Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T18:22:49.735Z Has data issue: false hasContentIssue false

Epigenetic pathways through which experiences become linked with biology

Published online by Cambridge University Press:  06 May 2015

Patrick O. McGowan*
Affiliation:
University of Toronto
Tania L. Roth*
Affiliation:
University of Delaware
*
Address correspondence and reprint requests to: Tania L. Roth, Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716; E-mail: [email protected]; or Patrick O. McGowan, Department of Biological Sciences, University of Toronto, Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; E-mail: [email protected].
Address correspondence and reprint requests to: Tania L. Roth, Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716; E-mail: [email protected]; or Patrick O. McGowan, Department of Biological Sciences, University of Toronto, Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; E-mail: [email protected].

Abstract

This article highlights the defining principles, progress, and future directions in epigenetics research in relation to this Special Issue. Exciting studies in the fields of neuroscience, psychology, and psychiatry have provided new insights into the epigenetic factors (e.g., DNA methylation) that are responsive to environmental input and serve as biological pathways in behavioral development. Here we highlight the experimental evidence, mainly from animal models, that factors such as psychosocial stress and environmental adversity can become encoded within epigenetic factors with functional consequences for brain plasticity and behavior. We also highlight evidence that epigenetic marking of genes in one generation can have consequences for future generations (i.e., inherited), and work with humans linking epigenetics, cognitive dysfunction, and psychiatric disorder. Though epigenetics has offered more of a beginning than an answer to the centuries-old nature–nurture debate, continued research is certain to yield substantial information regarding biological determinants of central nervous system changes and behavior with relevance for the study of developmental psychopathology.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdolmaleky, H. M., Cheng, K. H., Russo, A., Smith, C. L., Faraone, S. V., Wilcox, M., et al. (2005). Hypermethylation of the reelin (reln) promoter in the brain of schizophrenic patients: A preliminary report. American Journal of Medical Genetics, 134, 6066.Google Scholar
Alberini, C. M., Ghirardl, M., Metz, R., & Kandel, E. R. (1994). C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in aplysia. Cell, 76, 10991114.CrossRefGoogle ScholarPubMed
Arai, J. A., Li, S., Hartley, D. M., & Feig, L. A. (2009). Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment. Journal of Neuroscience, 29, 14961502.CrossRefGoogle ScholarPubMed
Baker-Andresen, D., Ratnu, V. S., & Bredy, T. W. (2013). Dynamic DNA methylation: A prime candidate for genomic metaplasticity and behavioral adaptation. Trends in Neurosciences, 36, 313.CrossRefGoogle ScholarPubMed
Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136, 215233.CrossRefGoogle ScholarPubMed
Beach, S. R. H., Brody, G. H., Lei, M. K., Gibbons, F. X., Gerrard, M., Simons, R. L., et al. (2013). Impact of child sex abuse on adult psychopathology: A genetically and epigenetically informed investigation. Journal of Family Psychology, 27, 311.CrossRefGoogle ScholarPubMed
Berger, S. L. (2007). The complex language of chromatin regulation during transcription. Nature, 447, 407412.CrossRefGoogle ScholarPubMed
