A., … Piven, J. (2005). Magnetic resonance imaging and head circumference study of brain size in autism. Archives of General Psychiatry, 62, 1366. doi:10.1001/archpsyc.62.12.1366Google Scholar
Hazlett, H. C., Poe, M. D., Gerig, G., Styner, M., Chappell, C., Smith, R. G., … Piven, J. (2011). Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Archives of General Psychiatry, 68, 467476. doi:10.1001/archgenpsychiatry.2011.39Google Scholar
Hazlett, H. C., Poe, M. D., Lightbody, A. A., Gerig, G., Macfall, J. R., Ross, A. K., … Piven, J. (2009). Teasing apart the heterogeneity of autism: Same behavior, different brains in toddlers with fragile X syndrome and autism. Journal of Neurodevelopmental Disorders, 1, 8190. doi:10.1007/s11689-009-9009-8Google Scholar
Hoeft, F., Walter, E., Lightbody, A. A., Hazlett, H. C., Chang, C., Piven, J., & Reiss, A. L. (2011). Neuroanatomical differences in toddler boys with fragile x syndrome and idiopathic autism. Archives of General Psychiatry, 68, 295305. doi:10.1001/archgenpsychiatry.2010.153Google Scholar
Hoshino, Y., Manome, T., Kaneko, M., Yashima, Y., & Kumashiro, H. (1984). Computed tomography of the brain in children with early infantile autism. Folia Psychiatrica et Neurologica Japonica, 38, 3343.Google Scholar
Howlin, P., Magiati, I., & Charman, T. (2009). Systematic review of early intensive behavioral interventions for children with autism. American Journal on Intellectual and Developmental Disabilities, 114, 23. doi:10.1352/2009.114:23;nd41Google Scholar
Huang, T.-N., Chuang, H.-C., Chou, W.-H., Chen, C.-Y., Wang, H.-F., Chou, S.-J., & Hsueh, Y.-P. (2014). Tbr1 haploinsufficiency impairs amygdalar axonal projections and results in cognitive abnormality. Nature Neuroscience, 17, 240247. doi:10.1038/nn.3626Google Scholar
Hudry, K., Chandler, S., Bedford, R., Pasco, G., Gliga, T., Elsabbagh, M., … Charman, T. (2014). Early language profiles in infants at high-risk for autism spectrum disorders. Journal of Autism and Developmental Disorders, 44, 154167. doi:10.1007/s10803-013-1861-4Google Scholar
Hutsler, J. J., & Zhang, H. (2010). Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Research, 1309, 8394. doi:10.1016/j.brainres.2009.09.120Google Scholar
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex—Developmental changes and effects of aging. Brain Research, 163, 195205.Google Scholar
Johnson, M. H., Jones, E. J. H., & Gliga, T. (2015). Brain adaptation and alternative developmental trajectories. Development and Psychopathology, 27, 425442. doi:10.1017/S0954579415000073Google Scholar
Jones, D. K., Knösche, T. R., & Turner, R. (2013). White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI. NeuroImage, 73, 239254. doi:10.1016/j.neuroimage.2012.06.081Google Scholar
Jones, W., & Klin, A. (2013). Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature, 504, 427431. doi:10.1038/nature12715Google Scholar
Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217250.Google Scholar
Kanold, P. O. (2009). Subplate neurons: Crucial regulators of cortical development and plasticity. Frontiers in Neuroanatomy, 3, 16. doi:10.3389/neuro.05.016.2009Google Scholar
Kim, S. H., Macari, S., Koller, J., & Chawarska, K. (2016). Examining the phenotypic heterogeneity of early autism spectrum disorder: Subtypes and short-term outcomes. Journal of Child Psychology and Psychiatry, 57, 93102. doi:10.1111/jcpp.12448Google Scholar
Kovshoff, H., Hastings, R. P., & Remington, B. (2011). Two-year outcomes for children with autism after the cessation of early intensive behavioral intervention. Behavior Modification, 35, 427450. doi:10.1177/0145445511405513Google Scholar
Lainhart, J. E., Piven, J., Wzorek, M., Landa, R., Santangelo, S. L., Coon, H., & Folstein, S. E. (1997). Macrocephaly in children and adults with autism. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 282290. doi:10.1097/00004583-199702000-00019Google Scholar
LaMantia, A. S., & Rakic, P. (1990). Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. Journal of Neuroscience, 10, 21562175.Google Scholar
