Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T11:37:42.589Z Has data issue: false hasContentIssue false

Experimentation versus progression in adolescent drug use: A test of an emerging neurobehavioral imbalance model

Published online by Cambridge University Press:  26 August 2014

Atika Khurana*
Affiliation:
University of Oregon
Daniel Romer
Affiliation:
University of Pennsylvania
Laura M. Betancourt
Affiliation:
Children's Hospital of Philadelphia
Nancy L. Brodsky
Affiliation:
Children's Hospital of Philadelphia
Joan M. Giannetta
Affiliation:
Children's Hospital of Philadelphia
Hallam Hurt
Affiliation:
Children's Hospital of Philadelphia
*
Address correspondence and reprint requests to: Atika Khurana, Department of Counseling Psychology & Human Services, 369 HEDCO, 1655 Alder Street, College of Education, University of Oregon, Eugene, OR 97403; E-mail: [email protected].

Abstract

Based on an emerging neuroscience model of addiction, this study examines how an imbalance between two neurobehavioral systems (reward motivation and executive control) can distinguish between early adolescent progressive drug use and mere experimentation with drugs. Data from four annual assessments of a community cohort (N = 382) of 11- to 13-year-olds were analyzed to model heterogeneity in patterns of early drug use. Baseline assessments of working memory (an indicator of the functional integrity of the executive control system) and three dimensions of impulsivity (characterizing the balance between reward seeking and executive control systems) were used to predict heterogeneous latent classes of drug use trajectories from early to midadolescence. Findings revealed that an imbalance resulting from weak executive control and heightened reward seeking was predictive of early progression in drug use, while heightened reward seeking balanced by a strong control system was predictive of occasional experimentation only. Implications of these results are discussed in terms of preventive interventions that can target underlying weaknesses in executive control during younger years, and potentially enable at-risk adolescents to exercise greater self-restraint in the context of rewarding drug-related cues.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballard, K., & Knutson, B. (2009). Dissociable neural representations of future reward magnitude and delay during temporal discounting. NeuroImage, 45, 143150. doi:10.1016/j.neuroimage.2008.11.004CrossRefGoogle ScholarPubMed
Barratt, E. S. (1985). Impulsiveness subtraits: Arousal and information processing. In Spence, J. T. & Izard, C. E. (Eds.), Motivation, emotion and personality (pp. 137146). Amsterdam: Elsevier Science.Google Scholar
Bauer, D. J., & Reyes, H. L. M. (2010). Modeling variability in individual development: Differences of degree or kind? Child Development Perspectives, 4, 114122. doi:10.1111/j.1750-8606.2010.00129.xCrossRefGoogle ScholarPubMed
Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8, 14581463. doi:10.1038/nn1584CrossRefGoogle ScholarPubMed
Belin, D., Mar, A. C., Dalley, J. W., Robbins, T. W., & Everitt, B. J. (2008). High impulsivity predicts the switch to compulsive cocaine-taking. Science, 320, 13521355. doi:10.1126/science.1158136CrossRefGoogle ScholarPubMed
Bickel, W. K., & Yi, R. (2008). Temporal discounting as a measure of executive function: Insights from the competing neuro-behavioral decision system hypothesis of addiction. Advances in Health Economics and Health Services Research, 20, 289309.CrossRefGoogle ScholarPubMed
Bobova, L., Finn, P. R., Rickert, M. E., & Lucas, J. (2009). Disinhibitory psychopathology and delay discounting in alcohol dependence: Personality and cognitive correlates. Experimental and Clinical Psychopharmacology, 17, 5161. doi:10.1037/a0014503CrossRefGoogle ScholarPubMed