Borghol, N., Suderman, M., McArdle, W., Racine, A., Hallett, M., Pembrey, M., et al. (2012). Associations with early-life socio-economic position in adult DNA methylation. International Journal of Epidemiology, 41, 6274.CrossRefGoogle ScholarPubMed
Bredy, T. W., Wu, H., Crego, C., Zellhoefer, J., Sun, Y. E., & Barad, M. (2007). Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learning & Memory, 14, 268276.CrossRefGoogle ScholarPubMed
Breuner, C. W., Patterson, S. H., & Hahn, T. P. (2008). In search of relationship between the acute adrenocortical response and fitness. General and Comparative Endocrinology, 157, 288295.CrossRefGoogle ScholarPubMed
Chahrour, M., Jung, S. Y., Shaw, C., Zhou, X., Wong, S. T. C., Qin, J., et al. (2008). MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 320, 12241229.CrossRefGoogle ScholarPubMed
Champagne, D. L., Bagot, R. C., van Hasselt, F., Ramakers, G., Meaney, M. J., de Kloet, E. R., et al. (2008). Maternal care and hippocampal plasticity: Evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. Journal of Neuroscience, 28, 60376045.CrossRefGoogle ScholarPubMed
Champagne, F. A., Francis, D. D., Mar, A., & Meaney, M. J. (2003). Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiology & Behavior, 79, 359371.CrossRefGoogle ScholarPubMed
Chang, S.-C., Koenen, K. C., Galea, S., Aiello, A. E., Soliven, R., Wildman, D. E., et al. (2012). Molecular variation at the SLC6P3 locus predicts lifetime risk of PTSD in the Detroit neighborhood health study. PLOS ONE, 7, e39184.Google ScholarPubMed
Chen, H., Dzitoyeva, S., & Manev, H. (2012). Effect of valproic acid on mitochondrial epigenetics. European Journal of Pharmacology, 690, 5159.CrossRefGoogle ScholarPubMed
Chertkow-Deutsher, Y., Cohen, H., Klein, E., & Ben-Shachar, D. (2010). DNA methylation in vulnerability to post-traumatic stress in rats: Evidence for the role of the post-synaptic density protein Dlgap2. International Journal of Neuropsychopharmacology, 13, 347359.CrossRefGoogle ScholarPubMed
Chestnut, B. A., Chang, Q., Price, A., Lesuisse, C., Wong, M., & Martin, L. J. (2011). Epigenetic regulation of motor neuron cell death through DNA methylation. Journal of Neuroscience, 31, 1661916636.CrossRefGoogle ScholarPubMed
Cicchetti, D. (1993). Developmental psychopathology: Reactions, reflections, projections. Developmental Review, 13, 471502.CrossRefGoogle Scholar
Cicchetti, D. (2006). Development and psychopathology. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology: Theory and method (Vol. 1, 2nd ed., pp. 123). Hoboken, NJ: Wiley.Google Scholar
Clinchy, M., Schulkin, J., Zanette, L. Y., Sheriff, M. J., McGowan, P. O., & Boonstra, R. (2010). The neurological ecology of fear: Insights neuroscientists and ecologists have to offer one another. Frontiers in Behaviornal Neuroscience, 4, 21.Google ScholarPubMed
Connor, C. M., & Akbarian, S. (2008). DNA methylation changes in schizophrenia and bipolar disorder. Epigenetics, 3, 5558.CrossRefGoogle ScholarPubMed
Daxinger, L., & Whitelaw, E. (2012). Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nature Reviews Genetics, 13, 153162.CrossRefGoogle ScholarPubMed
Day, J. J., Childs, D., Guzman-Karlsson, M. C., Kibe, M., Moulden, J., Song, E., et al. (2013). DNA methylation regulates associative reward learning. Nature Neuroscience, 16, 14451452.CrossRefGoogle ScholarPubMed
de Groote, M. L., Verschure, P. J., & Rots, M. G. (2012). Epigenetic editing: Targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Research, 40, 1059610613.CrossRefGoogle Scholar
