Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T04:03:43.190Z Has data issue: false hasContentIssue false

How can the study of biological processes help design new interventions for children with severe antisocial behavior?

Published online by Cambridge University Press:  07 July 2008

Stephanie H. M. van Goozen*
Affiliation:
Cardiff University
Graeme Fairchild
Affiliation:
Cambridge University
*
Address correspondence and reprint requests to: Stephanie H. M. van Goozen, School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK; E-mail: [email protected].

Abstract

Children with severe antisocial behavior have an increased risk of showing violently aggressive and other forms of problem behavior in adolescence and adulthood. It is well established that both biological and social factors are involved in the development of antisocial behavior. The primary aim of this paper is to discuss the evidence that specific neurobiological systems are involved in the etiology of childhood-onset antisocial behavior. These factors are responsible for the severity of the behavioral problems observed in antisocial children, but they also play a role in their persistence, because they influence children's interactions with their environment. We will discuss the possible causes of disruptions in neurobiological systems in childhood antisocial behavior and point out the implications of these findings for theory and clinical practice. We will argue that familial factors (e.g., genetic influences, early childhood adversity) are linked to negative behavioral outcomes (e.g., antisocial behavior problems) through the mediating and transactional interplay with neurobiological deficits. An investigation of neurobiological functioning in antisocial children might not only indicate which children are most likely to persist in engaging in severe antisocial behavior, but also guide the development of new interventions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Preparation of this paper was supported by a project grant from the Wellcome Trust and an Economic and Social Research Council grant (to S.H.M.v.G.).

References

Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. R. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372, 669672.CrossRefGoogle Scholar
Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. R. (1995). Fear and the human amygdala. The Journal of Neuroscience, 15, 58795891.CrossRefGoogle ScholarPubMed
Amaral, D. G. (2003). The amygdala, social behaviour, and danger detection. Annals of the New York Academy of Sciences, 1000, 337347.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed). Washington, DC: Author.Google Scholar
Anand, S., & Hotson, J. (2002). Transcranial magnetic stimulation: Neurophysiological applications and safety. Brain and Cognition, 50, 366386.CrossRefGoogle ScholarPubMed
Angrilli, A., Mauri, A., Palomba, D., Flor, H., Birbaumer, N., Sartori, G. et al. (1996). Startle reflex and emotion modulation impairment after a right amygdala lesion. Brain, 119, 19912000.CrossRefGoogle ScholarPubMed
Armenteros, J. L., & Lewis, J. E. (2002). Citalopram treatment for impulsive aggression in children and adolescents: An open pilot study. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 522529.CrossRefGoogle ScholarPubMed
Azar, R., Zoccolillo, M., Paquette, D., Quiros, E., Baltzer, F., & Tremblay, R. E. (2004). Cortisol levels and conduct disorder in adolescent mothers. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 461468.CrossRefGoogle ScholarPubMed
Babcock, J. C., Green, C. E., Webb, S. A., & Yerington, T. P. (2005). Psychophysiological profiles of batterers: Autonomic emotional reactivity as it predicts the antisocial spectrum of behavior among intimate partner abusers. Journal of Abnormal Psychology, 114, 444455.CrossRefGoogle ScholarPubMed
Bardone, A. M., Moffitt, T. E., Caspi, A., Dickson, N., Stanton, W. R., & Silva, P. A. (1998). Adult physical health outcomes of adolescent girls with conduct disorder, depression and anxiety. Journal of the American Academy of Child & Adolescent Psychiatry, 37, 594601.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19, 54735481.CrossRefGoogle ScholarPubMed
Bjork, J. M., Dougherty, D. M., Moeller, F. G., Cherek, D. R., & Swann, A. C. (1999). The effects of tryptophan depletion and loading on laboratory aggression in men: Time course and a food-restricted control. Psychopharmacology (Berlin), 142, 2430.CrossRefGoogle Scholar
Bjork, J. M., Dougherty, D. M., Moeller, F. G., & Swann, A. C. (2000). Differential behavioral effects of plasma tryptophan depletion and loading in aggressive and non-aggressive men. Neuropsychopharmacology, 22, 357369.CrossRefGoogle Scholar
Blair, J., Mitchell, D., & Blair, K. (2005). The psychopath. Emotion and the brain. New York: Blackwell.Google Scholar
Blair, R. J., Budhani, S., Colledge, E., & Scott, S. (2005). Deafness to fear in boys with psychopathic tendencies. Journal of Child Psychology and Psychiatry, 46, 327336.CrossRefGoogle ScholarPubMed
Blair, R. J. R., Colledge, E., Murray, L., & Mitchell, D. G. V. (2001). A selective impairment in the processing of sad and fearful expressions in children with psychopathic tendencies. Journal of Abnormal Child Psychology, 29, 491498.CrossRefGoogle ScholarPubMed
Bohman, M. (1996). Predisposition to criminality: Swedish adoption studies in retrospect. In Bock, G. R. & Goode, J. A. (Eds.), Genetics of criminal and antisocial behaviour (pp. 99114). Chichester: Wiley.Google Scholar
Bohman, M., Cloninger, C. R., Sigvardsson, S., & van Knorring, A. L. (1982). Predisposition to petty criminality in Swedish adoptees: I. Genetic and environmental heterogeneity. Archives of General Psychiatry, 39, 12331241.CrossRefGoogle ScholarPubMed
Bremner, J. D., & Vermetten, E. (2001). Stress and development: Behavioral and biological consequences. Development and Psychopathology, 13, 473489.CrossRefGoogle Scholar
Brennan, P. A., Raine, A., Schulsinger, F., Kirkegaard-Sorensen, L., Knop, J., Hutchings, B., et al. (1997). Psychophysiological protective factors for male subjects at high risk for criminal behavior. American Journal of Psychiatry, 154, 853855.Google ScholarPubMed
Brown, G. L., Goodwin, F. K., Ballenger, J. C., Goyer, P. F., & Major, L. F. (1979). Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Research, 1, 131139.CrossRefGoogle ScholarPubMed
Brunner, H. G., Nelen, M., Breakefield, X. O., Ropers, H. H., & van Oost, B. A. (1993). Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science, 262, 578580.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. (1998). Somatic reponses to psychological stress: The reactivity hypothesis. Advances in Psychological Science, 2, 87114.Google Scholar
