Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T22:47:21.289Z Has data issue: false hasContentIssue false

Hypertensive disorders of pregnancy and the risk of offspring depression in childhood: Findings from the Avon Longitudinal Study of Parents and Children

Published online by Cambridge University Press:  26 July 2019

Berihun Assefa Dachew*
Affiliation:
Institute for Social Science Research, The University of Queensland, Brisbane, Australia Department of Epidemiology and Biostatistics, Institute of Public Health, University of Gondar, Gondar, Ethiopia
James G. Scott
Affiliation:
School of Public Health, Faculty of Medicine, The University of Queensland, Herston, Australia Metro North Mental Health, Royal Brisbane and Women's Hospital, Herston, Australia Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Australia
Kim Betts
Affiliation:
Institute for Social Science Research, The University of Queensland, Brisbane, Australia Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Australia
Abdullah Mamun
Affiliation:
Institute for Social Science Research, The University of Queensland, Brisbane, Australia
Rosa Alati
Affiliation:
Institute for Social Science Research, The University of Queensland, Brisbane, Australia School of Public Health, Curtin University, Western Australia, Australia
*
Author for correspondence: Berihun Assefa Dachew: Institute for Social Science Research, The University of Queensland, 80 Meiers Road, Brisbane, QLD4068, Australia. Email: [email protected]

