Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T22:48:44.789Z Has data issue: false hasContentIssue false

History of child maltreatment and telomere length in immune cell subsets: Associations with stress- and attachment-related hormones

Published online by Cambridge University Press:  14 August 2017

Christina Boeck*
Affiliation:
Ulm University
Sabrina Krause
Affiliation:
University Hospital Ulm
Alexander Karabatsiakis
Affiliation:
Ulm University
Katharina Schury
Affiliation:
Ulm University
Harald Gündel
Affiliation:
University Hospital Ulm
Christiane Waller
Affiliation:
University Hospital Ulm
Iris-Tatjana Kolassa
Affiliation:
Ulm University
*
Address correspondence and reprint requests to: Christina Boeck, Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany. E-Mail: [email protected].

Abstract

Experiencing maltreatment during childhood can have long-lasting consequences for both mental and physical health. Immune cell telomere length (TL) shortening might be one link between child maltreatment (CM) experiences and adverse health outcomes later in life. While the stress hormone cortisol has been associated with TL attrition, the attachment-related hormone oxytocin may promote resilience. In 15 mothers with and 15 age- and body mass index-matched mothers without CM, we assessed TL in peripheral blood mononuclear cells and selected immune cell subsets (monocytes, naive, and memory cytotoxic T cells) by quantitative fluorescence in situ hybridization, as well as peripheral cortisol and oxytocin levels. Memory cytotoxic T cells showed significantly shorter TL in association with CM, whereas TL in monocytes and naive cytotoxic T cells did not significantly differ between the two groups. Across both groups, cortisol was negatively associated with TL, while oxytocin was positively associated with TL in memory cytotoxic T cells. These results indicate that long-lived memory cytotoxic T cells are most affected by the increased biological stress state associated with CM. Keeping in mind the correlational and preliminary nature of the results, the data suggest that cortisol may have a damaging and oxytocin a protective function on TL.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We thank Traudl Hiller and Dr. Stephanie Dannenmann for technical assistance in the processing of biological samples. As a pilot study for a larger Federal Ministry of Education and Research funded project, this work was funded by university resources of Iris-Tatjana Kolassa. Christina Boeck received a scholarship of the Carl Zeiss Foundation. Katharina Schury received a scholarship of the German Academic Scholarship Foundation (Studienstiftung des Deutschen Volkes).

References

Aubert, G., & Lansdorp, P. M. (2008). Telomeres and aging. Physiological Reviews, 88, 557579. doi:10.1152/physrev.00026.2007Google Scholar
Bader, K., Hänny, C., Schäfer, V., Neuckel, A., & Kuhl, C. (2009). Childhood Trauma Questionnaire—Psychometrische Eigenschaften einer Deutschsprachigen Version. Zeitschrift für Klinische Psychologie und Psychotherapie, 38, 223230.10.1026/1616-3443.38.4.223Google Scholar
Bernstein, D. P., & Fink, L. (1998). Childhood Trauma Questionnaire: A retrospective self-report: Manual. San Antonio, TX: Psychological Corporation.Google Scholar
Bloch, M., Daly, R. C., & Rubinow, D. R. (2003). Endocrine factors in the etiology of postpartum depression. Comprehensive Psychiatry, 44, 234246. doi:10.1016/S0010-440X(03)00034-8Google Scholar