de Kloet, C. S., Vermetten, E., Geuze, E., Kavelaars, A., Heijnen, C. J., & Westenberg, H. G. (2006). Assessment of HPA-axis function in posttraumatic stress disorder: Pharmacological and non-pharmacological challenge tests, a review. Journal of Psychiatric Research, 40, 550567.CrossRefGoogle ScholarPubMed
Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17, 8996.CrossRefGoogle ScholarPubMed
Dietz, D. M., LaPlant, Q., Watts, E. L., Hodes, G. E., Russo, S. J., Feng, J., et al. (2011). Paternal transmission of stress-induced pathologies. Biological Psychiatry, 70, 408414.CrossRefGoogle ScholarPubMed
Duclot, F., & Kabbaj, M. (2013). Individual differences in novelty seeking predict subsequent vulnerability to social defeat through a differential epigenetic regulation of brain-derived neurotrophic factor expression. Journal of Neuroscience, 33, 1104811060.CrossRefGoogle ScholarPubMed
Dzitoyeva, S., Chen, H., & Manev, H. (2012). Effect of aging on 5-hydroxymethylcytosine in brain mitochondria. Neurobiology of Aging, 33, 28812891.CrossRefGoogle ScholarPubMed
Edelman, S., Shalev, I., Uzefovsky, F., Israel, S., Knafo, A., Kremer, I., et al. (2012). Epigenetic and genetic factors predict women's salivary cortisol following a threat to the social self. PLOS ONE, 7, e48597.CrossRefGoogle Scholar
Elliott, E., Ezra-Nevo, G., Regev, L., Neufeld-Cohen, A., & Chen, A. (2010). Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nature Neuroscience, 13, 13511353.CrossRefGoogle ScholarPubMed
Essex, M. J., Boyce, W. T., Hertzman, C., Lam, L. L., Armstrong, J. M., Neumann, S. M., et al. (2013). Epigenetic vestiges of early developmental adversity: Childhood stress exposure and DNA methylation in adolescence. Child Development, 84, 5875.CrossRefGoogle ScholarPubMed
Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M., & Tsai, L.-H. (2007). Recovery of learning and memory is associated with chromatin remodelling. Nature, 447, 178182.CrossRefGoogle ScholarPubMed
Francis, D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286, 11551158.CrossRefGoogle ScholarPubMed
Fuchikami, M., Morinobu, S., Segawa, M., Okamoto, Y., Yamawaki, S., Ozaki, N., et al. (2011). DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLOS ONE, 6, e23881.CrossRefGoogle ScholarPubMed
Gould, F., Clarke, J., Heim, C., Harvey, P. D., Majer, M., & Nemeroff, C. B. (2012). The effects of child abuse and neglect on cognitive functioning in adulthood. Journal of Psychiatric Research, 46, 500506.CrossRefGoogle ScholarPubMed
Grayson, D., Jia, X., Chen, Y., Sharma, R. P., Mitchell, C., Guidotti, A., et al. (2005). Reelin promoter hypermethylation in schizophrenia. Proceedings of the National Academy of Sciences, 102, 93419346.CrossRefGoogle ScholarPubMed
Griggs, E. M., Young, E. J., Rumbaugh, G., & Miller, C. A. (2013). MicroRNA-182 regulates amygdala-dependent memory formation. Journal of Neuroscience, 33, 17341740.CrossRefGoogle ScholarPubMed
Guan, Z., Giustetto, M., Lomvardas, S., Kim, J. H., Miniaci, M. C., Schwartz, J. H., et al. (2002). Integration of long-term memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell, 111, 483493.CrossRefGoogle ScholarPubMed
Guo, J. U., Su, Y., Zhong, C., Ming, G.-l., & Song, H. (2011). Emerging roles of tet proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle, 10, 26622668.CrossRefGoogle ScholarPubMed
Haberman, R. P., Quigley, C. K., & Gallagher, M. (2012). Characterization of CPG island DNA methylation of impairment-related genes in a rat model of cognitive aging. Epigenetics, 7, 10081019.CrossRefGoogle Scholar
Hales, C. N., & Barker, D. J. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia, 35, 595601.CrossRefGoogle ScholarPubMed