Botvin, G. J., & Griffin, K. W. (2004). Life skills training: Empirical findings and future directions. Journal of Primary Prevention, 25, 211232. doi:10.1023/b:jopp.0000042391.58573.5bCrossRefGoogle Scholar
Brown, S. A., & Tapert, S. F. (2004). Adolescence and the trajectory of alcohol use: Basic to clinical studies. Annals of the New York Academy of Sciences, 1021, 234244. doi:10.1196/annals.1308.028CrossRefGoogle ScholarPubMed
Buckholtz, J. W., Treadway, M. T., Cowan, R. L., Woodward, N. D., Li, R., Ansari, M. S., et al. (2010). Dopaminergic network differences in human impulsivity. Science, 329, 532. doi:10.1126/science.1185778CrossRefGoogle ScholarPubMed
Casey, B. J., Cohen, J. D., Jezzard, P., Turner, R., Noll, D. C., Trainor, R. J., et al. (1995). Activation of prefrontal cortex in children during a nonspatial working memory task with functional MRI. NeuroImage, 2, 221229. doi:10.1006/nimg.1995.1029CrossRefGoogle ScholarPubMed
Casey, B. J., & Jones, R. M. (2010). Neurobiology of the adolescent brain and behavior: Implications for substance use disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 11891201. doi:10.1016/j.jaac.2010.08.017Google ScholarPubMed
Chassin, L., Flora, D. B., & King, K. M. (2004). Trajectories of alcohol and drug use and dependence from adolescence to adulthood: The effects of familial alcoholism and personality. Journal of Abnormal Psychology, 113, 483498. doi:10.1037/0021-843X.113.4.483CrossRefGoogle ScholarPubMed
Chassin, L., Presson, C. C., Pitts, S. C., & Sherman, S. J. (2000). The natural history of cigarette smoking from adolescence to adulthood in a midwestern community sample: Multiple trajectories and their psychosocial correlates. Health Psychology, 19, 223231. doi:10.1037/0278-6133.19.3.223CrossRefGoogle Scholar
Colder, C. R., Campbell, R. T., Ruel, E., Richardson, J. L., & Flay, B. R. (2002). A finite mixture model of growth trajectories of adolescent alcohol use: Predictors and consequences. Journal of Consulting and Clinical Psychology, 70, 976985. doi:10.1037/0022-006X.70.4.976CrossRefGoogle ScholarPubMed
Colder, C. R., Hawk, L. W., Lengua, L. J., Wiezcorek, W., Eiden, R. D., & Read, J. P. (2013). Trajectories of reinforcement sensitivity during adolescence and risk for substance use. Journal of Research on Adolescence, 23, 345356. doi:10.1111/jora.12001CrossRefGoogle ScholarPubMed
Cools, R., Sheridan, M., Jacobs, E., & D'Esposito, M. (2007). Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. Journal of Neuroscience, 27, 55065514. doi:10.1523/jneurosci.0601-07.2007CrossRefGoogle ScholarPubMed
Cyders, M. A., Flory, K., Rainer, S., & Smith, G. T. (2009). The role of personality dispositions to risky behavior in predicting first-year college drinking. Addiction, 104, 193202. doi:10.1111/j.1360-0443.2008.02434.xCrossRefGoogle ScholarPubMed
Dalley, J. W., Everitt, B. J., & Robbins, T. W. (2011). Impulsivity, compulsivity, and top-down cognitive control. Neuron, 69, 680694. doi:10.1016/j.neuron.2011.01.020CrossRefGoogle ScholarPubMed
Dalley, J. W., Fryer, T. D., Brichard, L., Robinson, E. S. J., Theobald, D. E. H., Laane, K., et al. (2007). Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science, 315, 12671270. doi:10.1126/science.1137073CrossRefGoogle ScholarPubMed
Dawes, M. A., Antelman, S. M., Vanyukov, M. M., Giancola, P., Tarter, R. E., Susman, E. J., et al. (2000). Developmental sources of variation in liability to adolescent substance use disorders. Drug and Alcohol Dependence, 61, 314. doi:10.1016/S0376-8716(00)00120-4CrossRefGoogle ScholarPubMed