Boeck, C., Koenig, A. M., Schury, K., Geiger, M. L., Karabatsiakis, A., Wilker, S., … Kolassa, I. T. (2016). Inflammation in adult women with a history of child maltreatment: The involvement of mitochondrial alterations and oxidative stress. Mitochondrion, 30, 197207. doi:10.1016/j.mito.2016.08.006Google Scholar
Cai, N., Chang, S., Li, Y., Li, Q., Hu, J., Liang, J., … Flint, J. (2015). Molecular signatures of major depression. Current Biology, 25, 11461156. doi:10.1016/j.cub.2015.03.008Google Scholar
Calado, R. T., & Young, N. S. (2009). Telomere diseases. New England Journal of Medicine, 361, 23532365. doi:10.1056/NEJMra0903373Google Scholar
Carpenter, L. L., Carvalho, J. P., Tyrka, A. R., Wier, L. M., Mello, A. F., Mello, M. F., … Price, L. H. (2007). Decreased adrenocorticotropic hormone and cortisol responses to stress in healthy adults reporting significant childhood maltreatment. Biological Psychiatry, 62, 10801087. doi:10.1016/j.biopsych.2007.05.002Google Scholar
Chan, S. R. W. L., & Blackburn, E. H. (2004). Telomeres and telomerase. Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 109121. doi:10.1098/rstb.2003.1370Google Scholar
Chen, F. S., Kumsta, R., von Dawans, B., Monakhov, M., Ebstein, R. P., & Heinrichs, M. (2011). Common oxytocin receptor gene (OXTR) polymorphism and social support interact to reduce stress in humans. Proceedings of the National Academy of Sciences, 108, 1993719942. doi:10.1073/pnas.1113079108Google Scholar
Choi, J., Fauce, S. R., & Effros, R. B. (2008). Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain, Behavior, and Immunity, 22, 600605. doi:10.1016/j.bbi.2007.12.004Google Scholar
Christian, L., & Porter, K. (2014). Longitudinal changes in serum proinflammatory markers across pregnancy and postpartum: Effects of maternal body mass index. Cytokine, 70, 134140. doi:10.1016/j.cyto.2014.06.018Google Scholar
Cicchetti, D. (2013). Annual research review: Resilient functioning in maltreated children—Past, present, and future perspectives. Journal of Child Psychology and Psychiatry, 54, 402422. doi:10.1111/j.1469-7610.2012.02608.xGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (2001). The impact of child maltreatment and psychopathology on neuroendocrine functioning. Development and Psychopathology, 13, 783804.10.1017/S0954579401004035Google Scholar
Cicchetti, D., & Rogosch, F. A. (2012). Gene by environment interaction and resilience: Effects of child maltreatment and serotonin, corticotropin releasing hormone, dopamine, and oxytocin genes. Development and Psychopathology, 24, 411427. doi:10.1017/S0954579412000077Google Scholar
Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24, 385396.10.2307/2136404Google Scholar
Costantini, D., Marasco, V., & Møller, A. P. (2011). A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. Journal of Comparative Physiology B, 181, 447456. doi:10.1007/s00360-011-0566-2Google Scholar
Ditzen, B., Schaer, M., Gabriel, B., Bodenmann, G., Ehlert, U., & Heinrichs, M. (2009). Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biological Psychiatry, 65, 728731. doi:10.1016/j.biopsych.2008.10.011Google Scholar
Drury, S. S. (2015). Unraveling the meaning of telomeres for child psychiatry. Journal of the American Academy of Child & Adolescent Psychiatry, 54, 539540. doi:10.1016/j.jaac.2015.04.009Google Scholar
Du, J., Wang, Y., Hunter, R., Wei, Y., Blumenthal, R., Falke, C., … Manji, H. K. (2009). Dynamic regulation of mitochondrial function by glucocorticoids. Proceedings of the National Academy of Sciences, 106, 35433548. doi:10.1073/pnas.0812671106Google Scholar