Hanson, M., Godfrey, K. M., Lillycrop, K. A., Burdge, G. C., & Gluckman, P. D. (2010). Developmental plasticity and developmental origins of non-communicable disease: Theoretical considerations and epigenetic mechanisms. Progress in Biophysics and Molecular Biology, 106, 272280.CrossRefGoogle Scholar
Hertzman, C., & Boyce, T. (2010). How experience gets under the skin to create gradients in developmental health. Annual Review of Public Health, 31, 329347.CrossRefGoogle ScholarPubMed
Higuchi, F., Uchida, S., Yamagata, H., Otsuki, K., Hobara, T., Abe, N., et al. (2011). State-dependent changes in the expression of DNA methyltransferases in mood disorder patients. Journal of Psychiatric Research, 45, 12951300.CrossRefGoogle ScholarPubMed
Huang, H.-S., & Akbarian, S. (2007). Gad1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia. PLOS ONE, 2, e809.CrossRefGoogle ScholarPubMed
Hunter, R. G., McCarthy, K. J., Milne, T. A., Pfaff, D. W., & McEwen, B. S. (2009). Regulation of hippocampal h3 histone methylation by acute and chronic stress. Proceedings of the National Academy of Sciences, 106, 2091220917.CrossRefGoogle ScholarPubMed
Iacobazzi, V., Castegna, A., Infantino, V., & Andria, G. (2013). Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Molecular Genetics and Metabolism, 110, 2534.CrossRefGoogle ScholarPubMed
Jack, A., Connelly, J. J., & Morris, J. P. (2012). DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli. Frontiers in Human Neuroscience, 6, 280.CrossRefGoogle ScholarPubMed
Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293, 10741080.CrossRefGoogle ScholarPubMed
Kaas, G. A., Zhong, C., Eason, D. E., Ross, D. L., Vachhani, R. V., Ming, G.-L., et al. (2013). Tet1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79, 10861093.CrossRefGoogle ScholarPubMed
Kang, H.-J., Kim, J.-M., Lee, J.-Y., Kim, S.-Y., Bae, K.-Y., Kim, S.-W., et al. (2013). BDNF promoter methylation and suicidal behavior in depressive patients. Journal of Affective Disorders, 151, 679685.CrossRefGoogle ScholarPubMed
Keller, S., Sarchiapone, M., Zarrilli, F., Videtic, A., Ferraro, A., Carli, V., & et al. (2010). Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Archives of General Psychiatry, 67, 258267.CrossRefGoogle ScholarPubMed
Kenworthy, C. A., Sengupta, A., Luz, S. M., Ver Hoeve, E. S., Meda, K., Bhatnagar, S., et al. (2013). Social defeat induces changes in histone acetylation and expression of histone modifying enzymes in the ventral hippocampus, prefrontal cortex, and dorsal raphe nucleus. Neuroscience. Advance online publication.Google ScholarPubMed
Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., et al. (2013). Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nature Neuroscience, 16, 3341.CrossRefGoogle ScholarPubMed
Koenen, K. C., Uddin, M., Chang, S.-C., Aiello, A. E., Wildman, D. E., Goldmann, E., et al. (2011). SLC6A4 methylation modifies the effect of the number of traumatic events on risk for posttraumatic stress disorder. Depression and Anxiety, 28, 639647.CrossRefGoogle ScholarPubMed
Kouzarides, T. (2007). Snapshot: Histone-modifying enzymes. Cell, 131, 822822. e821.CrossRefGoogle ScholarPubMed
Kurian, J. R., Olesen, K. M., & Auger, A. P. (2010). Sex differences in epigenetic regulation of the estrogen receptor-alpha promoter within the developing preoptic area. Endocrinology, 151, 22972305.CrossRefGoogle ScholarPubMed
Kye, M. J., Neveu, P., Lee, Y.-S., Zhou, M., Steen, J. A., Sahin, M., et al. (2011). NMDA mediated contextual conditioning changes miRNA expression. PLOS ONE, 6, e24682.CrossRefGoogle ScholarPubMed