Cacioppo, J. T., Berntson, G. G., Malarkey, W. B., Kiecolt-Glaser, J. K., Sheridan, J. F., Poehlmann, K. M., et al. , (1998). Autonomic, neuroendocrine, and immune responses to psychological stress: The reactivity hypothesis. Annals of the New York Academy of Sciences, 840, 664673.CrossRefGoogle ScholarPubMed
Cadoret, R. J., Yates, W. R., Troughton, E., Woolworth, G., & Stewart, M. A. (1995). Genetic–environmental interaction in the genesis of aggressivity and conduct disorders. Archives of General Psychiatry, 52, 916924.CrossRefGoogle ScholarPubMed
Calder, A. J., Young, A. W., Rowland, D., Perrett, D. I., Hodges, J. R., & Etcoff, N. L. (1996). Facial emotion recognition after bilateral amygdala damage: Differentially severe impairment of fear. Cognitive Neuropsychology, 13, 699745.CrossRefGoogle Scholar
Campeau, S., & Watson, S. J. (1997). Neuroendocrine and behavioral responses and brain pattern of c-fos induction associated with audiogenic stress. Journal of Neuroendocrinology, 9, 577588.CrossRefGoogle ScholarPubMed
Canli, T., Omura, K., Haas, B. W., Fallgatter, A., Constable, R. T., & Lesch, K. P. (2005). Beyond affect: A role for genetic variation of the serotonin transporter in neural activation during a cognitive attention task. Proceedings of the National Academy of Sciences of the United States of America, 102, 1222412229.CrossRefGoogle ScholarPubMed
Canli, T., & Zamin, Z. (2002). Neuroimaging of emotion and personality: Scientific evidence and ethical considerations. Brain and Cognition, 50, 414431.CrossRefGoogle ScholarPubMed
Carlson, M., & Earls, F. (1997). Psychological and neuroendocrinological sequelae of early social deprivation in institutionalized children in Romania. Annals of the New York Academy of Sciences, 807, 419428.CrossRefGoogle ScholarPubMed
Carpenter, L. L., Carvalho, J. P., Tyrka, A. R., Wier, L. M., Mello, A. F., Mello, M. F., et al. (2007). Decreased adrenocorticotropic hormone and cortisol responses to stress in healthy adults reporting significant childhood maltreatment. Biological Psychiatry, 62, 10801087.CrossRefGoogle ScholarPubMed
Cases, O., Seif, I., Grimsby, J., Gaspar, P., Chen, K., Pournin, S., et al. (1995). Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAO-A. Science, 268, 17631766.CrossRefGoogle Scholar
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of the genotype in the cycle of violence in maltreated children. Science, 297, 851854.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Castellanós, F. X., Elia, J., Kruesi, M. J., Gulotta, C. S., Mefford, I. N., Potter, W. Z., et al. (1994). Cerebrospinal fluid monoamine metabolites in boys with attention-deficit hyperactivity disorder. Psychiatry Research, 52, 305316.CrossRefGoogle ScholarPubMed
Charmandari, E., Tsigos, C., & Chrousos, G. (2005). Endocrinology of the stress response. Annual Review of Physiology, 67, 259284.CrossRefGoogle ScholarPubMed
Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. Journal of the American Medical Association, 267, 12441252.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2001). The impact of child maltreatment and psychopathology on neuroendocrine functioning. Development and Psychopathology, 13, 783804.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2007). Personality, adrenal steroid hormones, and resilience in maltreated children: A multilevel perspective. Development and Psychopathology, 19, 787809.CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F. A., & Toth, S. L. (2006). Fostering secure attachment in infants in maltreating families through preventive interventions. Development and Psychopathology, 18, 623649.CrossRefGoogle ScholarPubMed
Cleare, A. J., & Bond, A. J. (1995). The effect of tryptophan depletion and enhancement on subjective and behavioral aggression in normal male subjects. Psychopharmacology (Berlin), 118, 7281.CrossRefGoogle ScholarPubMed
Coccaro, E. F., & Kavoussi, R. J. (1997). Fluoxetine and impulsive aggressive behavior in personality-disordered subjects. Archives of General Psychiatry, 54, 10811088.CrossRefGoogle ScholarPubMed
Coccaro, E. F., Kavoussi, R. J., Cooper, T. B., & Hauger, R. L. (1997). Central serotonin activity and aggression: Inverse relationship with prolactin response to d-fenfluramine, but not CSF 5-HIAA concentration, in human subjects. American Journal of Psychiatry, 154, 14301435.Google Scholar
Conger, R. D., Ge, X., Elder, G. H., Lorenz, F. O., & Simons, R. L. (1994). Economic stress, coercive family process, and developmental problems of adolescents. Child Development, 65, 541561.CrossRefGoogle ScholarPubMed
Constantino, J. N., Liberman, M., & Kincaid, M. (1997). Effects of serotonin reuptake inhibitors on aggressive behavior in psychiatrically hospitalized adolescents: Results of an open trial. Journal of Child and Adolescent Psychopharmacology, 7, 3144.CrossRefGoogle ScholarPubMed
Cook, E. H. Jr., Stein, M. A., Ellison, T., Unis, A. S., & Leventhal, B. L. (1995). Attention deficit hypeactivity disorder and whole-blood serotonin levels: Effects of comorbidity. Psychiatry Research, 57, 1320.CrossRefGoogle ScholarPubMed
Coplan, J. D., Andrews, M. W., Rosenblum, L. A., Owens, M. J., Friedman, S., Gorman, J. M., et al. (1996). Persistent elevations of cerebrospinal fluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: Implications for the pathophysiology of mood and anxiety disorders. Proceedings of the National Academy of Sciences of the United States of America, 93, 16191623.CrossRefGoogle ScholarPubMed
Cyranowski, J. M., Frank, E., Young, E., & Shear, K. (2000). Adolescent onset of the gender difference in lifetime rates of major depression. Archives of General Psychiatry, 57, 2127.CrossRefGoogle ScholarPubMed
Dackis, C. A., & O'Brien, C. P. (2001). Cocaine dependence: A disease of the brain's reward centers. Journal of Substance Abuse Treatment, 21, 111117.CrossRefGoogle ScholarPubMed
Damasio, A. R., Tranel, D., & Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behavioural Brain Research, 14, 8194.CrossRefGoogle Scholar
De Bellis, M. H., Baum, A. S., Birmaher, B., Keshavan, M. S., Eccard, C. H., Boring, A. M., et al. (1999). Developmental traumatology part I: Biological stress systems. Biological Psychiatry, 45, 12591270.CrossRefGoogle ScholarPubMed
Dettling, A. C., Feldon, J., & Pryce, C. R. (2002). Repeated parental deprivation in the infant common marmoset (Callithrix jacchus, primates) and analysis of its effects on early development. Biological Psychiatry, 52, 10371046.CrossRefGoogle ScholarPubMed
Deuschle, M., Schweiger, U., Weber, B., Gotthardt, U., Korner, A., Schmider, J., et al. (1997). Diurnal activity and pulsatility of the hypothalamus–pituitary–adrenal system in male depressed patients and healthy controls. Journal of Clinical Endocrinology and Metabolism, 82, 234238.CrossRefGoogle ScholarPubMed