Epel, E. S., Lin, J., Wilhelm, F. H., Wolkowitz, O. M., Cawthon, R., Adler, N. E., … Blackburn, E. H. (2006). Cell aging in relation to stress arousal and cardiovascular disease risk factors. Psychoneuroendocrinology, 31, 277287. doi:10.1016/j.psyneuen.2005.08.011Google Scholar
Feldman, R., Weller, A., Zagoory-Sharon, O., & Levine, A. (2007). Evidence for a neuroendocrinological foundation of human affiliation: Plasma oxytocin levels across pregnancy and the postpartum period predict mother-infant bonding. Psychological Science, 18, 965970. doi:10.1111/j.1467-9280.2007.02010.xGoogle Scholar
Gonzalez, A., Jenkins, J. M., Steiner, M., & Fleming, A. S. (2009). The relation between early life adversity, cortisol awakening response and diurnal salivary cortisol levels in postpartum women. Psychoneuroendocrinology, 34, 7686. doi:10.1016/j.psyneuen.2008.08.012Google Scholar
Gotlib, I., LeMoult, J., Colich, N., Foland-Ross, L., Hallmayer, J., Joormann, J., … Wolkowitz, O. (2015). Telomere length and cortisol reactivity in children of depressed mothers. Molecular Psychiatry, 20, 615620. doi:10.1038/mp.2014.119Google Scholar
Groer, M. E., Jevitt, C., & Ji, M. (2015). Immune changes and dysphoric moods across the postpartum. American Journal of Reproductive Immunology, 73, 193198. doi:10.1111/aji.12322Google Scholar
Hamilton, L., Micol-Foster, V., & Muzik, M. (2015). Childhood maltreatment trauma: Relevance for adult physical and emotional health. A review. Trauma Cases and Reviews, 1, 003.Google Scholar
Harley, C. B., Futcher, A. B., & Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345, 458460. doi:10.1038/345458a0Google Scholar
Haussmann, M. F., Longenecker, A. S., Marchetto, N. M., Juliano, S. A., & Bowden, R. M. (2012). Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length. Proceedings Biological Sciences of the Royal Society, 279, 14471456. doi:10.1098/rspb.2011.1913Google Scholar
Heim, C., Newport, D. J., Heit, S., Graham, Y. P., Wilcox, M., Bonsall, R., … Nemeroff, C. B. (2000). Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. Journal of the American Medical Association, 284, 592597. doi:10.1001/jama.284.5.592Google Scholar
Heim, C., Young, L., Newport, D. J., Mletzko, T., Miller, A., & Nemeroff, C. (2009). Lower CSF oxytocin concentrations in women with a history of childhood abuse. Molecular Psychiatry, 14, 954958. doi:10.1038/mp.2008.112Google Scholar
Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54, 13891398. doi:10.1016/S0006-3223(03)00465-7Google Scholar
Herndler-Brandstetter, D. (2013). How aging affects T lymphocyte-mediated immunity. Frontiers in Immunology, 4, 296. doi:10.3389/fimmu.2013.00296Google Scholar
Herrmann, C., Buss, U., & Snaith, R. (1995). Manual zur HADS-D [Hospital Anxiety and Depression Scale—Dutch version]. Bern: Hans Huber.Google Scholar
Hodes, R. J., Hathcock, K. S., & Weng, N. P. (2002). Telomeres in T and B cells. Nature Reviews Immunology, 2, 699706. doi:10.1038/nri890Google Scholar
Hopkins, J., & Campbell, S. (2008). Development and validation of a scale to assess social support in the postpartum period. Archives of Women's Mental Health, 11, 5765. doi:10.1007/s00737-008-0212-5Google Scholar
Hostinar, C. E., Sullivan, R. M., & Gunnar, M. R. (2014). Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: A review of animal models and human studies across development. Psychological Bulletin, 140, 256282. doi:10.1037/a0032671Google Scholar