Dawson, D. A., & Grant, B. F. (1998). Family history of alcoholism and gender: Their combined effects on DSM-IV alcohol dependence and major depression. Journal of Studies on Alcohol and Drugs, 59, 97106.CrossRefGoogle ScholarPubMed
DeWit, D. J., Adlaf, E. M., Offord, D. R., & Ogborne, A. C. (2000). Age at first alcohol use: A risk factor for the development of alcohol disorders. American Journal of Psychiatry, 157, 745750.CrossRefGoogle ScholarPubMed
de Wit, H., & Richards, J. B. (2004). Dual determinants of drug use in humans: Reward and impulsivity. Nebraska Symposium on Motivation, 50, 1955.Google ScholarPubMed
Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333, 959964. doi:10.1126/science.1204529CrossRefGoogle Scholar
Dick, D. M., Smith, G., Olausson, P., Mitchell, S. H., Leeman, R. F., O'Malley, S. S., et al. (2010). Understanding the construct of impulsivity and its relationship to alcohol use disorders. Addiction Biology, 15, 217226. doi:10.1111/j.1369-1600.2009.00190.xCrossRefGoogle ScholarPubMed
Dishion, T. J., & Owen, L. D. (2002). A longitudinal analysis of friendships and substance use: Bidirectional influence from adolescence to adulthood. Developmental Psychology, 38, 480491. doi:10.1037/0012-1649.38.4.480CrossRefGoogle ScholarPubMed
Duckworth, A. L., & Seligman, M. E. P. (2005). Self-discipline outdoes IQ in predicting academic performance of adolescents. Psychological Science, 16, 939944. doi:10.1111/j.1467-9280.2005.01641.xCrossRefGoogle ScholarPubMed
Duncan, S. C., Duncan, T. E., & Strycker, L. A. (2006). Alcohol use from ages 9 to 16: A cohort-sequential latent growth model. Drug and Alcohol Dependence, 81, 7181. doi:10.1016/j.drugalcdep.2005.06.001CrossRefGoogle ScholarPubMed
Ersche, K. D., Turton, A. J., Pradhan, S., Bullmore, E. T., & Robbins, T. W. (2010). Drug addiction endophenotypes: Impulsive versus sensation-seeking personality traits. Biological Psychiatry, 68, 770773. doi:10.1016/j.biopsych.2010.06.015CrossRefGoogle ScholarPubMed
Everitt, B. J., Belin, D., Economidou, D., Pelloux, Y., Dalley, J. W., & Robbins, T. W. (2008). Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 31253135. doi:10.1098/rstb.2008.0089CrossRefGoogle ScholarPubMed
Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience, 8, 14811489. doi:10.1038/nn1579CrossRefGoogle ScholarPubMed
Eysenck, S. B. G., Easting, G., & Pearson, P. R. (1984). Age norms for impulsiveness, venturesomeness and empathy in children. Personality and Individual Differences, 5, 315321. doi:10.1016/0191-8869(84)90070-9CrossRefGoogle Scholar
Eysenck, S. B. G., & Eysenck, H. J. (1980). Impulsiveness and venturesomeness in children. Personality and Individual Differences, 1, 7378. doi:10.1016/0191-8869(80)90006-9CrossRefGoogle Scholar
Flory, K., Lynam, D., Milich, R., Leukefeld, C., & Clayton, R. (2004). Early adolescent through young adult alcohol and marijuana use trajectories: Early predictors, young adult outcomes, and predictive utility. Development and Psychopathology, 16, 193213. doi:10.1017/S0954579404044475CrossRefGoogle ScholarPubMed
George, O., & Koob, G. F. (2010). Individual differences in prefrontal cortex function and the transition from drug use to drug dependence. Neuroscience & Biobehavioral Reviews, 35, 232247. doi:10.1016/j.neubiorev.2010.05.002CrossRefGoogle ScholarPubMed
Giancola, P. R., & Tarter, R. E. (1999). Executive cognitive functioning and risk for substance abuse. Psychological Science, 10, 203205. doi:10.1111/1467-9280.00135CrossRefGoogle Scholar
Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry, 159, 16421652.CrossRefGoogle ScholarPubMed
Grant, B. F., & Dawson, D. A. (1997). Age at onset of alcohol use and its association with DSM-IV alcohol abuse and dependence: Results from the national longitudinal alcohol epidemiologic survey. Journal of Substance Abuse, 9, 103110. doi:16/S0899-3289(97)90009-2CrossRefGoogle ScholarPubMed