Duval, F., Crocq, M. A., Guillon, M. S., Mokrani, M. C., Monreal, J., Bailey, P., et al. (2004) Increased adrenocorticotropin suppression following dexamethasone administration in sexually abused adolescents with posttraumatic stress disorder. Psychoneuroendocrinology, 29, 12811289.CrossRefGoogle ScholarPubMed
Erel, O., & Burman, B. (1995). Interrelatedness of marital relations and parent–child relations: A meta-analytic review. Psychological Bulletin, 118, 108132.CrossRefGoogle ScholarPubMed
Fairchild, G., Van Goozen, S. H. M., Stollery, S. J., & Goodyer, I. M. (2008). Fear conditioning and affective modulation of the startle reflex in male adolescents with early-onset or adolescence-onset conduct disorder and healthy control subjects. Biological Psychiatry, 63, 279285.CrossRefGoogle ScholarPubMed
Farrington, D. P., Jolliffe, D., Loeber, R., Stouthamer-Loeber, M., & Kalb, L. (2001). The concentration of offenders in families, and family criminality in the prediction of boys' delinquency. Journal of Adolescence, 24, 579596.CrossRefGoogle ScholarPubMed
Fava, M., Rosenblum, J. F., Pava, J. A., McCarthy, M. K., Steingard, R. J., & Bouffides, E. (1993). Anger attacks in unipolar depression, Part 1: Clinical correlates and response to fluoxetine treatment. American Journal of Psychiatry, 150, 11581163.Google ScholarPubMed
Foley, D. L., Eaves, L. J., Wormley, B., Silberg, J. L., Maes, H. H., Kuhn, J., et al. (2004). Childhood adversity, monoamine oxidase A genotype, and risk for conduct disorder. Archives of General Psychiatry, 61, 738744.CrossRefGoogle ScholarPubMed
Fombonne, E., Wostear, G., Cooper, V., Harrington, R., & Rutter, M. (2001). The Maudsley long-term follow-up of child and adolescent depression. I. Psychiatric outcomes in adulthood. British Journal of Psychiatry, 179, 210217.CrossRefGoogle ScholarPubMed
Fowles, D. C., & Fureseth, A. M. (1994). Electrodermal hyporeactivity and antisocial behavior. In Routh, D. K. (Ed.), Disruptive behavior disorders in childhood (pp. 181205). New York: Plenum Press.CrossRefGoogle Scholar
Funayama, E. S., Grillon, C., Davis, M., & Phelps, E. A. (2001). A double dissociation in the affective modulation of startle in humans: Effects of unilateral temporal lobectomy. Journal of Cognitive Neuroscience, 13, 721729.CrossRefGoogle ScholarPubMed
Gabel, S., Stadler, J., Bjorn, J., Shindledecker, R., & Bowden, C. L. (1993). Biodevelopmental aspects of conduct disorder in boys. Child Psychiatry and Human Development, 24, 125141.CrossRefGoogle ScholarPubMed
George, M. S. (2006). Transcranial magnetic stimulation: A stimulating new method for treating depression, but saddled with the same old problems. International Journal of Neuropsychopharmacology, 9, 637640.CrossRefGoogle ScholarPubMed
Gerra, G., Zaimovic, A., Avanzini, P., Chittoline, B., Giucastro, G., Caccavari, R., et al. , (1997). Neurotransmitter–neuroendocrine responses to experimentally induced aggression in humans: Influence of personality variable. Psychiatry Research, 66, 3343.CrossRefGoogle ScholarPubMed
Gesch, C. B., Hammond, S. M., Hampson, S. E., Eves, A., & Crowder, M. J. (2002). Influence of supplementary vitamins, minerals and essential fatty acids on the antisocial behaviour of young adult prisoners. British Journal of Psychiatry, 181, 2228.CrossRefGoogle ScholarPubMed
Ghaziuddin, N., & Alessi, N. E. (1992). An open clinical trial of trazodone in aggressive children. Journal of Child and Adolescent Psychopharmacology, 2, 291298.CrossRefGoogle ScholarPubMed
Goldberg, S., Levitan, R., Leung, E., Masellis, M., Basile, V. S., Nemeroff, C. B., et al. (2003). Cortisol concentrations in 12- to 18-month old infants: Stability over time, location and stressor. Biological Psychiatry, 54, 719726.CrossRefGoogle Scholar
Gunnar, M. R., & Donzella, B. (2002). Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 27, 199220.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Fisher, P. A., & The Early Experience, Stress, and Prevention Network. (2006). Bringing basic research on early experience and stress neurobiology to bear on preventive interventions for neglected and maltreated children. Development and Psychopathology, 18, 651677.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Morison, S. J., Chisholm, K., & Schuder, M. (2001). Salivary cortisol levels in children adopted from Romanian orphanages. Development and Psychopathology, 13, 611628.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Vasquez, D. M. (2001). Low cortisol and a flattening of the expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 516538.CrossRefGoogle Scholar
Halász, J., Liposits, Z., Kruk, M. R., & Haller, J. (2002). Neural background of glucocorticoid dysfunction-induced abnormal aggression in rats: Involvement of fear- and stress-related structures. European Journal of Neuroscience, 15, 561569.CrossRefGoogle ScholarPubMed
Haller, J., Halász, J., Mikics, E., & Kruk, M. R. (2004). Chronic glucocorticoid deficiency-induced abnormal aggression, autonomic hypoarousal, and social deficit in rats. Journal of Neuroendocrinology, 16, 550557.CrossRefGoogle ScholarPubMed
Haller, J., van de Schraaf, J., & Kruk, M. R. (2001). Deviant forms of aggression in glucocorticoid hyporeactive rats: A model for “pathological” aggression? Journal of Neuroendocrinology, 13, 102107..Google Scholar
Halperin, J. M., Newcorn, J. H., Kopstein, I., McKay, K. E., Schwartz, S. T., Siever, L. J., et al. (1997). Serotonin, aggression, and parental psychopathology in children with attention-deficit hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 13911398.CrossRefGoogle ScholarPubMed
Halperin, J. M., Sharma, V., Siever, L. J., Schwartz, S. T., Matier, K., Wornell, G., et al. , (1994). Serotonergic function in aggressive and nonaggressive boys with attention deficit hyperactivity disorder. American Journal of Psychiatry, 151, 243248.Google ScholarPubMed
Hanna, G. L., Yuwiler, A., & Coates, J. K. (1995). Whole blood serotonin and disruptive behaviors in juvenile obsessive–compulsive disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 34, 2835.CrossRefGoogle ScholarPubMed
Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297, 400403.CrossRefGoogle ScholarPubMed
Heim, C., Ehlert, U., & Hellhammer, D. H. (2000). The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology, 25, 135.CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Bonsall, R., Miller, A. H., & Nemeroff, C. B. (2001). Altered pituitary–adrenal axis responses to provocative challenge tests in adult survivors of childhood abuse. American Journal of Psychiatry, 158, 575581.CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Heit, S., Graham, Y. P., Wilcox, M., Bonsall, R., et al. (2000). Pituitary–adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. Journal of the American Medical Association, 284, 592597.CrossRefGoogle ScholarPubMed