Iffland, B., Brähler, E., Neuner, F., Häuser, W., & Glaesmer, H. (2013). Frequency of child maltreatment in a representative sample of the German population. BMC Public Health, 13, 1. doi:10.1186/1471-2458-13-980Google Scholar
Insel, T. R., & Young, L. J. (2001). The neurobiology of attachment. Nature Reviews Neuroscience, 2, 129136. doi:10.1038/35053579Google Scholar
İşeri, S. Ö., Şener, G., Sağlam, B., Gedik, N., Ercan, F., & Yeğen, B. Ç. (2005). Oxytocin ameliorates oxidative colonic inflammation by a neutrophil-dependent mechanism. Peptides, 26, 483491. doi:10.1016/j.peptides.2004.10.005Google Scholar
Iwama, H., Ohyashiki, K., Ohyashiki, J. H., Hayashi, S., Yahata, N., Ando, K., … Shay, J. W. (1998). Telomeric length and telomerase activity vary with age in peripheral blood cells obtained from normal individuals. Human Genetics, 102, 397402. doi:10.1007/s004390050711Google Scholar
Jacobs, T. L., Epel, E. S., Lin, J., Blackburn, E. H., Wolkowitz, O. M., Bridwell, D. A., … Sharon, C. D. (2011). Intensive meditation training, immune cell telomerase activity, and psychological mediators. Psychoneuroendocrinology, 36, 664681. doi:10.1016/j.psyneuen.2010.09.010Google Scholar
Jung, C., Ho, J. T., Torpy, D. J., Rogers, A., Doogue, M., Lewis, J. G., … Inder, W. J. (2011). A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. Journal of Clinical Endocrinology & Metabolism, 96, 15331540. doi:10.1210/jc.2010-2395Google Scholar
Kagerbauer, S., Martin, J., Schuster, T., Blobner, M., Kochs, E., & Landgraf, R. (2013). Plasma oxytocin and vasopressin do not predict neuropeptide concentrations in human cerebrospinal fluid. Journal of Neuroendocrinology, 25, 668673. doi:10.1111/jne.12038Google Scholar
Karabatsiakis, A., Kolassa, I., Kolassa, S., Rudolph, K. L., & Dietrich, D. E. (2014). Telomere shortening in leukocyte subpopulations in depression. BMC Psychiatry, 14, 192. doi:10.1186/1471-244X-14-192Google Scholar
Kieffer, T. E. C., Faas, M. M., Scherjon, S. A., & Prins, J. R. (2017). Pregnancy persistently affects memory T cell populations. Journal of Reproductive Immunology, 119, 18. doi:10.1016/j.jri.2016.11.004Google Scholar
Kim, J., & Cicchetti, D. (2010). Longitudinal pathways linking child maltreatment, emotion regulation, peer relations, and psychopathology. Journal of Child Psychology and Psychiatry, 51, 706716. doi:10.1111/j.1469-7610.2009.02202.xGoogle Scholar
Klebanoff, C. A., Gattinoni, L., & Restifo, N. P. (2006). CD8 T cell memory in tumor immunology and immunotherapy. Immunological Reviews, 211, 214224. doi:10.1111/j.0105-2896.2006.00391.xGoogle Scholar
Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., … Binder, E. B. (2013). Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nature Neuroscience, 16, 3341. doi:10.1038/nn.3275Google Scholar
Koenig, A. M., Schury, K., Reister, F., Köhler-Dauner, F., Schauer, M., Ruf-Leuschner, M., … Kolassa, I. T. (2016). Psychosocial risk factors for child welfare among postpartum mothers with a history of childhood maltreatment and neglect. Geburtshilfe und Frauenheilkunde, 76, 261267.Google Scholar
Krause, S., Pokorny, D., Schury, K., Doyen-Waldecker, C., Hulbert, A. L., Karabatsiakis, A., … Buchheim, A. (2016). Effects of the adult attachment projective picture system on oxytocin and cortisol blood levels in mothers. Frontiers in Human Neuroscience, 10, 627. doi:10.3389/fnhum.2016.00627Google Scholar
Kuhlmann, K. R., Chiang, J. J., Horn, S., & Bower, J. E. (2017). Developmental psychoneuroendocrine and psychoneuroimmune pathways from childhood adversity to disease. Neuroscience & Biobehavioral Reviews, 80, 166184. doi:10.1016/j.neubiorev.2017.05.020Google Scholar