Abstract

Hypertensive disorders of pregnancy (HDP) may increase the risk of offspring depression in childhood. Low birth weight is also associated with increased risk of mental health problems, including depression. This study sought to investigate (a) whether there is an association between HDP and the risk of depression in childhood and (b) whether low birth weight mediates this association. The current study is based on the Avon Longitudinal Study of Parents and Children (ALSPAC), a prospective, population-based study that has followed a cohort of offspring since their mothers were pregnant (n = 6,739). Depression at the age of 7 years was diagnosed using parent reports via the Development and Well-Being Assessment (DAWBA). Log-binomial regression and mediation analyses were used. Children exposed to HDP were 2.3 times more likely to have a depression diagnosis compared with nonexposed children, adjusted Risk Ratio [RR], 2.31; 95% CI, [1.20, 4.47]. Low birth weight was a weak mediator of this association. Results were adjusted for confounding variables including antenatal depression and anxiety during pregnancy.This study suggests that fetal exposure to maternal hypertensive disorders of pregnancy increased the risk of childhood depression. The study adds to the evidence suggesting that the uterine environment is a critical determinant of neurodevelopmental and psychiatric outcomes.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avalos, L. A., Chen, H. & Li, D. K. (2015). Antidepressant medication use, depression, and the risk of preeclampsia. CNS Spectr, 20, 3947.CrossRefGoogle ScholarPubMed
Bakker, R., Steegers, E. A. P., Hofman, A. & Jaddoe, V. W. V. (2011). Blood Pressure in Different Gestational Trimesters, Fetal Growth, and the Risk of Adverse Birth OutcomesThe Generation R Study. American Journal of Epidemiology, 174, 797806.CrossRefGoogle Scholar
Barker, D. J. (2006). Adult consequences of fetal growth restriction. Clin Obstet Gynecol, 49, 270–83.CrossRefGoogle ScholarPubMed
Barker, D. J. (2007). The origins of the developmental origins theory. J Intern Med, 261, 412–7.CrossRefGoogle ScholarPubMed
Basso, O., Rasmussen, S., Weinberg, C. R., Wilcox, A. J., Irgens, L. M. & Skjaerven, R. (2006). Trends in fetal and infant survival following preeclampsia. Jama, 296, 1357–62.CrossRefGoogle ScholarPubMed
Birmaher, B., Ryan, N. D., Williamson, D. E., Brent, D. A., Kaufman, J., Dahl, R. E., Perel, J. & Nelson, B. (1996). Childhood and adolescent depression: A review of the past 10 years. Part I. J Am Acad Child Adolesc Psychiatry, 35, 1427–39.CrossRefGoogle ScholarPubMed
Birtchnell, J., Evans, C. & Kennard, J. (1988). The total score of the Crown-Crisp Experiential Index: A useful and valid measure of psychoneurotic pathology. Br J Med Psychol, 61, 255–66.CrossRefGoogle ScholarPubMed
Bolte, A. C., van Geijn, H. P. & Dekker, G. A. (2001). Pathophysiology of preeclampsia and the role of serotonin. Eur J Obstet Gynecol Reprod Biol, 95, 1221.CrossRefGoogle ScholarPubMed
Boyd, A., Golding, J., Macleod, J., Lawlor, D. A., Fraser, A., Henderson, J., Molloy, L., Ness, A., Ring, S. & Davey Smith, G. (2013). Cohort Profile: The ‘children of the 90s’--the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol, 42, 111–27.CrossRefGoogle ScholarPubMed
Braithwaite, E. C., Murphy, S. E. & Ramchandani, P. G. (2014). Prenatal risk factors for depression: A critical review of the evidence and potential mechanisms. J Dev Orig Health Dis, 5, 339–50.CrossRefGoogle ScholarPubMed
Brander, G., Rydell, M., Kuja-Halkola, R. & et al. (2016). Association of perinatal risk factors with obsessive-compulsive disorder: A population-based birth cohort, sibling control study. JAMA Psychiatry, 73, 1135–44.CrossRefGoogle ScholarPubMed
Brown, M. A., Lindheimer, M. D., de Swiet, M., Van Assche, A. & Moutquin, J. M. (2001). The classification and diagnosis of the hypertensive disorders of pregnancy: Statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy, 20, Ix-xiv.CrossRefGoogle Scholar
Causevic, M. & Mohaupt, M. (2007). 11beta-Hydroxysteroid dehydrogenase type 2 in pregnancy and preeclampsia. Mol Aspects Med, 28, 220–6.CrossRefGoogle ScholarPubMed
Cox, J. L., Holden, J. M. & Sagovsky, R. (1987). Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br J Psychiatry, 150, 782–6.CrossRefGoogle ScholarPubMed
Dachew, B. A., Mamun, A., Maravilla, J. C. & Alati, R. (2017). Association between hypertensive disorders of pregnancy and the development of offspring mental and behavioural problems: A systematic review and meta-analysis. Psychiatry Res, 260, 458–67.CrossRefGoogle ScholarPubMed
Dachew, B. A., Mamun, A., Maravilla, J. C. & Alati, R. (2018). Pre-eclampsia and the risk of autism-spectrum disorder in offspring: Meta-analysis. Br J Psychiatry, 212, 142–7.CrossRefGoogle ScholarPubMed