Heinrich, H., Gevensleben, H., & Strehl, U. (2007). Annotation: Neurofeedback—Train your brain to train behaviour. Journal of Child Psychology and Psychiatry, 48, 316.CrossRefGoogle ScholarPubMed
Herman, J. P., & Cullinan, W. E. (1997). Neurocircuitry of stress: Central control of the hypothalamo–pituitary–adrenocortical axis. Trends in Neuroscience, 20, 7884.CrossRefGoogle ScholarPubMed
Herman, J. P., Figueiredo, H., Mueller, N. K., Ulrich-Lai, Y., Ostrander, M. M., Choi, D. C., et al. (2003). Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Frontiers in Neuroendocrinology, 24, 151180.CrossRefGoogle ScholarPubMed
Herpertz, S. C., Mueller, B., Qunaibi, M., Lichterfeld, C., Konrad, K., & Herpertz-Dahlmann, B. (2005). Response to emotional stimuli in boys with conduct disorder. American Journal of Psychiatry, 162, 11001107.CrossRefGoogle ScholarPubMed
Hibbeln, J. R., Ferguson, T. A., & Blasbalg, T. L. (2006). Omega-3 fatty acid deficiencies in neurodevelopment, aggression and autonomic dysregulation: Opportunities for intervention. International Review of Psychiatry, 18, 107118.CrossRefGoogle ScholarPubMed
Higley, J. D., Mehlman, P. T., Taub, D. M., Higley, S. B., Suomi, S. J., Vickers, J. H., et al. (1992). Cerebrospinal fluid monoamine and adrenal correlates of aggression in free-ranging rhesus monkeys. Archives of General Psychiatry, 49, 436441.CrossRefGoogle ScholarPubMed
Hill, J., & Maughan, B. (2001). Conduct disorders in childhood and adolescence. Cambridge: Cambridge University Press.Google Scholar
Hughes, C. W., Petty, F., Shiekha, S., & Kramer, G. L. (1996). Whole-blood serotonin in children and adolescents with mood and behavior disorders. Psychiatry Research, 65, 7995.CrossRefGoogle ScholarPubMed
Inglis, G. C., Ingram, M. C., Holloway, C. D., Swan, L., Birnie, D., Hillis, W. S., et al. (1999) Familial pattern of corticosteroids and their metabolism in adult human subjects—The Scottish Adult Twin Study. Journal of Clinical Endocrinology and Metabolism, 84, 41324137.Google ScholarPubMed
Kaffman, A., & Meaney, M.J. (2007). Neurodevelopmental sequelae of postnatal maternal care in rodents: Clinical and research implications of molecular insights. Journal of Child Psychology and Psychiatry, 48, 224244.CrossRefGoogle ScholarPubMed
Kagan, J., Reznick, S., & Snidman, N. (1987). The physiology and psychology of behavioral inhibition in children. Child Development, 58, 14591473.CrossRefGoogle ScholarPubMed
Kavoussi, R., Armstead, P., & Coccaro, E. (1997). The neurobiology of impulsive aggression. Psychiatric Clinics of North America, 20, 395403.CrossRefGoogle ScholarPubMed
Kavoussi, R. J., Liu, J., & Coccaro, E. F. (1994). An open trial of sertraline in personality disordered patients with impulsive aggression. Journal of Clinical Psychiatry, 55, 137141.Google ScholarPubMed
Kazdin, A. (1995). Conduct disorders in childhood and adolescence (2nd ed.). Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
Kazdin, A. (2001). Treatment of conduct disorders. In Hill, J. & Maughan, B. (Eds.), Conduct disorders in childhood and adolescence (pp. 408448). Cambridge: Cambridge University Press.Google Scholar
Kettle, J. W., Andrewes, D. G., & Allen, N. B. (2006). Lateralization of the startle reflex circuit in humans: An examination with monaural probes following unilateral temporal lobe resection. Behavioral Neuroscience, 120, 2439.CrossRefGoogle ScholarPubMed
Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., et al. , (2006). MAOA, maltreatment, and gene–environment interaction predicting children's mental health: New evidence and a meta-analysis. Molecular Psychiatry, 11, 903913.CrossRefGoogle ScholarPubMed
Kirschbaum, C., Kudielka, B., Gaab, J., Schommer, N., & Hellhammer, D.H. (1999). Impact of gender, menstrual cycle phase and oral contraceptives on the activity of the hypothalamus–pituitary–adrenal axis. Psychosomatic Medicine, 61, 154162.CrossRefGoogle ScholarPubMed
Klein, R. G., Abikoff, H., Klass, E., Ganeles, D., Seese, L. M., & Pollack, S. (1997). Clinical efficacy of methylphenidate in conduct disorder with or without attention deficit hyperactivity disorder. Archives of General Psychiatry, 54, 10731080.CrossRefGoogle ScholarPubMed
Kolko, D. J., Bukstein, O. G., & Barron, J. (1999). Methylphenidate and behavior modification in children with ADHD and comorbid ODD or CD: Main and incremental effects across settings. Journal of the American Academy of Child & Adolescent Psychiatry, 38, 578586.CrossRefGoogle ScholarPubMed
Kraemer, G. W., Ebert, M. H., Schmidt, D. E., & McKinney, W. T. (1989). A longitudinal study of the effect of different social rearing conditions on cerebrospinal fluid norepinephrine and biogenic amine metabolites in rhesus monkeys. Neuropsychopharmacology, 2, 175189.CrossRefGoogle ScholarPubMed
Kruesi, M. J., Casanova, M. F., Mannheim, G., & Johnson-Bilder, A. (2004). Reduced temporal lobe volume in early onset conduct disorder. Psychiatry Research, 132, 111.CrossRefGoogle ScholarPubMed
Kruesi, M. J., Hibbs, E. D., Zahn, T. P., Keysor, C. S., Hamburger, S. D., et al. (1992). A 2-year prospective follow-up study of children and adolescents with disruptive behavior disorders. Prediction by cerebrospinal fluid 5-hydroxyindole-acetic acid, homovanillic acid, and autonomic measures? Archives of General Psychiatry, 49, 429435.CrossRefGoogle ScholarPubMed
Kruesi, M. J., Rapoport, J. L., Hamburger, S., Hibbs, E., Potter, W. Z., et al. (1990). Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Archives of General Psychiatry, 47, 419426.CrossRefGoogle ScholarPubMed
Kruesi, M. J., Schmidt, M. E., Donelly, M., Hibbs, E. D., & Hamburger, S. D. (1989). Urinary free cortisol output and disruptive behavior in children. Journal of the American Academy of Child & Adolescent Psychiatry, 28, 441443.CrossRefGoogle ScholarPubMed
Kruk, M. R., Halasz, J., Meelis, W., & Haller, J. (2004). Fast positive feedback between the adrenocortical stress response and a brain mechanism involved in aggressive behavior. Behavioral Neuroscience, 118, 10621070.CrossRefGoogle Scholar
Kumsta, R., Entringer, S., Koper, J. W., van Rossum, E. F., Hellhammer, D. H., & Wüst, S. (2007). Sex specific associations between common glucocorticoid receptor gene variants and hypothalamus–pituitary–adrenal axis responses to psychosocial stress. Biological Psychiatry, 62, 863869.CrossRefGoogle ScholarPubMed