Landgraf, R., & Neumann, I. D. (2004). Vasopressin and oxytocin release within the brain: A dynamic concept of multiple and variable modes of neuropeptide communication. Frontiers in Neuroendocrinology, 25, 150176. doi:10.1016/j.yfrne.2004.05.001Google Scholar
Levine, A., Zagoory-Sharon, O., Feldman, R., & Weller, A. (2007). Oxytocin during pregnancy and early postpartum: Individual patterns and maternal-fetal attachment. Peptides, 28, 11621169. doi:10.1016/j.peptides.2007.04.016Google Scholar
Lin, J., Cheon, J., Brown, R., Coccia, M., Puterman, E., Aschbacher, K., … Blackburn, E. H. (2016). Systematic and cell-type specific telomere length changes in subsets of lymphocytes. Journal of Immunology Research, 2016, 5371050. doi:10.1155/2016/5371050Google Scholar
Lin, J., Epel, E., Cheon, J., Kroenke, C., Sinclair, E., Bigos, M., … Blackburn, E. (2010). Analyses and comparisons of telomerase activity and telomere length in human T and B cells: Insights for epidemiology of telomere maintenance. Journal of Immunological Methods, 352, 7180. doi:10.1016/j.jim.2009.09.012Google Scholar
Lin, Y., Damjanovic, A., Metter, E. J., Nguyen, H., Truong, T., Najarro, K., … Weng, N. P. (2015). Age-associated telomere attrition of lymphocytes in vivo is co-ordinated with changes in telomerase activity, composition of lymphocyte subsets and health conditions. Clinical Science (London), 128, 367377. doi:10.1042/CS20140481Google Scholar
Linkus, B., Wiesner, D., Messner, M., Karabatsiakis, A., Scheffold, A., Rudolph, K. L., … Danzer, K. M. (2016). Telomere shortening leads to earlier age of onset in ALS mice. Aging, 8, 382393. doi:10.18632/aging.100904Google Scholar
Mantella, R. C., Vollmer, R. R., Rinaman, L., Li, X., & Amico, J. A. (2004). Enhanced corticosterone concentrations and attenuated fos expression in the medial amygdala of female oxytocin knockout mice exposed to psychogenic stress. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 287, R1494R1504. doi:10.1152/ajpregu.00387.2004Google Scholar
Martens, H., Kecha, O., Charlet-Renard, C., Defresne, M., & Geenen, V. (1998). Neurohypophysial peptides stimulate the phosphorylation of pre-T cell focal adhesion kinases. Neuroendocrinology, 67, 282289. doi:10.1159/000054324Google Scholar
Mason, S. M., Prescott, J., Tworoger, S. S., DeVivo, I., & Rich-Edwards, J. W. (2015). Childhood physical and sexual abuse history and leukocyte telomere length among women in middle adulthood. PLOS ONE, 10, e0124493. doi:10.1371/journal.pone.0124493Google Scholar
McIntosh, L. J., & Sapolsky, R. M. (1996). Glucocorticoids may enhance oxygen radical-mediated neurotoxicity. Neurotoxicology, 17, 873.Google Scholar
Mizuki, R., & Fujiwara, T. (2015). Association of oxytocin level and less severe forms of childhood maltreatment history among healthy Japanese adults involved with child care. Frontiers in Behavioral Neuroscience, 9, 138. doi:10.3389/fnbeh.2015.00138Google Scholar
Morath, J., Gola, H., Sommershof, A., Hamuni, G., Kolassa, S., Catani, C., … Kolassa, I. T. (2014). The effect of trauma-focused therapy on the altered T cell distribution in individuals with PTSD: Evidence from a randomized controlled trial. Journal of Psychiatric Research, 54, 110. doi:10.1016/j.jpsychires.2014.03.016Google Scholar
Nation, D. A., Szeto, A., Mendez, A. J., Brooks, L. G., Zaias, J., Herderick, E. E., … McCabe, P. M. (2010). Oxytocin attenuates atherosclerosis and adipose tissue inflammation in socially isolated ApoE-/- mice. Psychosomatic Medicine, 72, 376382. doi:10.1097/psy.0b013e3181d74c48Google Scholar