Green, L., Fry, A. F., & Myerson, J. (1994). Discounting of delayed rewards: A life-span comparison. Psychological Science, 5, 3336. doi:10.1111/j.1467-9280.1994.tb00610.xCrossRefGoogle Scholar
Greenberg, M. T., Kusche, C. A., Cook, E. T., & Quamma, J. P. (1995). Promoting emotional competence in school-aged children: The effects of the PATHS curriculum. Development and Psychopathology, 7, 117136. doi:10.1017/S0954579400006374CrossRefGoogle Scholar
Gullo, M. J., & Dawe, S. (2008). Impulsivity and adolescent substance use: Rashly dismissed as “all-bad”? Neuroscience & Biobehavioral Reviews, 32, 15071518. doi:16/j.neubiorev.2008.06.003CrossRefGoogle ScholarPubMed
Hariri, A. R., Brown, S. M., Williamson, D. E., Flory, J. D., Wit, H. de, & Manuck, S. B. (2006). Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. Journal of Neuroscience, 26, 1321313217. doi:10.1523/jneurosci.3446-06.2006CrossRefGoogle ScholarPubMed
Hawkins, J. D., Graham, J. W., Maguin, E., Abbott, R., Hill, K. G., & Catalano, R. F. (1997). Exploring the effects of age of alcohol use initiation and psychosocial risk factors on subsequent alcohol misuse. Journal of Studies on Alcohol and Drugs, 58, 280.CrossRefGoogle ScholarPubMed
Heitzeg, M. M., Nigg, J. T., Yau, W.-Y. W., Zucker, R. A., & Zubieta, J.-K. (2010). Striatal dysfunction marks preexisting risk and medial prefrontal dysfunction is related to problem drinking in children of alcoholics. Biological Psychiatry, 68, 287295. doi:10.1016/j.biopsych.2010.02.020CrossRefGoogle ScholarPubMed
Hoyle, R. H., Stephenson, M. T., Palmgreen, P., Lorch, E. P., & Donohew, R. L. (2002). Reliability and validity of a brief measure of sensation seeking. Personality and Individual Differences, 32, 401414. doi:10.1016/S0191-8869(01)00032-0CrossRefGoogle Scholar
Ivanov, I., Schulz, K. P., London, E. D., & Newcorn, J. H. (2008). Inhibitory control deficits in childhood and risk for substance use disorders: A review. American Journal of Drug and Alcohol Abuse, 34, 239258. doi:10.1080/00952990802013334CrossRefGoogle ScholarPubMed
Jackson, K. M., Sher, K. J., & Schulenberg, J. E. (2008). Conjoint developmental trajectories of young adult substance use. Alcoholism: Clinical and Experimental Research, 32, 723737. doi:10.1111/j.1530-0277.2008.00643.xCrossRefGoogle ScholarPubMed
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1103228108CrossRefGoogle Scholar
Jentsch, J. D., & Taylor, J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli. Psychopharmacology, 146, 373390. doi:10.1007/PL00005483CrossRefGoogle ScholarPubMed
Johnson, M. W., & Bickel, W. K. (2002). Within-subject comparison of real and hypothetical money rewards in delay discounting. Journal of the Experimental Analysis of Behavior, 77, 129146. doi: 10.1901/jeab.2002.77-129CrossRefGoogle ScholarPubMed
Kane, M. J., Conway, A. R. A., Hanbrick, D. Z., & Engle, R. W. (2007). Variation in working memory capacity as variation in executive attention and control. In Conway, A. R. A., Jarrold, C., Kane, M. J., Miyake, A., & Towse, J. N. (Eds.), Variation in working memory (pp. 2148). New York: Oxford University Press.Google Scholar
Khurana, A., Romer, D., Betancourt, L. M., Brodsky, N. L., Giannetta, J. M., & Hurt, H. (2013). Working memory ability predicts trajectories of early alcohol use in adolescents: The mediational role of impulsivity. Addiction, 108, 506515. doi:10.1111/add.12001CrossRefGoogle ScholarPubMed
Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317324. doi:10.1016/j.tics.2010.05.002CrossRefGoogle ScholarPubMed
Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35, 217238. doi:10.1038/npp.2009.110CrossRefGoogle ScholarPubMed