Ladd, C. O., Owens, M. J., & Nemeroff, C. B. (1996). Persistent changes in corticotropin-releasing factor neuronal systems induced by maternal deprivation. Endocrinology, 137, 12121218.CrossRefGoogle ScholarPubMed
Lahey, B. B., Piacenti, J. C., McBurnett, K., Stone, P., Hartdagen, S., & Hynd, G. (1987). Psychopathology in the parents of children with conduct disorder and hyperactivity. Journal of the American Academy of Child & Adolescent Psychiatry, 27, 163170.CrossRefGoogle Scholar
Lahey, B. B., Waldman, I. D., & McBurnett, K. (1999). Annotation: The development of antisocial behavior: An integrative causal model. Journal of Child Psychology and Psychiatry, 40, 669682.CrossRefGoogle ScholarPubMed
Lane, R. D., Reiman, E. M., Bradley, M. M., Lang, P. J., Ahern, G. L., Davidson, R. J., et al. (1997). Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia, 35, 14371444.CrossRefGoogle ScholarPubMed
Larson, M., White, B. P., Cochran, A., Donzella, B., & Gunnar, M. (1998). Dampening of the cortisol response to handling at 3-months in human infants and its relation to sleep, circadian cortisol activity, and behavioral distress. Developmental Psychobiology, 33, 327337.3.0.CO;2-S>CrossRefGoogle Scholar
Lee, R., Geracioti, T. D., Kascow, J. W., & Coccaro, E. F. (2005). Childhood trauma and personality disorder: Positive correlation with adult CSF corticotropin-releasing factor concentrations. American Journal of Psychiatry, 162, 995997.CrossRefGoogle ScholarPubMed
Lee, Y., Lopez, D. E., Meloni, E. G., & Davis, M. (1996). A primary acoustic startle pathway: Obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. Journal of Neuroscience, 16, 37753789.CrossRefGoogle ScholarPubMed
Levesque, J., Beauregard, M., & Mensour, B. (2006). Effect of neurofeedback training on the neural substrates of selective attention in children with attention-deficit/hyperactivity disorder: A functional magnetic resonance imaging study. Neuroscience Letters, 394, 216221.CrossRefGoogle ScholarPubMed
Lidberg, L., Tuck, J. R., Asberg, M., Scalia-Tomba, G. P., & Bertilsson, L. (1985). Homicide, suicide and CSF 5-HIAA. Acta Psychiatrica Scandinavica, 71, 230236.CrossRefGoogle ScholarPubMed
Limson, R., Goldman, D., Roy, A., Lamparski, D., Ravitz, B., Adinoff, B., et al. (1991). Personality and cerebrospinal fluid monoamine metabolites in alcoholics and controls. Archives of General Psychiatry, 48, 437441.CrossRefGoogle ScholarPubMed
Lindberg, N., Tani, P., Virkkunen, M., Porkka-Heiskanen, T., Appelberg, B., Naukkarinen, H., et al. (2005). Quantitative electroencephalographic measures in homicidal men with antisocial personality disorder. Psychiatry Research, 136, 715.CrossRefGoogle ScholarPubMed
Linnoila, M., Virkkunen, M., Scheinin, M., Nuutila, A., Rimon, R., & Goodwin, F. K. (1983). Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sciences, 33, 26092614.CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science, 277, 16591662.CrossRefGoogle ScholarPubMed
Liu, J., Raine, A., Venables, P. H., & Mednick, S. A. (2004). Malnutrition at age 3 years and externalizing behavior problems at ages 8, 11, and 17 years. American Journal of Psychiatry, 161, 20052013.CrossRefGoogle Scholar
Lopez, J. F., Akil, H., & Watson, S. J. (1999). Neural circuits mediating stress. Biological Psychiatry, 46, 14611471.CrossRefGoogle ScholarPubMed
Lorber, M. (2004). The psychophysiology of aggression, psychopathy, and conduct problems: A meta-analysis. Psychological Bulletin, 130, 531552.CrossRefGoogle ScholarPubMed
Mann, J. J. (1995). Violence and aggression. In Bloom, F. E. & Kupfer, D. J. (Eds.), Psychopharmacology: The fourth generation of progress (pp. 19191928). New York: Raven Press.Google Scholar
Matthys, W., Van Goozen, S. H., de Vries, H., Cohen-Kettenis, P. T., & Van Engeland, H. (1998). The dominance of behavioural activation over behavioural inhibition in conduct disordered boys with or without attention deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry, 39, 643651.CrossRefGoogle ScholarPubMed
Matthys, W., Van Goozen, S. H., Snoek, H., & Van Engeland, H. (2004). Response perseveration and sensitivity to reward and punishment in boys with oppositional defiant disorder. European Child and Adolescent Psychiatry, 13, 362364.CrossRefGoogle ScholarPubMed
McBurnett, K., Lahey, B. B., Frick, P. J., Risch, C., Loeber, R., Hart, E. L., et al. (1991). Anxiety, inhibition, and conduct disorder in children: II. Relation to salivary cortisol. Journal of the American Academy of Child & Adolescent Psychiatry, 30, 192196.CrossRefGoogle ScholarPubMed
McBurnett, K., Lahey, B. B., Rathouz, P. J., & Loeber, R. (2000). Low salivary cortisol and persistent aggression in boys referred for disruptive behavior. Archives of General Psychiatry, 57, 3843.CrossRefGoogle ScholarPubMed
McDougle, C. J., Stigler, K. A., & Posey, D. J. (2003). Treatment of aggression in children and adolescents with autism and conduct disorder. Journal of Clinical Psychiatry, 64, 1625.Google ScholarPubMed
Meaney, M. J., Diorio, J., Francis, D., Widdowson, J., Laplante, P., Caldji, C., et al. (1996). Early environmental regulation of forebrain glucocorticoid receptor gene expression: Implications for adrenocortical responses to stress. Developmental Neuroscience, 18, 4972.CrossRefGoogle ScholarPubMed
Meikle, A. W., Stringham, J. D., Woodward, M. G., & Bishop, D. T. (1988). Heritability of variation of plasma cortisol levels. Metabolism, 37, 514517.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Buckholtz, J. W., Kolachana, B., Hariri, A. R., Pezawas, L., Blasi, G., et al. (2006). Neural mechanisms of genetic risk for impulsivity and violence in humans. Proceedings of the New York Academy of Sciences, 103, 62696274.CrossRefGoogle ScholarPubMed
Miles, D. R., & Carey, G. (1997). Genetic and environmental architecture of human aggression. Journal of Personality and Social Psychology, 72, 207217.CrossRefGoogle ScholarPubMed
Milich, R., & Dodge, K. (1984). Social information processing in child psychiatric populations. Journal of Abnormal Child Psychology, 12, 471490.CrossRefGoogle ScholarPubMed
Moffitt, T. E. (2005). The new look of behavioral genetics in developmental psychopathology: Gene–environment interplay in antisocial behaviors. Psychological Bulletin, 131, 533554.CrossRefGoogle ScholarPubMed
Morand, C., Young, S. N., & Ervin, F. R. (1983). Clinical response of aggressive schizophrenics to oral tryptophan. Biological Psychiatry, 18, 575578.Google ScholarPubMed
Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., et al. (1996). A differential neural response in the human amygdala to fearful and happy facial expression. Nature, 383, 812815.CrossRefGoogle Scholar