Neumann, I. D., Krömer, S. A., Toschi, N., & Ebner, K. (2000). Brain oxytocin inhibits the (re)activity of the hypothalamo–pituitary–adrenal axis in male rats: Involvement of hypothalamic and limbic brain regions. Regulatory Peptides, 96, 3138. doi:10.1016/S0167-0115(00)00197-XGoogle Scholar
Olff, M., Frijling, J. L., Kubzansky, L. D., Bradley, B., Ellenbogen, M. A., Cardoso, C., … van Zuiden, M. (2013). The role of oxytocin in social bonding, stress regulation and mental health: An update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology, 38, 18831894. doi:10.1016/j.psyneuen.2013.06.019Google Scholar
Oliveira-Pelegrin, G. R., Saia, R. S., Carnio, E. C., & Rocha, M. J. (2013). Oxytocin affects nitric oxide and cytokine production by sepsis-sensitized macrophages. Neuroimmunomodulation, 20, 6571. doi:10.1016/j.arr.2015.12.006Google Scholar
Opacka-Juffry, J., & Mohiyeddini, C. (2011). Experiences of stress in childhood negatively correlates with plasma oxytocin concentration in adult men. Stress, 15, 110. doi:10.3109/10253890.2011.560309Google Scholar
Palm, M., Axelsson, O., Wernroth, L., Larsson, A., & Basu, S. (2013). Involvement of inflammation in normal pregnancy. Acta Obstetricia et Gynecologica Scandinavica, 92, 601605. doi:10.1111/aogs.12093Google Scholar
Palma-Gudiel, H., Córdova-Palomera, A., Leza, J. C., & Fañanás, L. (2015). Glucocorticoid receptor gene (NR3C1) methylation processes as mediators of early adversity in stress-related disorders causality: A critical review. Neuroscience & Biobehavioral Reviews, 55, 520535. doi:10.1016/j.neubiorev.2015.05.016Google Scholar
Patel, R., McIntosh, L., McLaughlin, J., Brooke, S., Nimon, V., & Sapolsky, R. (2002). Disruptive effects of glucocorticoids on glutathione peroxidase biochemistry in hippocampal cultures. Journal of Neurochemistry, 82, 118125. doi:10.1046/j.1471-4159.2002.00948.xGoogle Scholar
Pierrehumbert, B., Torrisi, R., Laufer, D., Halfon, O., Ansermet, F., & Beck Popovic, M. (2010). Oxytocin response to an experimental psychosocial challenge in adults exposed to traumatic experiences during childhood or adolescence. Neuroscience, 166, 168177. doi:10.1016/j.neuroscience.2009.12.016Google Scholar
Poon, S., & Lansdorp, P. M. (2001). Measurements of telomere length on individual chromosomes by image cytometry. Methods Cell Biology, 64, 6996. doi:10.1016/S0091-679X(01)64007-XGoogle Scholar
Price, L. H., Kao, H. T., Burgers, D. E., Carpenter, L. L., & Tyrka, A. R. (2013). Telomeres and early-life stress: An overview. Biological Psychiatry, 73, 1523. doi:10.1016/j.biopsych.2012.06.025Google Scholar
Puterman, E., & Epel, E. (2012). An intricate dance: Life experience, multisystem resiliency, and rate of telomere decline throughout the lifespan. Social and Personality Psychology Compass, 6, 807825. doi:10.1111/j.1751-9004.2012.00465.xGoogle Scholar
R Core Team. (2013). R: A language and environment for statistical computing. Retrieved from http://www.R-project.org/Google Scholar
Ridout, K. K, Levandowski, M., Ridout, S. J., Gantz, L., Goonan, K., Palermo, D., … Tyrka, A. R. (2017). Early life adversity and telomere length: A meta-analysis. Molecular Psychiatry. Advance online publication. doi:10.1038/mp.2017.26Google Scholar
Schury, K., Zimmermann, J., Umlauft, M., Hulbert, A. L., Guendel, H., Ziegenhain, U., & Kolassa, I. T. (2017). Childhood maltreatment, postnatal distress and the protective role of social support. Child Abuse and Neglect, 67, 228239. doi:10.1016/j.chiabu.2017.02.021Google Scholar