Lam, L. L., Emberly, E., Fraser, H. B., Neumann, S. M., Chen, E., Miller, G. E., et al. (2013). Reply to Suderman et al.: Importance of accounting for blood cell composition in epigenetic studies. Proceedings of the National Academy of Sciences, 110, E1247.CrossRefGoogle ScholarPubMed
Landry, C. D., Kandel, E. R., & Rajasethupathy, P. (2013). New mechanisms in memory storage: piRNAs and epigenetics. Trends in Neurosciences, 36, 535542.CrossRefGoogle ScholarPubMed
Landys, M. M., Ramenofsky, M., & Wingfield, J. C. (2006). Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. General and Comparative Endocrinology, 148, 132149.CrossRefGoogle Scholar
Levenson, J. M., Roth, T. L., Lubin, F. D., Miller, C. A., Huang, I. C., Desai, P., et al. (2006). Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. Journal of Biological Chemistry, 281, 1576315773.CrossRefGoogle ScholarPubMed
Lin, Q., Wei, W., Coelho, C. M., Li, X., Baker-Andresen, D., Dudley, K., et al. (2011). The brain-specific microRNA mir-128b regulates the formation of fear-extinction memory. Nature Neuroscience, 14, 11151117.CrossRefGoogle ScholarPubMed
Lister, R., Mukamel, E. A., Nery, J. R., Urich, M., Puddifoot, C. A., Johnson, N. D., et al. (2013). Global epigenomic reconfiguration during mammalian brain development. Science. Advance online publication.CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science, 277, 16591662.CrossRefGoogle ScholarPubMed
Love, O. P., McGowan, P. O., & Sheriff, M. J. (2012). Maternal adversity and ecological stressors in natural populations: The role of stress axis programming in individuals, with implications for populations and communities. Functional Ecology. Advance online publication.Google Scholar
Low, F. M., Gluckman, P. D., & Hanson, M. A. (2011). Developmental plasticity and epigenetic mechanisms underpinning metabolic and cardiovascular diseases. Epigenomics, 3, 279294.CrossRefGoogle ScholarPubMed
Lubin, F. D., Roth, T. L., & Sweatt, J. D. (2008). Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. Journal of Neuroscience, 28, 1057610586.CrossRefGoogle ScholarPubMed
Ma, D. K., Guo, J. U., Ming, G.-l., & Song, H. (2009). DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle, 8, 15261531.CrossRefGoogle ScholarPubMed
Mann, J. J., & Currier, D. M. (2010). Stress, genetics and epigenetic effects on the neurobiology of suicidal behavior and depression. European Psychiatry, 25, 268271.CrossRefGoogle ScholarPubMed
Martinowich, K., Hattori, D., Wu, H., Fouse, S., He, F., Hu, Y., et al. (2003). DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science, 302, 890893.CrossRefGoogle ScholarPubMed
McCormick, J. A., Lyons, V., Jacobson, M. D., Noble, J., Diorio, J., Nyirenda, M., et al. (2000). 5'-heterogeneity of glucocorticoid receptor messenger RNA is tissue specific: Differential regulation of variant transcripts by early-life events. Molecular Endocrinology, 14, 506517.Google Scholar
McEwen, B. S. (2012). Brain on stress: How the social environment gets under the skin. Proceedings of the National Academy of Sciences, 109, 1718017185.CrossRefGoogle ScholarPubMed
McGowan, P. O., Sasaki, A., D'Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348.CrossRefGoogle ScholarPubMed
McGowan, P. O., Suderman, M., Sasaki, A., Huang, T. C., Hallett, M., Meaney, M. J., et al. (2011). Broad epigenetic signature of maternal care in the brain of adult rats. PLOS ONE, 6, e14739.CrossRefGoogle ScholarPubMed
Meaney, M. J. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience, 24, 11611192.CrossRefGoogle Scholar