Krueger, R. F., Hicks, B. M., Patrick, C. J., Carlson, S. R., Iacono, W. G., & McGue, M. (2002). Etiologic connections among substance dependence, antisocial behavior and personality: Modeling the externalizing spectrum. Journal of Abnormal Psychology, 111, 411424. doi:10.1037/0021-843X.111.3.411CrossRefGoogle ScholarPubMed
Kuo, P. H., Chih, Y. C., Soong, W. T., Yang, H. J., & Chen, W. J. (2004). Assessing personality features and their relations with behavioral problems in adolescents: Tridimensional personality questionnaire and junior eysenck personality questionnaire. Comprehensive Psychiatry, 45, 2028. doi:10.1016/j.comppsych.2003.09.011CrossRefGoogle ScholarPubMed
Li, F., Duncan, T. E., & Hops, H. (2001). Examining developmental trajectories in adolescent alcohol use using piecewise growth mixture modeling analysis. Journal of Studies on Alcohol and Drugs, 62, 199210.CrossRefGoogle ScholarPubMed
Littlefield, A. K., Sher, K. J., & Wood, P. K. (2009). Is “maturing out” of problematic alcohol involvement related to personality change? Journal of Abnormal Psychology, 118, 360374. doi:10.1037/a0015125CrossRefGoogle Scholar
Madden, G. J., & Bickel, W. K. (Eds.). (2010). Impulsivity: The behavioral and neurological science of discounting. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Maggs, J. L., & Schulenberg, J. E. (2005). Initiation and course of alcohol consumption among adolescents and young adults. In Galanter, M., Lowman, C., Boyd, G. M., Faden, V. B., Witt, E., & Lagressa, D. (Eds.), Recent developments in alcoholism (Vol. 17, pp. 2947). New York: Kluwer Academic/Plenum Press.CrossRefGoogle Scholar
Magid, V., MacLean, M. G., & Colder, C. R. (2007). Differentiating between sensation seeking and impulsivity through their mediated relations with alcohol use and problems. Addictive Behaviors, 32, 20462061. doi:10.1016/j.addbeh.2007.01.015CrossRefGoogle ScholarPubMed
McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 503507. doi:10.1126/science.1100907CrossRefGoogle ScholarPubMed
McGue, M., Iacono, W. G., Legrand, L. N., Malone, S., & Elkins, I. (2001). Origins and consequences of age at first drink: I. Associations with substance-use disorders, disinhibitory behavior and psychopathology, and P3 amplitude. Alcoholism: Clinical and Experimental Research, 25, 11561165.Google ScholarPubMed
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202. doi:10.1146/annurev.neuro.24.1.167CrossRefGoogle ScholarPubMed
Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin, 27, 272277.CrossRefGoogle ScholarPubMed
Miyake, A., & Shah, P. (1999). Models of working memory: Mechanisms of active maintenance and executive control. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100, 674701. doi:10.1037/0033-295X.100.4.674CrossRefGoogle ScholarPubMed
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., et al. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, 108, 26932698. doi:10.1073/pnas.1010076108CrossRefGoogle ScholarPubMed
Muthén, B. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In Kaplan, D. (Ed.), The SAGE handbook of quantitative methodology for the social sciences (pp. 345368). Thousand Oaks, CA: Sage.Google Scholar
Muthén, B., & Muthén, L. K. (2000). Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24, 882891. doi:10.1111/j.1530-0277.2000.tb02070.xCrossRefGoogle ScholarPubMed
Nigg, J. T., Wong, M. M., Martel, M. M., Jester, J. M., Puttler, L. I., Glass, J. M., et al. (2006). Poor response inhibition as a predictor of problem drinking and illicit drug use in adolescents at risk for alcoholism and other substance use disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 45, 468475. doi:10.1097/01.chi.0000199028.76452.a9CrossRefGoogle ScholarPubMed