Landa, R., & Garrett-Mayer, E. (2006). Development in infants with autism spectrum disorders: A prospective study. Journal of Child Psychology and Psychiatry, 47, 629638. doi:10.1111/j.1469-7610.2006.01531.xGoogle Scholar
LeBlanc, J. J., & Fagiolini, M. (2011). Autism: A critical period disorder? Neural Plasticity, 2011, 921680, e17. doi:10.1155/2011/921680Google Scholar
Lewis, J. D., Evans, A. C., Pruett, J. R., Botteron, K., Zwaigenbaum, L., Estes, A., … Piven, J. (2014). Network inefficiencies in autism spectrum disorder at 24 months. Translational Psychiatry, 4, e388. doi:10.1038/tp.2014.24Google Scholar
Lombardo, M. V, Pierce, K., Eyler, L. T., Carter Barnes, C., Ahrens-Barbeau, C., Solso, S., … Courchesne, E. (2015). Different functional neural substrates for good and poor language outcome in autism. Neuron, 86, 567577. doi:10.1016/j.neuron.2015.03.023Google Scholar
Lord, C., Bishop, S., & Anderson, D. (2015). Developmental trajectories as autism phenotypes. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 169, 198208. doi:10.1002/ajmg.c.31440Google Scholar
Louveau, A., Smirnov, I., Keyes, T. J., Eccles, J. D., Rouhani, S. J., Peske, J. D., … Kipnis, J. (2015). Structural and functional features of central nervous system lymphatic vessels. Nature, 523, 337341. doi:10.1038/nature14432Google Scholar
Lui, J. H., Hansen, D. V., & Kriegstein, A. R. (2011). Development and evolution of the human neocortex. Cell, 146, 1836.Google Scholar
MacDonald, R., Parry-Cruwys, D., Dupere, S., & Ahearn, W. (2014). Assessing progress and outcome of early intensive behavioral intervention for toddlers with autism. Research in Developmental Disabilities, 35, 36323644. doi:10.1016/j.ridd.2014.08.036Google Scholar
Magiati, I., Charman, T., & Howlin, P. (2007). A two-year prospective follow-up study of community-based early intensive behavioural intervention and specialist nursery provision for children with autism spectrum disorders. Journal of Child Psychology and Psychiatry, 48, 803812. doi:10.1111/j.1469-7610.2007.01756.xGoogle Scholar
Magiati, I., Wei Tay, X., & Howlin, P. (2012). Early comprehensive behaviorally based interventions for children with autism spectrum disorders: A summary of findings from recent reviews and meta-analyses. Neuropsychiatry, 2, 543570. doi:10.2217/NPY.12.59Google Scholar
Marchetto, M. C., Belinson, H., Tian, Y., Freitas, B. C., Fu, C., Vadodaria, K. C., … Muotri, A. R. (2016). Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Molecular Psychiatry. Advance online publication. doi:10.1038/mp.2016.95Google Scholar
McFadden, K., & Minshew, N. J. (2013). Evidence for dysregulation of axonal growth and guidance in the etiology of ASD. Frontiers in Human Neuroscience, 7, 671. doi:10.3389/fnhum.2013.00671Google Scholar
Messinger, D. S., Young, G. S., Webb, S. J., Ozonoff, S., Bryson, S. E., Carter, A., … Zwaigenbaum, L. (2015). Early sex differences are not autism-specific: A Baby Siblings Research Consortium (BSRC) study. Molecular Autism, 6, 32. doi:10.1186/s13229-015-0027-yGoogle Scholar
Mori, S., & Zhang, J. (2006). Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron, 51, 527539. doi:10.1016/j.neuron.2006.08.012Google Scholar
Mosconi, M. W., Cody-Hazlett, H., Poe, M. D., Gerig, G., Gimpel-Smith, R., & Piven, J. (2009). Longitudinal study of amygdala volume and joint attention in 2- to 4-year-old children with autism. Archives of General Psychiatry, 66, 509516. doi:10.1001/archgenpsychiatry.2009.19Google Scholar
Munson, J., Dawson, G., Abbott, R., Faja, S., Webb, S. J., Friedman, S. D., … Dager, S. R. (2006). Amygdalar volume and behavioral development in autism. Archives of General Psychiatry, 63, 686. doi:10.1001/archpsyc.63.6.686Google Scholar
Nacewicz, B. M., Dalton, K. M., Johnstone, T., Long, M. T., McAuliff, E. M., Oakes, T. R., … E. S. (2006). Amygdala volume and nonverbal social impairment in adolescent and adult males with autism. Archives of General Psychiatry, 63, e472e486. doi:10.1001/archpsyc.63.12.1417Google Scholar