Mill, J., Tang, T., Kaminsky, Z., Khare, T., Yazdanpanah, S., Bouchard, L., et al. (2008). Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. American Journal of Human Genetics, 82, 696711.CrossRefGoogle ScholarPubMed
Miller, C. A., Gavin, C. F., White, J. A., Parrish, R. R., Honasoge, A., Yancey, C. R., et al. (2010). Cortical DNA methylation maintains remote memory. Nature Neuroscience, 13, 664666.CrossRefGoogle ScholarPubMed
Mizuno, K., Dempster, E., Mill, J., & Giese, K. P. (2012). Long-lasting regulation of hippocampal Bdnf gene transcription after contextual fear conditioning. Genes, Brain and Behavior, 11, 651659.CrossRefGoogle ScholarPubMed
Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38, 2338.CrossRefGoogle ScholarPubMed
Munoz, P. C., Aspe, M. A., Contreras, L. S., & Palacios, A. G. (2010). Correlations of recognition memory performance with expression and methylation of brain-derived neurotrophic factor in rats. Biological Research, 43, 251258.CrossRefGoogle ScholarPubMed
Münzel, M., Globisch, D., & Carell, T. (2011). 5-hydroxymethylcytosine, the sixth base of the genome. Angewandte Chemie International Edition, 50, 64606468.CrossRefGoogle Scholar
Murgatroyd, C., Patchev, A. V., Wu, Y., Micale, V., Bockmuhl, Y., Fischer, D., et al. (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neuroscience, 12, 15591566.CrossRefGoogle ScholarPubMed
Naumova, O. Y., Lee, M., Koposov, R., Szyf, M., Dozier, M., & Grigorenko, E. L. (2012). Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Development and Psychopathology, 24, 143155.CrossRefGoogle ScholarPubMed
Nemeroff, C. B. (2004). Neurobiological consequences of childhood trauma. Journal of Clinical Psychiatry, 65, 1828.Google ScholarPubMed
Niehrs, C., & Schäfer, A. (2012). Active DNA demethylation by Gadd45 and DNA repair. Trends in Cell Biology, 22, 220227.CrossRefGoogle ScholarPubMed
Nikulina, V., & Widom, C. S. (2013). Child maltreatment and executive functioning in middle adulthood: A prospective examination. Neuropsychology, 27, 417427.CrossRefGoogle ScholarPubMed
Norrholm, S. D., Jovanovic, T., Smith, A., Binder, E. B., Klengel, T., Conneely, K., et al. (2013). Differential genetic and epigenetic regulation of catechol-O-methyl-transferase (COMT) is associated with impaired fear inhibition in posttraumatic stress disorder. Frontiers in Behavioral Neuroscience, 7, 30.CrossRefGoogle Scholar
Numata, S., Ye, T., Hyde, T. M., Guitart-Navarro, X., Tao, R., Wininger, M., et al. (2012). DNA methylation signatures in development and aging of the human prefrontal cortex. American Journal of Human Genetics, 90, 260272.CrossRefGoogle ScholarPubMed
Penner, M. R., Roth, T. L., Chawla, M. K., Hoang, L. T., Roth, E. D., Lubin, F. D., et al. (2011). Age-related changes in Arc transcription and DNA methylation within the hippocampus. Neurobiology of Aging, 32, 21982210.CrossRefGoogle ScholarPubMed
Poulter, M. O., Du, L., Weaver, I. C. G., Palkovits, M., Faludi, G., Merali, Z., et al. (2008). GABAA receptor promoter hypermethylation in suicide brain: Implications for the involvement of epigenetic processes. Biological Psychiatry, 64, 645652.CrossRefGoogle ScholarPubMed
Rajasethupathy, P., Antonov, I., Sheridan, R., Frey, S., Sander, C., Tuschl, T., et al. (2012). A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell, 149, 693707.CrossRefGoogle ScholarPubMed
Ressler, K. J., Mercer, K. B., Bradley, B., Jovanovic, T., Mahan, A., Kerley, K., et al. (2011). Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature, 470, 492497.CrossRefGoogle ScholarPubMed