Odgers, C. L., Caspi, A., Nagin, D. S., Piquero, A. R., Slutske, W. S., Milne, B. J., et al. (2008). Is it important to prevent early exposure to drugs and alcohol among adolescents? Psychological Science, 19, 10371044. doi:10.1111/j.1467-9280.2008.02196.xCrossRefGoogle ScholarPubMed
Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E., & Robbins, T. W. (1990). Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia, 28, 10211034. doi:10.1016/0028-3932(90)90137-DCrossRefGoogle ScholarPubMed
Pattij, T., & Vanderschuren, L. J. M. J. (2008). The neuropharmacology of impulsive behaviour. Trends in Pharmacological Sciences, 29, 192199. doi:10.1016/j.tips.2008.01.002CrossRefGoogle ScholarPubMed
Prescott, C. A., & Kendler, K. S. (1999). Age at first drink and risk for alcoholism: A noncausal association. Alcoholism: Clinical and Experimental Research, 23, 101107. doi:10.1111/j.1530-0277.1999.tb04029.xGoogle ScholarPubMed
Quinn, P. D., & Harden, K. P. (2013). Differential changes in impulsivity and sensation seeking and the escalation of substance use from adolescence to early adulthood. Development and Psychopathology, 25(Supp.1), 223239. doi:10.1017/S0954579412000284CrossRefGoogle ScholarPubMed
Raine, A., Reynolds, C., Venables, P. H., & Mednick, S. A. (2002). Stimulation seeking and intelligence: A prospective longitudinal study. Journal of Personality and Social Psychology, 82, 663674.CrossRefGoogle ScholarPubMed
Reynolds, B., & Schiffbauer, R. (2005). Delay of gratification and delay discounting: A unifying feedback model of delay-related impulsive behavior. Psychological Record, 55, 439.CrossRefGoogle Scholar
Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S., & Ersche, K. D. (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends in Cognitive Sciences, 16, 8191. doi:10.1016/j.tics.2011.11.009CrossRefGoogle ScholarPubMed
Rogers, R. D., & Robbins, T. W. (2001). Investigating the neurocognitive deficits associated with chronic drug misuse. Current Opinion in Neurobiology, 11, 250257. doi:10.1016/S0959-4388(00)00204-XCrossRefGoogle ScholarPubMed
Romer, D., Betancourt, L., Giannetta, J. M., Brodsky, N. L., Farah, M., & Hurt, H. (2009). Executive cognitive functions and impulsivity as correlates of risk taking and problem behavior in preadolescents. Neuropsychologia, 47, 29162926. doi:10.1016/j.neuropsychologia.2009.06.019CrossRefGoogle ScholarPubMed
Romer, D., Betancourt, L. M., Brodsky, N. L., Giannetta, J. M., Yang, W., & Hurt, H. (2011). Does adolescent risk taking imply weak executive function? A prospective study of relations between working memory performance, impulsivity, and risk taking in early adolescence. Developmental Science, 14, 11191133. doi:10.1111/j.1467-7687.2011.01061.xCrossRefGoogle ScholarPubMed
Romer, D., Duckworth, A. L., Sznitman, S., & Park, S. (2010). Can adolescents learn self-control? Delay of gratification in the development of control over risk taking. Prevention Science, 11, 319330. doi:10.1007/s11121-010-0171-8CrossRefGoogle ScholarPubMed
Romer, D., & Hennessy, M. (2007). A biosocial-affect model of adolescent sensation seeking: The role of affect evaluation and peer-group influence in adolescent drug use. Prevention Science, 8, 89101. doi:10.1007/s11121-007-0064-7CrossRefGoogle ScholarPubMed
Shamosh, N. A., DeYoung, C. G., Green, A. E., Reis, D. L., Johnson, M. R., Conway, A. R. A., et al. (2008). Individual differences in delay discounting. Psychological Science, 19, 904911. doi:10.1111/j.1467-9280.2008.02175.xCrossRefGoogle ScholarPubMed
Sher, K. J., Jackson, K. M., & Steinley, D. (2011). Alcohol use trajectories and the ubiquitous cat's cradle: Cause for concern? Journal of Abnormal Psychology, 120, 322335. doi:10.1037/a0021813CrossRefGoogle ScholarPubMed