Shalev, I., Moffitt, T., Sugden, K., Williams, B., Houts, R. M., Danese, A., … Caspi, A. (2013). Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: A longitudinal study. Molecular Psychiatry, 18, 576581. doi:10.1038/mp.2012.32Google Scholar
Slota, C., Shi, A., Chen, G., Bevans, M., & Weng, N. (2015). Norepinephrine preferentially modulates memory CD8 T cell function inducing inflammatory cytokine production and reducing proliferation in response to activation. Brain, Behavior, and Immunity, 46, 168179. doi:10.1016/j.bbi.2015.01.015Google Scholar
Smearman, E. L., Almli, L. M., Conneely, K. N., Brody, G. H., Sales, J. M., Bradley, B., … Smith, A. K. (2016). Oxytocin receptor genetic and epigenetic variations: Association with child abuse and adult psychiatric symptoms. Child Development, 87, 122134. doi:10.1111/cdev.12493Google Scholar
Sommershof, A., Aichinger, H., Engler, H., Adenauer, H., Catani, C., Boneberg, E., … Kolassa, I. (2009). Substantial reduction of naive and regulatory T cells following traumatic stress. Brain, Behavior, and Immunity, 23, 11171124. doi:10.1016/j.bbi.2009.07.003Google Scholar
Stalker, C. A., & Davies, F. (1995). Attachment organization and adaptation in sexually-abused women. Canadian Journal of Psychiatry, 40, 234240.Google Scholar
Susman, E. (2006). Psychobiology of persistent antisocial behavior: Stress, early vulnerabilities and the attenuation hypothesis. Neuroscience & Biobehavioral Reviews, 30, 376389. doi:10.1016/j.neubiorev.2005.08.002Google Scholar
Szeto, A., Nation, D. A., Mendez, A. J., Dominguez-Bendala, J., Brooks, L. G., Schneiderman, N., & McCabe, P. M. (2008). Oxytocin attenuates NADPH-dependent superoxide activity and IL-6 secretion in macrophages and vascular cells. American Journal of Physiology: Endocrinology and Metabolism, 295, E1495E1501. doi:10.1152/ajpendo.90718.2008Google Scholar
Tomiyama, A. J., O'Donovan, A., Lin, J., Puterman, E., Lazaro, A., Chan, J., … Epel, E. (2012). Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiology & Behavior, 106, 4045. doi:10.1016/j.physbeh.2011.11.016Google Scholar
Trickett, P. K., Noll, J. G., Susman, E. J., Shenk, C. E., & Putnam, F. W. (2010). Attenuation of cortisol across development for victims of sexual abuse. Development and Psychopathology, 22, 165175. doi:10.1017/S0954579409990332Google Scholar
Tyrka, A. R., Price, L. H., Kao, H., Porton, B., Marsella, S. A., & Carpenter, L. L. (2010). Childhood maltreatment and telomere shortening: Preliminary support for an effect of early stress on cellular aging. Biological Psychiatry, 67, 531534. doi:10.1016/j.biopsych.2009.08.014Google Scholar
Tyrka, A. R., Price, L. H., Marsit, C., Walters, O. C., & Carpenter, L. L. (2012). Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: Preliminary findings in healthy adults. PLOS ONE, 7, e30148. doi:10.1371/journal.pone.0030148Google Scholar
Tyrka, A. R., Ridout, K. K., Parade, S. H., Paquette, A., Marsit, C. J., & Seifer, R. (2015). Childhood maltreatment and methylation of FK506 binding protein 5 gene (FKBP5). Development and Psychopathology, 27, 16371645. doi:10.1017/S0954579415000991Google Scholar
Unternaehrer, E., Meyer, A. H., Burkhardt, S. C., Dempster, E., Staehli, S., Theill, N., … Meinlschmidt, G. (2015). Childhood maternal care is associated with DNA methylation of the genes for brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) in peripheral blood cells in adult men and women. Stress, 18, 451461. doi:10.3109/10253890.2015.1038992Google Scholar