Ferrazzani, S., Luciano, R., Garofalo, S., D'Andrea, V., De Carolis, S., De Carolis, M. P., Paolucci, V., Romagnoli, C. & Caruso, A. (2011). Neonatal outcome in hypertensive disorders of pregnancy. Early Human Development, 87, 445–9.CrossRefGoogle ScholarPubMed
Ferreira, I., Peeters, L. L. & Stehouwer, C. D. (2009). Preeclampsia and increased blood pressure in the offspring: Meta-analysis and critical review of the evidence. J Hypertens, 27, 1955–9.CrossRefGoogle Scholar
Field, T., Diego, M., Hernandez-Reif, M., Figueiredo, B., Deeds, O., Ascencio, A., Schanberg, S. & Kuhn, C. (2008). Prenatal serotonin and neonatal outcome: Brief report. Infant Behav Dev, 31, 316–20.CrossRefGoogle ScholarPubMed
Flenady, V., Middleton, P., Smith, G. C., Duke, W., Erwich, J. J., Khong, T. Y., Neilson, J., Ezzati, M., Koopmans, L., Ellwood, D., Fretts, R. & Froen, J. F. (2011). Stillbirths: The way forward in high-income countries. Lancet, 377, 1703–17.CrossRefGoogle ScholarPubMed
Fraser, A., Macdonald-Wallis, C., Tilling, K., Boyd, A., Golding, J., Davey Smith, G., Henderson, J., Macleod, J., Molloy, L., Ness, A., Ring, S., Nelson, S. M. & Lawlor, D. A. (2013). Cohort Profile: The Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol, 42, 97110.CrossRefGoogle ScholarPubMed
Gibson, J., McKenzie-McHarg, K., Shakespeare, J., Price, J. & Gray, R. (2009). A systematic review of studies validating the Edinburgh Postnatal Depression Scale in antepartum and postpartum women. Acta Psychiatr Scand, 119, 350–64.CrossRefGoogle ScholarPubMed
Global Burden of Disease Study 2013 Collaborators. (2015). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 386, 743800.CrossRefGoogle Scholar
Goeden, N., Velasquez, J., Arnold, K. A., Chan, Y., Lund, B. T., Anderson, G. M. & Bonnin, A. (2016). Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. J Neurosci, 36, 6041–9.CrossRefGoogle ScholarPubMed
Goodman, R., Ford, T., Richards, H., Gatward, R. & Meltzer, H. (2000). The Development and Well-Being Assessment: Description and initial validation of an integrated assessment of child and adolescent psychopathology. J Child Psychol Psychiatry, 41, 645–55.CrossRefGoogle ScholarPubMed
Goodman, A., Heiervang, E., Collishaw, S. & Goodman, R. (2011). The ‘DAWBA bands’ as an ordered-categorical measure of child mental health: Description and validation in British and Norwegian samples. Soc Psychiatry Psychiatr Epidemiol, 46, 521–32.CrossRefGoogle ScholarPubMed
Hadjikhani, N. (2010). Serotonin, pregnancy and increased autism prevalence: Is there a link? Med Hypotheses, 74, 880–3.CrossRefGoogle ScholarPubMed
Hu, R., Li, Y., Zhang, Z. & Yan, W. (2015). Antenatal depressive symptoms and the risk of preeclampsia or operative deliveries: A meta-analysis. PLoS One, 10(3), e0119018.CrossRefGoogle ScholarPubMed
Hultman, C. M., Sparén, P., Takei, N., Murray, R. M. & Cnattingius, S. (1999). Prenatal and perinatal risk factors for schizophrenia, affective psychosis, and reactive psychosis of early onset: Case-control study. BMJ : British Medical Journal, 318, 421–6.CrossRefGoogle ScholarPubMed
Kim, D. R., Bale, T. L. & Epperson, C. N. (2015). Prenatal Programming of Mental Illness: Current Understanding of Relationship and Mechanisms. Current psychiatry reports, 17, 5–.CrossRefGoogle ScholarPubMed
Kolevzon, A., Gross, R. & Reichenberg, A. (2007). Prenatal and perinatal risk factors for autism: A review and integration of findings. Archives of Pediatrics & Adolescent Medicine, 161, 326–33.CrossRefGoogle Scholar
Kurki, T., Hiilesmaa, V., Raitasalo, R., Mattila, H. & Ylikorkala, O. (2000). Depression and anxiety in early pregnancy and risk for preeclampsia. Obstet Gynecol, 95, 487–90.Google ScholarPubMed
Liu, X., Zhao, W., Liu, H., Kang, Y., Ye, C., Gu, W., Hu, R. & Li, X. (2016). Developmental and Functional Brain Impairment in Offspring from Preeclampsia-Like Rats. Molecular Neurobiology, 53, 1009–19.CrossRefGoogle ScholarPubMed
Loret de Mola, C., de Franca, G. V., Quevedo Lde, A. & Horta, B. L. (2014). Low birth weight, preterm birth and small for gestational age association with adult depression: Systematic review and meta-analysis. Br J Psychiatry, 205, 340–7.CrossRefGoogle ScholarPubMed
Macdonald-Wallis, C., Tilling, K., Fraser, A., Nelson, S. M. & Lawlor, D. A. (2014). Associations of blood pressure change in pregnancy with fetal growth and gestational age at delivery: Findings from a prospective cohort. Hypertension, 64, 3644.CrossRefGoogle ScholarPubMed
Mamun, A. A., Kinarivala, M. K., O'Callaghan, M., Williams, G., Najman, J. & Callaway, L. (2012). Does hypertensive disorder of pregnancy predict offspring blood pressure at 21 years? Evidence from a birth cohort study. J Hum Hypertens, 26, 288–94.CrossRefGoogle ScholarPubMed