Nordahl, C. W., Scholz, R., Yang, X., Buonocore, M. H., Simon, T., Rogers, S., & Amaral, D. G. (2012). Increased rate of amygdala growth in children aged 2 to 4 years with autism spectrum disorders. Archives of General Psychiatry, 69, 53. doi:10.1001/archgenpsychiatry.2011.145Google Scholar
Nordahl, C. W., Simon, T. J., Zierhut, C., Solomon, M., Rogers, S. J., & Amaral, D. G. (2008). Brief report: Methods for acquiring structural MRI data in very young children with autism without the use of sedation. Journal of Autism and Developmental Disorders, 38, 15811590. doi:10.1007/s10803-007-0514-xGoogle Scholar
Ohta, H., Nordahl, C. W., Iosif, A. M., Lee, A., Rogers, S., & Amaral, D. G. (2016). Increased surface area, but not cortical thickness, in a subset of young boys with autism spectrum disorder. Autism Research, 9, 232248. doi:10.1002/aur.1520Google Scholar
Ozonoff, S., Iosif, A.-M., Baguio, F., Cook, I. C., Hill, M. M., Hutman, T., … Young, G. S. (2010). A prospective study of the emergence of early behavioral signs of autism. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 256266.Google Scholar
Ozonoff, S., Young, G. S., Carter, A., Messinger, D., Yirmiya, N., Zwaigenbaum, L., … Stone, W. L. (2011). Recurrence risk for autism spectrum disorders: A Baby Siblings Research Consortium study. Pediatrics, 128.Google Scholar
Pacey, L. K. K., Xuan, I. C. Y., Guan, S., Sussman, D., Henkelman, R. M., Chen, Y., … Hampson, D. R. (2013). Delayed myelination in a mouse model of fragile X syndrome. Human Molecular Genetics, 22, 39203930. doi:10.1093/hmg/ddt246Google Scholar
Petropoulos, H., Friedman, S. D., Shaw, D. W. W., Artru, A. A., Dawson, G., & Dager, S. R. (2006). Gray matter abnormalities in autism spectrum disorder revealed by T2 relaxation. Neurology, 67, 632636. doi:10.1212/01.wnl.0000229923.08213.1eGoogle Scholar
Piven, J., Arndt, S., Bailey, J., Havercamp, S., Andreasen, N. C., & Palmer, P. (1995). An MRI study of brain size in autism. American Journal of Psychiatry, 152, 11451149.Google Scholar
Piven, J., Elison, J. T., & Zylka, M. J. (in press). Towards a conceptual framework for early brain and behavioral development in autism. Molecular Psychiatry.Google Scholar
Piven, J., Nehme, E., Simon, J., Barta, P., Pearlson, G., & Folstein, S. E. (1992). Magnetic resonance imaging in autism: Measurement of the cerebellum, pons, and fourth ventricle. Biological Psychiatry, 31, 491504.Google Scholar
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59, 21422154. doi:10.1016/j.neuroimage.2011.10.018Google Scholar
Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. NeuroImage, 105, 536551. doi:10.1016/j.neuroimage.2014.10.044Google Scholar
Pucilowska, J., Vithayathil, J., Tavares, E. J., Kelly, C., Karlo, J. C., & Landreth, G. E. (2015). The 16p11.2 deletion mouse model of autism exhibits altered cortical progenitor proliferation and brain cytoarchitecture linked to the ERK MAPK pathway. Journal of Neuroscience, 35, 31903200. doi:10.1523/jneurosci.4864-13.2015Google Scholar
Qiu, T., Chang, C., Li, Y., Qian, L., Xiao, C. Y., Xiao, T., … Ke, X. (2016). Two years changes in the development of caudate nucleus are involved in restricted repetitive behaviors in 2–5-year-old children with autism spectrum disorder. Developmental Cognitive Neuroscience, 19, 137143. doi:10.1016/j.dcn.2016.02.010Google Scholar
Rabinowicz, T., de Courten-Myers, G. M., Petetot, J. M., Xi, G., & de los Reyes, E. (1996). Human cortex development: Estimates of neuronal numbers indicate major loss late during gestation. Journal of Neuropathology and Experimental Neurology, 55, 320328.Google Scholar
Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., … Giedd, J. N. (2011). How does your cortex grow? Journal of Neuroscience, 31, 71747177.Google Scholar
Raznahan, A., Wallace, G. L., Antezana, L., Greenstein, D., Lenroot, R., Thurm, A., … Giedd, J. N. (2013). Compared to what? Early brain overgrowth in autism and the perils of population norms. Biological Psychiatry, 74, 563575. doi:10.1016/j.biopsych.2013.03.022Google Scholar