Van Der Knaap, L., Riese, H., Hudziak, J., Verbiest, M., Verhulst, F., Oldehinkel, A., & Van Oort, F. (2014). Glucocorticoid receptor gene (NR3C1) methylation following stressful events between birth and adolescence: The TRAILS study. Translational Psychiatry, 4, e381. doi:10.1038/tp.2014.22Google Scholar
Van der Post, J. A., van Buul, B. J., Hart, A. A., van Heerikhuize, J. J., Pesman, G., Legros, J. J., … Boer, K. (1997). Vasopressin and oxytocin levels during normal pregnancy: Effects of chronic dietary sodium restriction. Journal of Endocrinology, 152, 345354. doi:10.1677/joe.0.1520345Google Scholar
Veenema, A. H. (2012). Toward understanding how early-life social experiences alter oxytocin- and vasopressin-regulated social behaviors. Hormones and Behavior, 61, 304312. doi:10.1016/j.yhbeh.2011.12.002Google Scholar
Verhoeven, J. E., van Oppen, P., Puterman, E., Elzinga, B., & Penninx, B. W. (2015). The association of early and recent psychosocial life stress with leukocyte telomere length. Psychosomatic Medicine, 77, 882891. doi:10.1097/PSY.0000000000000226Google Scholar
Viau, V., Sharma, S., & Meaney, M. J. (1996). Changes in plasma adrenocorticotropin, corticosterone, corticosteroid-binding globulin, and hippocampal glucocorticoid receptor occupancy/translocation in rat pups in response to stress. Journal of Neuroendocrinology, 8, 18. doi:10.1111/j.1365-2826.1996.tb00680.xGoogle Scholar
Von Zglinicki, T. (2002). Oxidative stress shortens telomeres. Trends in Biochemical Sciences, 27, 339344. doi:10.1016/S0968-0004(02)02110-2Google Scholar
Von Zglinicki, T., & Martin-Ruiz, C. M. (2005). Telomeres as biomarkers for ageing and age-related diseases. Current Molecular Medicine, 5, 197203. doi:10.2174/1566524053586545Google Scholar
Wang, P., Yang, H., Tian, S., Wang, L., Wang, S. C., Zhang, F., & Wang, Y. (2015). Oxytocin-secreting system: A major part of the neuroendocrine center regulating immunologic activity. Journal of Neuroimmunology, 289, 152161. doi:10.1016/j.jneuroim.2015.11.001Google Scholar
Watanabe, M., Iwatani, Y., Kaneda, T., Hidaka, Y., Mitsuda, N., Morimoto, Y., & Amino, N. (1997). Changes in T, B, and NK lymphocyte subsets during and after normal pregnancy. American Journal of Reproductive Immunology, 37, 368377. doi:10.1111/j.1600-0897.1997.tb00246.xGoogle Scholar
Weisman, O., Zagoory-Sharon, O., Schneiderman, I., Gordon, I., & Feldman, R. (2013). Plasma oxytocin distributions in a large cohort of women and men and their gender-specific associations with anxiety. Psychoneuroendocrinology, 38, 694701. doi:10.1016/j.psyneuen.2012.08.011Google Scholar
Windle, R. J., Kershaw, Y. M., Shanks, N., Wood, S. A., Lightman, S. L., & Ingram, C. D. (2004). Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo-pituitary-adrenal activity. Journal of Neuroscience, 24, 29742982. doi:10.1523/jneurosci.3432-03.2004Google Scholar
World Medical Association. (2013). Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. Journal of the American Medical Association, 310, 21912194. doi:10.1001/jama.2013.281053.Google Scholar
Zimmerman, C., Brduscha-Riem, K., Blaser, C., Zinkernagel, R. M., & Pircher, H. (1996). Visualization, characterization, and turnover of CD8+ memory T cells in virus-infected hosts. Journal of Experimental Medicine, 183, 13671375. doi:10.1084/jem.183.4.1367Google Scholar
Supplementary material: File

Boeck supplementary material

Figure S1 and Tables S1-S2

Download Boeck supplementary material(File)
File 316.3 KB