Roth, T. L., Lubin, F. D., Funk, A. J., & Sweatt, J. D. (2009). Lasting epigenetic influence of early-life adversity on the BDNF gene. Biological Psychiatry, 65, 760769.CrossRefGoogle ScholarPubMed
Roth, T. L., Zoladz, P. R., Sweatt, J. D., & Diamond, D. M. (2011). Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. Journal of Psychiatric Research, 45, 919926.CrossRefGoogle Scholar
Rudenko, A., Dawlaty, M. M., Seo, J., Cheng, A. W., Meng, J., Le, T., et al. (2013). Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron, 79, 11091122.CrossRefGoogle ScholarPubMed
Rusiecki, J. A., Byrne, C., Galdzicki, Z., Srikantan, V., Chen, L., Poulin, M., et al. (2013). PTSD and DNA methylation in select immune function gene promoter regions: A repeated measures case-control study of U.S. military service members. Frontiers in Psychiatry. Advance online publication.CrossRefGoogle ScholarPubMed
Rusiecki, J. A., Chen, L., Srikantan, V., Zhang, L., Yan, L., Polin, M. L., et al. (2012). DNA methylation in repetitive elements and post-traumatic stress disorder: A case–control study of us military service members. Epigenomics, 4, 2940.CrossRefGoogle ScholarPubMed
Saavedra-Rodríguez, L., & Feig, L. A. (2013). Chronic social instability induces anxiety and defective social interactions across generations. Biological Psychiatry, 73, 4453.CrossRefGoogle Scholar
Sabunciyan, S., Aryee, M. J., Irizarry, R. A., Rongione, M., Webster, M. J., Kaufman, W. E., et al. (2012). Genome-wide DNA methylation scan in major depressive disorder. PLOS ONE, 7, e34451.CrossRefGoogle ScholarPubMed
Shirane, K., Toh, H., Kobayashi, H., Miura, F., Chiba, H., Ito, T., et al. (2013). Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CPG methylation and role of DNA methyltransferases. PLOS Genetics, 9, e1003439.CrossRefGoogle ScholarPubMed
Shock, L. S., Thakkar, P. V., Peterson, E. J., Moran, R. G., & Taylor, S. M. (2011). DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proceedings of the National Academy of Sciences, 108, 36303635.CrossRefGoogle ScholarPubMed
Smith, A. K., Conneely, K. N., Kilaru, V., Mercer, K. B., Weiss, T. E., Bradley, B., et al. (2011). Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. American Journal of Medical Genetics, 156B, 700708.Google ScholarPubMed
Song, C.-X., & He, C. (2011). The hunt for 5-hydroxymethylcytosine: The sixth base. Epigenomics, 3, 521523.CrossRefGoogle Scholar
Sperry, D. M., & Widom, C. S. (2013). Child abuse and neglect, social support, and psychopathology in adulthood: A prospective investigation. Child Abuse & Neglect, 37, 415425.CrossRefGoogle ScholarPubMed
Sroufe, L. A., & Rutter, M. (1984). The domain of developmental psychopathology. Child Development, 55, 1729.CrossRefGoogle ScholarPubMed
Suderman, M., Borghol, N., Pappas, J. J., McArdle, W., Racine, A., Hallett, M. T., et al. (2013). Epigenomic socioeconomic studies more similar than different. Proceedings of the National Academy of Sciences, 110, E1246.CrossRefGoogle ScholarPubMed
Suderman, M., McGowan, P. O., Sasaki, A., Huang, T. C., Hallett, M. T., Meaney, M. J., et al. (2012). Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus. Proceedings of the National Academy of Sciences, 109, 1726617272.CrossRefGoogle ScholarPubMed
Sultan, F. A., Wang, J., Tront, J., Liebermann, D. A., & Sweatt, J. D. (2012). Genetic deletion of Gadd45b, a regulator of active DNA demethylation, enhances long-term memory and synaptic plasticity. Journal of Neuroscience, 32, 1705917066.CrossRefGoogle ScholarPubMed