Redcay, E., & Courchesne, E. (2008). Deviant functional magnetic resonance imaging patterns of brain activity to speech in 2–3-year-old children with autism spectrum disorder. Biological Psychiatry, 64, 589598. doi:10.1016/j.biopsych.2008.05.020Google Scholar
Samuelsen, G. B., Larsen, K. B., Bogdanovic, N., Laursen, H., Graem, N., Larsen, J. F., & Pakkenberg, B. (2003). The changing number of cells in the human fetal forebrain and its subdivisions: A stereological analysis. Cerebral Cortex, 13, 115122.Google Scholar
Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Larsson, H., Hultman, C. M., & Reichenberg, A. (2014). The familial risk of autism. Journal of the American Medical Association, 311, 1770. doi:10.1001/jama.2014.4144Google Scholar
Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., … Gur, R. E. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth. NeuroImage, 60, 623632. doi:10.1016/j.neuroimage.2011.12.063Google Scholar
Schumann, C. M., & Amaral, D. G. (2006). Stereological analysis of amygdala neuron number in autism. Journal of Neuroscience, 26, 76747679. doi:10.1523/jneurosci.1285-06.2006Google Scholar
Schumann, C. M., Barnes, C. C., Lord, C., & Courchesne, E. (2009). Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biological Psychiatry, 66, 942949. doi:10.1016/j.biopsych.2009.07.007Google Scholar
Schumann, C. M., Bloss, C. S., Barnes, C. C., Wideman, G. M., Carper, R. A., Akshoomoff, N., … Courchesne, E. (2010). Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. Journal of Neuroscience, 30, 44194427. doi:10.1523/jneurosci.5714-09.2010Google Scholar
Schumann, C. M., Hamstra, J., Goodlin-Jones, B. L., Lotspeich, L. J., Kwon, H., Buonocore, M. H., … Amaral, D. G. (2004). The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. Journal of Neuroscience, 24, 63926401.Google Scholar
Shen, M. D., Kim, S. H., McKinstry, R. C., Gu, H., Hazlett, H. C., Nordahl, C. W., … Piven, J. (2017). Increased extra-axial cerebrospinal fluid in high-risk infants who later develop autism. Biological Psychiatry. Advance online publication. doi:10.1016/j.biopsych.2017.02.1095Google Scholar
Shen, M. D., Li, D. D., Keown, C. L., Lee, A., Johnson, R. T., Angkustsiri, K., … Nordahl, C. W. (2016). Functional connectivity of the amygdala is disrupted in preschool-aged children with autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 55, 817824. doi:10.1016/j.jaac.2016.05.020Google Scholar
Shen, M. D., Nordahl, C. W., Young, G. S., Wootton-Gorges, S. L., Lee, A., Liston, S. E., … Amaral, D. G. (2013). Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder. Brain, 136, 28252835. doi:10.1093/brain/awt166Google Scholar
Sherer, M. R., & Schreibman, L. (2005). Individual behavioral profiles and predictors of treatment effectiveness for children with autism. Journal of Consulting and Clinical Psychology, 73, 525538. doi:10.1037/0022-006X.73.3.525Google Scholar
Shic, F., Macari, S., & Chawarska, K. (2014). Speech disturbs face scanning in 6-month-old infants who develop autism spectrum disorder. Biological Psychiatry, 75, 231237. doi:10.1016/j.biopsych.2013.07.009Google Scholar
Simon, D. J., Pitts, J., Hertz, N. T., Yang, J., Yamagishi, Y., Olsen, O., … Lu, J. (2016). Axon degeneration gated by retrograde activation of somatic pro-apoptotic signaling. Cell, 164, 10311045. doi:10.1016/j.cell.2016.01.032Google Scholar
Solso, S., Xu, R., Proudfoot, J., Hagler, D. J., Campbell, K., Venkatraman, V., … Courchesne, E. (2016). DTI provides evidence of possible axonal over-connectivity in frontal lobes in asd toddlers. Biological Psychiatry, 79, 676684. doi:10.1016/j.biopsych.2015.06.029Google Scholar
Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., … Dager, S. R. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59, 184192.Google Scholar
Tang, G., Gudsnuk, K., Kuo, S.-H., Cotrina, M. L., Rosoklija, G., Sosunov, A., … Sulzer, D. (2014). Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron, 83, 11311143. doi:10.1016/j.neuron.2014.07.040Google Scholar