Moskowitz, D. S., Pinard, G., Zuroff, D. C., Annable, L., & Young, S. N. (2001). The effect of tryptophan on social interaction in everyday life: A placebo-controlled study. Neuropsychopharmacology, 25, 277289.CrossRefGoogle ScholarPubMed
Neugebauer, R., Hoek, H. W., & Susser, E. (1999). Prenatal exposure to wartime famine and development of antisocial personality disorder in early adulthood. Journal of the American Medical Association, 282, 455462.CrossRefGoogle ScholarPubMed
Nilsson, K., Sjoberg, R., Damberg, M., Leppert, J., Ohrvik, J., Alm, P., et al. (2005). Role of monoamine oxidase A genotype and psychosocial factors in male criminal activity. Biological Psychiatry, 59, 121127.CrossRefGoogle ScholarPubMed
Odgers, C. L., Caspi, A., Broadbent, J. M., Dickson, N., Hancox, R. J., Harrington, H., et al. (2007). Prediction of differential adult health burden by conduct problem subtypes in males. Archives of General Psychiatry, 64, 476484.CrossRefGoogle ScholarPubMed
O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95102.CrossRefGoogle ScholarPubMed
Offord, D. R., & Bennett, K. J. (1994). Conduct disorder: Long-term outcomes and intervention effectiveness. Journal of the American Academy of Child & Adolescent Psychiatry, 33, 10691078.CrossRefGoogle ScholarPubMed
Offord, D. R., Boyle, M. H., Racine, Y. A., Fleming, J. E., Cadman, D. T., Blum, H. M., et al. (1992). Outcome, prognosis, and risk in a longitudinal follow-up study. Journal of the American Academy of Child & Adolescent Psychiatry, 31, 916923.CrossRefGoogle Scholar
O'Keane, V., Moloney, E., O'Neill, H., O'Connor, A., Smith, C., & Dinan, T. G. (1992). Blunted prolactin responses to d-fenfluramine in sociopathy. Evidence for subsensitivity of central serotonergic function. British Journal of Psychiatry, 160, 643646.CrossRefGoogle ScholarPubMed
Olds, D. L., Robinson, J. R., O'Brien, R., Luckey, D. W., Pettitt, L. M., Henderson, C. R., et al. (2002). Home visiting by paraprofessionals and by nurses: A randomized, controlled trial. Pediatrics, 110, 486496.CrossRefGoogle ScholarPubMed
Ortiz, J., & Raine, A. (2004). Heart rate level and antisocial behavior in children and adolescents: A meta-analysis. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 154162.CrossRefGoogle ScholarPubMed
Pajer, K., Gardner, W., Rubin, R. T., Perel, J., & Neal, S. (2001). Decreased cortisol levels in adolescent girls with conduct disorder. Archives of General Psychiatry, 58, 297302.CrossRefGoogle ScholarPubMed
Pariante, C. M., Papadopoulos, A. S., Poon, L., Checkley, S. A., English, J., Kerwin, R. W., et al. , (2002). A novel prednisolone suppression test for the hypothalamic–pituitary–adrenal axis. Biological Psychiatry, 51, 922930.CrossRefGoogle ScholarPubMed
Paulus, M. P., & Stein, M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60, 383387.CrossRefGoogle ScholarPubMed
Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., et al. (2005). 5-HTTLPR polymorphism impacts human cingulated-amygdala interactions: A genetic susceptibility mechanism for depression. Nature Neuroscience, 8, 828834.CrossRefGoogle ScholarPubMed
Pine, D. S., Coplan, J. D., Wasserman, G. A., Miller, L. S., Fried, J. E., Davies, M., et al. (1997). Neuroendocrine response to fenfluramine challenge in boys. Associations with aggressive behavior and adverse rearing. Archives of General Psychiatry, 54, 839846.CrossRefGoogle ScholarPubMed
Pliszka, S. R. (1999). The psychobiology of oppositional defiant disorder and conduct disorder. In Quay, H. C. & Hogan, A. E. (Eds.), Handbook of disruptive behavior disorders (pp. 371395). New York: Kluwer Academic/Plenum Press.CrossRefGoogle Scholar
Pliszka, S. R., Rogeness, G. A., & Medrano, M. A. (1988). DBH, MHPG, and MAO in children with depressive, anxiety, and conduct disorders: Relationship to diagnosis and symptom ratings. Psychiatry Research, 24, 3544.CrossRefGoogle Scholar
Pliszka, S. R., Rogeness, G. A., Renner, P., Sherman, J., & Broussard, T. (1988). Plasma neurochemistry in juvenile offenders. Journal of the American Academy of Child & Adolescent Psychiatry, 27, 588594.CrossRefGoogle ScholarPubMed
Quay, H. C. (1993). The psychobiology of undersocialized aggressive conduct disorder: A theoretical perspective. Development and Psychopathology, 5, 165180.CrossRefGoogle Scholar
Raine, A. (1993). The psychopathology of crime: Criminal behavior as a clinical disorder. San Diego, CA: Academic Press.CrossRefGoogle Scholar
Raine, A. (1996). Autonomic nervous system activity and violence. In Stoff, D. M. & Cairns, R. B. (Eds.), Aggression and violence. Genetic, neurobiological and biological perspectives (pp. 145168). Mahwah, NJ: Erlbaum.Google Scholar
Raine, A. (2002). Biosocial studies of antisocial and violent behavior in children and adults: A review. Journal of Abnormal Child Psychology, 30, 311326.CrossRefGoogle ScholarPubMed
Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2000). Reduced prefrontal gray matter and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57, 119127.CrossRefGoogle ScholarPubMed
Raine, A., Mellingen, K., Liu, J., Venables, P. H., & Mednick, S. A. (2003). Effects of environmental enrichment at ages 3–5 years on schizotypal personality and antisocial behavior at ages 17 and 23 years. American Journal of Psychiatry, 160, 16271635.CrossRefGoogle Scholar
Raine, A., & Venables, P. H. (1984). Electrodermal nonresponding, antisocial behavior, and schizoid tendencies in adolescents. Psychophysiology, 21, 424433.CrossRefGoogle ScholarPubMed
Raine, A., Venables, P. H., & Mednick, S. A. (1997). Low resting heart rate at age 3 years predisposes to aggression at age 11 years: Evidence from the Mauritius Child Health Project. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 14571464.CrossRefGoogle ScholarPubMed
Raine, A., Venables, P. H., & Williams, M. (1990). Relationships between central and autonomic measures of arousal at age 15 years and criminality at age 24 years. Archives of General Psychiatry, 47, 10031007.CrossRefGoogle ScholarPubMed
Raine, A., Venables, P. H., & Williams, M. (1995). High autonomic arousal and electrodermal orienting at age 15 years as protective factors against criminal behavior at age 29 years. American Journal of Psychiatry, 152, 15951600.Google ScholarPubMed
Rhee, S. H., & Waldman, I. D. (2002). Genetic and environmental influences on antisocial behavior: A meta-analysis of twin and adoption studies. Psychological Bulletin, 128, 490529CrossRefGoogle ScholarPubMed
Rinne, T., Westenberg, H. G., den Boer, J. A., & Van den Brink, W. (2000). Serotonergic blunting to meta-chlorophenylpiperazine (m-CPP) highly correlates with sustained childhood abuse in impulsive and autoaggressive female borderline patients. Biological Psychiatry, 47, 548556.CrossRefGoogle ScholarPubMed