Smith, G. T., Fischer, S., Cyders, M. A., Annus, A. M., Spillane, N. S., & McCarthy, D. M. (2007). On the validity and utility of discriminating among impulsivity-like traits. Assessment, 14, 155170. doi:10.1177/1073191106295527CrossRefGoogle ScholarPubMed
Spear, L. (2010). The behavioral neuroscience of adolescence. New York: Norton.Google ScholarPubMed
Squeglia, L. M., Schweinsburg, A. D., Pulido, C., & Tapert, S. F. (2011). Adolescent binge drinking linked to abnormal spatial working memory brain activation: Differential gender effects. Alcoholism: Clinical and Experimental Research, 35, 18311841. doi:10.1111/j.1530-0277.2011.01527.xCrossRefGoogle ScholarPubMed
Squeglia, L. M., Spadoni, A. D., Infante, M. A., Myers, M. G., & Tapert, S. F. (2009). Initiating moderate to heavy alcohol use predicts changes in neuropsychological functioning for adolescent girls and boys. Psychology of Addictive Behaviors, 23, 715722. doi:10.1037/a0016516CrossRefGoogle ScholarPubMed
Steinberg, L. (2004). Risk taking in adolescence: What changes, and why? Annals of the New York Academy of Sciences, 1021, 5158. doi:10.1196/annals.1308.005CrossRefGoogle ScholarPubMed
Swendsen, J., Burstein, M., Case, B., Conway, K. P., Dierker, L., He, J., et al. (2012). Use and abuse of alcohol and illicit drugs in US adolescents: Results of the National Comorbidity Survey—Adolescent Supplement. Archives of General Psychiatry, 69, 390398. doi:10.1001/archgenpsychiatry.2011.1503Google ScholarPubMed
Tarter, R., Vanyukov, M., Giancola, P., Dawes, M., Blackson, T., Mezzich, A., et al. (1999). Etiology of early age onset substance use disorder: A maturational perspective. Development and Psychopathology, 11, 657683.CrossRefGoogle ScholarPubMed
Tarter, R. E., Kirisci, L., Habeych, M., Reynolds, M., & Vanyukov, M. (2004). Neurobehavior disinhibition in childhood predisposes boys to substance use disorder by young adulthood: Direct and mediated etiologic pathways. Drug and Alcohol Dependence, 73, 121132.CrossRefGoogle ScholarPubMed
Tucker, J. S., Ellickson, P. L., Orlando, M., Martino, S. C., & Klein, D. J. (2005). Substance use trajectories from early adolescence to emerging adulthood: A comparison of smoking, binge drinking, and marijuana use. Journal of Drug Issues, 35, 307332. doi:10.1177/002204260503500205CrossRefGoogle Scholar
Wechsler, D. (2003). Wechsler Intelligence Scale for Children—Fourth Edition (WISC-IV). San Antonio, TX: Psychological Corporation.Google Scholar
White, H. R., Pandina, R. J., & Chen, P.-H. (2002). Developmental trajectories of cigarette use from early adolescence into young adulthood. Drug and Alcohol Dependence, 65, 167178. doi:10.1016/S0376-8716(01)00159-4CrossRefGoogle ScholarPubMed
Whiteside, S. P., & Lynam, D. R. (2001). The Five-Factor Model and impulsivity: Using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30, 669689. doi:10.1016/S0191-8869(00)00064-7CrossRefGoogle Scholar
Winstanley, C. A., Olausson, P., Taylor, J. R., & Jentsch, J. D. (2010). Insight into the relationship between impulsivity and substance abuse from studies using animal models. Alcoholism: Clinical and Experimental Research, 34, 13061318. doi:10.1111/j.1530-0277.2010.01215.xCrossRefGoogle ScholarPubMed
Zald, D. H., Cowan, R. L., Riccardi, P., Baldwin, R. M., Ansari, M. S., Li, R., et al. (2008). Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. Journal of Neuroscience, 28, 1437214378. doi:10.1523/jneurosci.2423-08.2008CrossRefGoogle ScholarPubMed
Zucker, R. A., Heitzeg, M. M., & Nigg, J. T. (2011). Parsing the undercontrol–disinhibition pathway to substance use disorders: A multilevel developmental problem. Child Development Perspectives, 5, 248255. doi:10.1111/j.1750-8606.2011.00172.xCrossRefGoogle ScholarPubMed