Travers, B. G., Adluru, N., Ennis, C., Tromp, D. P. M., Destiche, D., Doran, S., … Alexander, A. L. (2012). Diffusion tensor imaging in autism spectrum disorder: A review. Autism Research, 5, 289313. doi:10.1002/aur.1243Google Scholar
Van Dijk, K. R. A., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59, 431438. doi:10.1016/j.neuroimage.2011.07.044Google Scholar
Veenstra-VanderWeele, J., & Blakely, R. D. (2012). Networking in autism: Leveraging genetic, biomarker and model system findings in the search for new treatments. Neuropsychopharmacology, 37, 196212. doi:10.1038/npp.2011.185Google Scholar
Webb, S. J., Sparks, B.-F., Friedman, S. D., Shaw, D. W. W., Giedd, J., Dawson, G., & Dager, S. R. (2009). Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder. Psychiatry Research: Neuroimaging, 172, 6167. doi:10.1016/j.pscychresns.2008.06.001Google Scholar
Weinstein, M., Ben-Sira, L., Levy, Y., Zachor, D. A., Ben Itzhak, E., Artzi, M., … Ben Bashat, D. (2011). Abnormal white matter integrity in young children with autism. Human Brain Mapping, 32, 534543. doi:10.1002/hbm.21042Google Scholar
Wolff, J. (2016). Accounting for the developing brain. In Reichow, B., Boyd, B. A., Barton, E. E., & Odom, S. L. (Eds.), Handbook of early childhood special education (pp. 565578). Cham: Springer.Google Scholar
Wolff, J. J., Gerig, G., Lewis, J. D., Soda, T., Styner, M. A., Vachet, C., … Piven, J. (2015). Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain, 138, 20462058. doi:10.1093/brain/awv118Google Scholar
Wolff, J. J., Gu, H., Gerig, G., Elison, J. T., Styner, M., Gouttard, S., … Piven, J. (2012). Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. American Journal of Psychiatry, 169, 589600. doi:10.1176/appi.ajp.2011.11091447Google Scholar
Wolff, J. J., Hazlett, H. C., Lightbody, A. A., Reiss, A. L., & Piven, J. (2013). Repetitive and self-injurious behaviors: Associations with caudate volume in autism and fragile X syndrome. Journal of Neurodevelopmental Disorders, 5, 12. doi:10.1186/1866-1955-5-12Google Scholar
Wolff, J. J., & Piven, J. (2013). On the emergence of autism: Neuroimaging findings from birth to pre-school. Neuropsychiatry, 3, 209222. doi:10.2217/npy.13.11Google Scholar
Wolff, J. J., Swanson, M. R., Elison, J. T., Gerig, G., Pruett, J. R., Styner, M. A., … IBIS Network. (2017). Neural circuitry at age 6 months associated with later repetitive behavior and sensory responsiveness in autism. Molecular Autism, 8, 8. doi:10.1186/s13229-017-0126-zGoogle Scholar
Woodhouse, W., Bailey, A., Rutter, M., Bolton, P., Baird, G., & Le Couteur, A. (1996). Head circumference in autism and other pervasive developmental disorders. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 37, 665671.Google Scholar
Xiao, Z., Qiu, T., Ke, X., Xiao, X., Xiao, T., Liang, F., … Liu, Y. (2014). Autism spectrum disorder as early neurodevelopmental disorder: Evidence from the brain imaging abnormalities in 2-3 years old toddlers. Journal of Autism and Developmental Disorders, 44, 16331640. doi:10.1007/s10803-014-2033-xGoogle Scholar
Zielinski, B. A., Prigge, M. B. D., Nielsen, J. A., Froehlich, A. L., Abildskov, T. J., Anderson, J. S., … Lainhart, J. E. (2014). Longitudinal changes in cortical thickness in autism and typical development. Brain, 137, 17991912. doi:10.1093/brain/awu083Google Scholar
Zikopoulos, B., & Barbas, H. (2010). Changes in prefrontal axons may disrupt the network in autism. Journal of Neuroscience, 30, 1459514609. doi:10.1523/jneurosci.2257-10.2010Google Scholar
Zwaigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., & Szatmari, P. (2005). Behavioral manifestations of autism in the first year of life. International Journal of Developmental Neuroscience, 23, 143152. doi:10.1016/j.ijdevneu.2004.05.001Google Scholar
Zwaigenbaum, L., Young, G. S., Stone, W. L., Dobkins, K., Ozonoff, S., Brian, J., … Messinger, D. (2014). Early head growth in infants at risk of autism: A baby siblings research consortium study. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 10531062. doi:10.1016/j.jaac.2014.07.007Google Scholar