Mann, J. R. & McDermott, S. (2011). Are maternal genitourinary infection and pre-eclampsia associated with ADHD in school-aged children? J Atten Disord, 15, 667–73.CrossRefGoogle ScholarPubMed
Mathewson, K. J., Chow, C. H., Dobson, K. G., Pope, E. I., Schmidt, L. A. & Van Lieshout, R. J. (2017). Mental health of extremely low birth weight survivors: A systematic review and meta-analysis. Psychol Bull, 143, 347–83.CrossRefGoogle ScholarPubMed
Moisiadis, V. G. & Matthews, S. G. (2014a). Glucocorticoids and fetal programming part 1: Outcomes. Nat Rev Endocrinol, 10(7), 391402.CrossRefGoogle Scholar
Moisiadis, V. G. & Matthews, S. G. (2014b). Glucocorticoids and fetal programming part 2: Mechanisms. Nat Rev Endocrinol, 10(7), 403–11.CrossRefGoogle Scholar
Mol, B. W. J., Roberts, C. T., Thangaratinam, S., Magee, L. A., de Groot, C. J. M. & Hofmeyr, G. J. (2016). Pre-eclampsia. Lancet, 387, 9991011.CrossRefGoogle ScholarPubMed
Newman, L., Judd, F., Olsson, C. A., Castle, D., Bousman, C., Sheehan, P., Pantelis, C., Craig, J. M., Komiti, A. & Everall, I. (2016). Early origins of mental disorder - risk factors in the perinatal and infant period. BMC Psychiatry, 16, 270.CrossRefGoogle ScholarPubMed
Owens, M. J. & Nemeroff, C. B. (1994). Role of serotonin in the pathophysiology of depression: Focus on the serotonin transporter. Clin Chem, 40, 288–95.CrossRefGoogle ScholarPubMed
Palta, P., Samuel, L. J., Miller, E. R. & Szanton, S. L. (2014). Depression and Oxidative Stress: Results From a Meta-Analysis of Observational Studies. Psychosomatic medicine, 76, 12–9.CrossRefGoogle ScholarPubMed
Pearson, R. M., Evans, J., Kounali, D. & et al. (2013). Maternal depression during pregnancy and the postnatal period: Risks and possible mechanisms for offspring depression at age 18 years. JAMA Psychiatry, 70, 1312–9.CrossRefGoogle ScholarPubMed
Pinheiro, T. V., Brunetto, S., Ramos, J. G., Bernardi, J. R. & Goldani, M. Z. (2016). Hypertensive disorders during pregnancy and health outcomes in the offspring: A systematic review. J Dev Orig Health Dis, 7, 391407.CrossRefGoogle ScholarPubMed
Roberts, JM, August, PA, Bakris, G, Barton, JR, Bernstein, IM, Druzin, M, Gaiser, RR, Granger, JP, Jeyabalan, A, Johnson, DD, Karumanchi, S, Lindheimer, M, Owens, MY, Saade, GR, Sibai, BM, Spong, CY, Tsigas, E, Joseph, GF, O'Reilly, N, Politzer, A, Son, S & K, N. (2013). Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists' Task Force on Hypertension in Pregnancy. Obstet Gynecol, 122, 1122–31.Google Scholar
Royston, P. (2005). Multiple imputation of missing values: Update of ice. Stata Journal, 5, 527–36.CrossRefGoogle Scholar
Salim, S. (2014). Oxidative Stress and Psychological Disorders. Current Neuropharmacology, 12, 140–7.CrossRefGoogle ScholarPubMed
Say, L., Chou, D., Gemmill, A., Tuncalp, O., Moller, A. B., Daniels, J., Gulmezoglu, A. M., Temmerman, M. & Alkema, L. (2014). Global causes of maternal death: A WHO systematic analysis. Lancet Glob Health, 2, e32333.CrossRefGoogle ScholarPubMed
Serati, M., Barkin, J. L., Orsenigo, G., Altamura, A. C. & Buoli, M. (2017). Research Review: The role of obstetric and neonatal complications in childhood attention deficit and hyperactivity disorder - a systematic review. J Child Psychol Psychiatry, 58, 1290–300.CrossRefGoogle ScholarPubMed
Shamshirsaz, A. A., Paidas, M. & Krikun, G. (2012). Preeclampsia, hypoxia, thrombosis, and inflammation. J Pregnancy, 2012, 374047.CrossRefGoogle ScholarPubMed
StataCorp. (2015). Stata Statistical Software: Release 14. College Station, TX: StataCorp LP.Google Scholar
Tuovinen, S., Raikkonen, K., Kajantie, E., Pesonen, A. K., Heinonen, K., Osmond, C., Barker, D. J. & Eriksson, J. G. (2010). Depressive symptoms in adulthood and intrauterine exposure to pre-eclampsia: The Helsinki Birth Cohort Study. Bjog, 117, 1236–42.CrossRefGoogle ScholarPubMed
Walker, C. K., Krakowiak, P., Baker, A., Hansen, R. L., Ozonoff, S. & Hertz-Picciotto, I. (2015). Preeclampsia, placental insufficiency, and autism spectrum disorder or developmental delay. JAMA Pediatr, 169, 154–62.CrossRefGoogle ScholarPubMed
Warshafsky, C., Pudwell, J., Walker, M., Wen, S. W. & Smith, G. N. (2016). Prospective assessment of neurodevelopment in children following a pregnancy complicated by severe pre-eclampsia. BMJ Open, 6, e010884.CrossRefGoogle ScholarPubMed
Supplementary material: File

Dachew et al. supplementary material

Table S3

Download Dachew et al. supplementary material(File)
File 13.2 KB
Supplementary material: File

Dachew et al. supplementary material

Table S1

Download Dachew et al. supplementary material(File)
File 17.7 KB
Supplementary material: File

Dachew et al. supplementary material

Table S2

Download Dachew et al. supplementary material(File)
File 13.1 KB