Rogeness, G. A., Hernandez, J. M., Macedo, C. A., & Mitchell, E. L. (1982). Biochemical differences in children with conduct disorder socialized and undersocialized. American Journal of Psychiatry, 139, 307311.Google ScholarPubMed
Rogeness, G. A., Javors, M. A., Maas, J. W., & Macedo, C. A. (1990). Catecholamines and diagnoses in children. Journal of the American Academy of Child & Adolescent Psychiatry, 29, 234241.CrossRefGoogle ScholarPubMed
Rogeness, G. A., Javors, M. A., Maas, J. W., Macedo, C. A., & Fischer, C. (1987). Plasma dopamine-beta-hydroxylase, HVA, MHPG, and conduct disorder in emotionally disturbed boys. Biological Psychiatry, 22, 11581162.CrossRefGoogle ScholarPubMed
Rogeness, G. A., Javors, M. A., & Pliszka, S. R. (1992). Neurochemistry and child and adolescent psychiatry. Journal of the American Academy of Child & Adolescent Psychiatry, 31, 765781.CrossRefGoogle ScholarPubMed
Rosenblum, L.A., Coplan, J. D., Friedman, S., Bassoff, T., Gorman, J. M., & Andrews, M. W. (1994). Adverse early experiences affect noradrenergic and serotonergic functioning in adult primates. Biological Psychiatry, 35, 221227.CrossRefGoogle ScholarPubMed
Roy, A., Adinoff, B., & Linnoila, M. (1988). Acting out hostility in normal volunteers: Negative correlation with levels of 5-HIAA in cerebrospinal fluid. Psychiatry Research, 24, 187194.CrossRefGoogle ScholarPubMed
Rutter, M., & Silberg, J. (2002). Gene–environment interplay in relation to emotional and behavioral disturbance. Annual Review of Psychology, 53, 463490.CrossRefGoogle ScholarPubMed
Salzman, C., Wolfson, A. N., Schatzberg, A., Looper, J., Henke, R., Albanese, M., et al. (1995). Effect of fluoxetine on anger in symptomatic volunteers with borderline personality disorder. Journal of Clinical Psychopharmacology, 15, 2329.CrossRefGoogle ScholarPubMed
Sanchez, M. M., Aguado, F., Sanchez-Toscano, F., & Saphier, D. (1998). Neuroendocrine and immunocytochemical demonstrations of decreased hypothalamo–pituitary–adrenal axis responsiveness to restraint stress after long-term social isolation. Endocrinology, 139, 579587.CrossRefGoogle ScholarPubMed
Sanchez, M. M., Ladd, C. O., & Plotsky, P. M. (2001). Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Development and Psychopathology, 13, 419449.CrossRefGoogle ScholarPubMed
Saudou, F., Amara, D. A., Dierich, A., LeMeur, M., Ramboz, S., Segu, L., et al. (1994). Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science, 265, 18751878.CrossRefGoogle Scholar
Scarpa, A., Fikretoglu, D., & Luscher, K. (2000). Community violence exposure in a young adult sample: II. Psychophysiology and aggressive behavior. Journal of Community Psychology, 28, 417425.3.0.CO;2-L>CrossRefGoogle Scholar
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 127.CrossRefGoogle ScholarPubMed
Schulz, K. P., Halperin, J. M., Newcorn, J. H., Sharma, V., & Gabriel, S. (1997). Plasma cortisol and aggression in boys with ADHD. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 605609.CrossRefGoogle ScholarPubMed
Schutter, D. J. L. G., & van Honk, J. (2006). Increased positive emotional memory after repetitive transcranial magnetic stimulation over the orbitofrontal cortex. Journal of Psychiatry and Neuroscience, 31, 101104.Google ScholarPubMed
Scott, S., Knapp, M., Henderson, J., & Maughan, B. (2001). Financial cost of social exclusion: Follow up study of antisocial children into adulthood. British Medical Journal, 323, 15.CrossRefGoogle ScholarPubMed
Sher, L. (2006). Combined dexamethasone suppression–corticotropin-releasing hormone stimulation tests in studies of depression, alcoholism, and suicidal behavior. The Scientific World Journal, 6, 13981404.CrossRefGoogle ScholarPubMed
Shih, J. C., Chen, K., & Ridd, M. J. (1999). Monoamine oxidase: From genes to behavior. Annual Review of Neuroscience, 22, 197217.CrossRefGoogle Scholar
Shoal, G. D., Giancola, P. R., & Kirillova, G. P. (2003). Salivary cortisol, personality, and aggressive behavior in adolescent boys: A 5-year longitudinal study. Journal of the American Academy of Child & Adolescent Psychiatry, 42, 11011107.CrossRefGoogle ScholarPubMed
Siever, L. J., Kahn, R. S., Lawlor, B. A., Trestman, R. L., Lawrence, T. L., & Coccaro, E. F. (1991). Critical issues in defining the role of serotonin in psychiatric disorders. Pharmacological Reviews, 43, 509525.Google ScholarPubMed
Silberg, J. L., Parr, T., Neale, M. C., Rutter, M., Angold, A., & Eaves, L. J. (2003). Maternal smoking during pregnancy and risk to boys' conduct disturbance: An examination of the causal hypothesis. Biological Psychiatry, 53, 130135.CrossRefGoogle ScholarPubMed
Snoek, H. (2002). Psychoneuroendocrinological aspects of aggressive behavior in children. Doctoral dissertation, University of Utrecht.Google Scholar
Snoek, H., Van Goozen, S. H. M., Matthys, W., Buitelaar, J. K., & Van Engeland, H. (2004). Stress responsivity in children with externalizing behavior disorders. Development and Psychopathology, 16, 389406.CrossRefGoogle ScholarPubMed
Snoek, H., van Goozen, S. H. M., Matthys, W., Sigling, H. O., Koppeschaar, H. P. F., Westenberg, H. G. M., et al. (2002). Serotonergic functioning in children with oppositional defiant disorder: A sumitriptan challenge study. Biological Psychiatry, 51, 319325.CrossRefGoogle Scholar
Spoont, M. R. (1992). Modulatory role of serotonin in neural information processing: Implications for human psychopathology. Psychological Bulletin, 112, 330350.CrossRefGoogle ScholarPubMed
Stein, M. B., Simmons, A. N., Feinstein, J. S., & Paulus, M. B. (2007). Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. American Journal of Psychiatry, 164, 318327.CrossRefGoogle ScholarPubMed
Sterzer, P., Stadler, C., Krebs, A., Kleinschmidt, A., & Poustka, F. (2005). Abnormal neural responses to emotional visual stimuli in adolescents with conduct disorder. Biological Psychiatry, 57, 715.CrossRefGoogle ScholarPubMed
Sterzer, P., Stadler, C., Poustka, F., & Kleinschmidt, A. (2007). A structural neural deficit in adolescents with conduct disorder and its association with lack of empathy. NeuroImage, 37, 335342.CrossRefGoogle ScholarPubMed
Stoff, D. M., & Vitiello, B. (1996). Role of serotonin in aggression of children and adolescents: Biochemical and pharmacological studies. In Stoff, D. M. & Cairns, R. B. (Eds.), Aggression and violence: Genetic, neurobiological and biological perspectives (pp. 6785). Mahwah, NJ: Erlbaum.Google Scholar
Stroud, L. R., Salovey, P., & Epel, E. S. (2002). Sex differences in stress responses: Social rejection versus achievement stress. Biological Psychiatry, 52, 318327.CrossRefGoogle ScholarPubMed
Suomi, S. J. (2003). Gene–environment interactions and the neurobiology of social conflict. Annual New York Academy of Science, 1008, 132139.CrossRefGoogle ScholarPubMed
Tackett, J. L., Krueger, R. F., Iacono, W. G., & McGue, M. (2005). Symptom-based subfactors of DSM-defined conduct disorder: Evidence for etiologic distinctions. Journal of Abnormal Psychology, 114, 483487.CrossRefGoogle ScholarPubMed
Thapar, A., Fowler, T. , Rice, F., Scourfield, J., van den Bree, M., Thomas, H., et al. (2003). Maternal smoking during pregnancy and attention deficit hyperactivity disorder symptoms in offspring. American Journal of Psychiatry, 160, 19851989.CrossRefGoogle ScholarPubMed
Tuinier, S., VerhoevenW. M., A. W. M., A., & Van Praag, H. M. (1995). Cerebrospinal fluid 5-hydroxyindoleacetic acid and aggression: A critical reappraisal of the clinical data. International Clinical Psychopharmacology, 10, 147156.CrossRefGoogle ScholarPubMed
Uhart, M., Chong, R. Y., Oswald, L., Lin, P., & Wand, G. S. (2006). Gender differences in hypothalamic–pituitary–adrenal (HPA) axis reactivity. Psychoneuroendocrinology, 31, 642652.CrossRefGoogle ScholarPubMed
Unis, A. S., Cook, E. H., Vincent, J. G., Gjerde, D. K., Perry, B. D., Mason, C., et al. (1997). Platelet serotonin measures in adolescents with conduct disorder. Biological Psychiatry, 42, 553559.CrossRefGoogle ScholarPubMed
Van Bokhoven, I., Matthys, W., Van Goozen, S. H. M., & Van Engeland, H. (2005). Prediction of adolescent outcome in children with disruptive behaviour disorders: A study of neurobiological, psychological and family factors. European Child and Adolescent Psychiatry, 14, 153163.CrossRefGoogle ScholarPubMed
Van Bokhoven, I., Van Goozen, S. H. M., van Engeland, H., Schaal, B., Arseneault, L., Séguin, J. R., et al. (2005). Salivary cortisol and aggression in a population-based longitudinal study of adolescent males. Journal of Neural Transmission, 112, 1083–096.CrossRefGoogle Scholar
Van de Wiel, N. M. H., Van Goozen, S. H. M., Matthys, W., Snoek, H., & Van Engeland, H. (2004). Cortisol and treatment effect in children with disruptive behavior disorders: A preliminary study. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 10111018.CrossRefGoogle ScholarPubMed
Van Goozen, S. H. M., Fairchild, G., Snoek, H., & Harold, G. T. (2007). The evidence for a neurobiological model of childhood antisocial behavior. Psychological Bulletin, 133, 149182.CrossRefGoogle ScholarPubMed
Van Goozen, S. H. M., Matthys, W., Cohen-Kettenis, P. T., Buitelaar, J. K., & Van Engeland, H. (2000). Hypothalamic–pituitary–adrenal axis and autonomic nervous system activity in disruptive children and matched controls. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 14381445.CrossRefGoogle ScholarPubMed
Van Goozen, S. H. M., Matthys, W., Cohen-Kettenis, P. T., Gispen-de Wied, C., Wiegant, V. M., & Van Engeland, H. (1998). Salivary cortisol and cardiovascular activity during stress in oppositional-defiant disorder boys and normal controls. Biological Psychiatry, 43, 531539.CrossRefGoogle ScholarPubMed
Van Goozen, S. H. M., Matthys, W., Cohen-Kettenis, P. T., Westenberg, H., & Van Engeland, H. (1999). Plasma monoamine metabolites and aggression: Two studies of normal and oppositional defiant disorder children. European Neuropsychopharmacology, 9, 141147.CrossRefGoogle ScholarPubMed
Van Goozen, S. H. M., Snoek, H., Matthys, W., Van Rossum, I., & Van Engeland, H. (2004). Evidence of fearlessness in behaviourally disordered children: A study on startle reflex modulation. Journal of Child Psychology and Psychiatry, 45, 884892.CrossRefGoogle Scholar
Van Oers, H. J. J., de Kloet, E. R., & Levine, S. (1998). Early vs. late maternal deprivation differentially alters the endocrine and hypothalamic responses to stress. Developmental Brain Research, 111, 245252.CrossRefGoogle ScholarPubMed
Vanyukov, M. M., Moss, H. B., Plail, J. A., Blackson, T., Mezzich, A. C., & Tarter, R. E. (1993). Antisocial symptoms in preadolescent boys and in their parents: Associations with cortisol. Psychiatry Research, 46, 917.CrossRefGoogle ScholarPubMed
Vasquez, D. M. (1998). Stress and the developing limbic–hypothalamic–pituitary–adrenal axis. Psychoneuroendocrinology, 23, 663700.CrossRefGoogle Scholar
Viding, E., Blair, R. J., Moffitt, T. E., & Plomin, R. (2005). Evidence for substantial genetic risk for psychopathy in 7-year olds. Journal of Child Psychology and Psychiatry, 46, 592597.CrossRefGoogle ScholarPubMed
Virkkunen, M. (1985). Urinary free cortisol secretion in habitually violent offenders. Acta Psychiatrica Scandinavica, 72, 4044.CrossRefGoogle ScholarPubMed
Virkkunen, M., & Linnoila, M. (1993). Brain serotonin, type II alcoholism and impulsive violence. Journal of Studies on Alcohol, 11(Suppl.), 163169.Google ScholarPubMed
Virkkunen, M., Nuutila, A., Goodwin, F. K., & Linnoila, M. (1987). Cerebrospinal fluid monoamine metabolites in male arsonists. Archives of General Psychiatry, 44, 241247.CrossRefGoogle ScholarPubMed
Virkkunen, M., Rawlings, R., Tokola, R., Poland, R. E., Guidotti, A., Nemeroff, C., et al. (1994). CSF biochemistries, glucose metabolism, and diurnal activity rhythms in alcoholic, violent offenders, fire setters and healthy volunteers. Archives of General Psychiatry, 51, 2833.CrossRefGoogle ScholarPubMed
Walsh, V., & Rushworth, M. (1999). A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia, 37, 125135.Google ScholarPubMed
Wang, J., Korczykowski, M., Rao, H., Fan, Y., Pluta, J., Gur, R. C., et al. (2007). Gender difference in neural response to psychological stress. Social Cognitive and Affective Neuroscience, 2, 227239.CrossRefGoogle ScholarPubMed
Wasserman, E. M., & Lisanby, S. H. (2001). Therapeutic application of repetitive transcranial magnetic stimulation: A review. Clinical Neurophysiology, 112, 13671377.CrossRefGoogle Scholar
Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee, M. B., & Jenike, M. A. (1998). Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. Journal of Neuroscience, 18, 411418.CrossRefGoogle ScholarPubMed
Zoccolillo, M., Pickles, A., Quinton, D., & Rutter, M. (1992). The outcome of childhood conduct disorder: Implications for defining adult personality disorder and conduct disorder. Psychological Medicine, 22, 971986.CrossRefGoogle ScholarPubMed
Zoccolillo, M., & Rogers, K. (1991). Characteristics and outcome of hospitalized adolescent girls with conduct disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 30, 973981.CrossRefGoogle ScholarPubMed
Zubieta, J. K., & Alessi, N. E. (1992). Acute and chronic administration of trazodone in the treatment of disruptive behavior disorders in children. Journal of Clinical Psychopharmacology, 12, 346351.CrossRefGoogle ScholarPubMed
Zuckerman, M. (1979). Sensation seeking: Beyond the optimum level of arousal. Hillsdale, NJ: Erlbaum.Google Scholar