Takei, S., Morinobu, S., Yamamoto, S., Fuchikami, M., Matsumoto, T., & Yamawaki, S. (2011). Enhanced hippocampal BDNF/TrKB signaling in response to fear conditioning in an animal model of posttraumatic stress disorder. Journal of Psychiatric Research, 45, 460468.CrossRefGoogle Scholar
Tohgi, H., Utsugisawa, K., Nagane, Y., Yoshimura, M., Ukitsu, M., & Genda, Y. (1999). The methylation status of cytosines in a tau gene promoter region alters with age to downregulate transcriptional activity in human cerebral cortex. Neuroscience Letters, 275, 8992.CrossRefGoogle Scholar
Tsankova, N. M., Berton, O., Renthal, W., Kumar, A., Neve, R. L., & Nestler, E. J. (2006). Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience, 9, 519525.CrossRefGoogle Scholar
Turecki, G., Ernst, C., Jollant, F., Labonte, B., & Mechawar, N. (2012). The neurodevelopmental origins of suicidal behavior. Trends in Neuroscience, 35, 1423.CrossRefGoogle ScholarPubMed
Turner, J. D., & Muller, C. P. (2005). Structure of the glucocorticoid receptor (NR3C1) gene 5' untranslated region: Identification, and tissue distribution of multiple new human exon 1. Journal of Molecular Endocrinology, 35, 283292.CrossRefGoogle ScholarPubMed
Uchida, S., Hara, K., Kobayashi, A., Otsuki, K., Yamagata, H., Hobara, T., et al. (2011). Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron, 69, 359372.CrossRefGoogle ScholarPubMed
Uddin, M., Aiello, A. E., Wildman, D. E., Koenen, K. C., Pawelec, G., de los Santos, R., et al. (2010). Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proceedings of the National Academy of Sciences, 107, 94709475.CrossRefGoogle ScholarPubMed
Uddin, M., Koenen, K. C., Aiello, A. E., Wildman, D. E., de los Santos, R., & Galea, S. (2011). Epigenetic and inflammatory marker profiles associated with depression in a community-based epidemiologic sample. Psychological Medicine, 41, 9971007.CrossRefGoogle Scholar
Unternaehrer, E., Luers, P., Mill, J., Dempster, E., Meyer, A. H., Staehli, S., et al. (2012). Dynamic changes in DNA methylation of stress-associated genes (OXTR, BDNF) after acute psychosocial stress. Translational Psychiatry, 2, e150.CrossRefGoogle ScholarPubMed
Ursini, G., Bollati, V., Fazio, L., Porcelli, A., Iacovelli, L., Catalani, A., et al. (2011). Stress-related methylation of the catechol-O-methyltransferase val158 allele predicts human prefrontal cognition and activity. Journal of Neuroscience, 31, 66926698.CrossRefGoogle ScholarPubMed
Vijayendran, M., Beach, S., Plume, J. M., Brody, G., & Philibert, R. (2012). Effects of genotype and child abuse on DNA methylation and gene expression at the serotonin transporter. Frontiers in Psychiatry, 3, 55.CrossRefGoogle ScholarPubMed
Vire, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., et al. (2005). The polycomb group protein ezh2 directly controls DNA methylation. Nature, 439, 871874.CrossRefGoogle ScholarPubMed
Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.CrossRefGoogle ScholarPubMed
Weaver, I. C., D'Alessio, A. C., Brown, S. E., Hellstrom, I. C., Dymov, S., Sharma, S., et al. (2007). The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: Altering epigenetic marks by immediate-early genes. Journal of Neuroscience, 27, 17561768.CrossRefGoogle ScholarPubMed
Weaver, I. C., Meaney, M. J., & Szyf, M. (2006). Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proceedings of the National Academy of Sciences, 103, 34803485.CrossRefGoogle ScholarPubMed
West, R., Lee, J., & Maroun, L. (1995). Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer's disease patient. Journal of Molecular Neuroscience, 6, 141146.CrossRefGoogle ScholarPubMed
Widom, C. S., Czaja, S. J., Bentley, T., & Johnson, M. S. (2012). A prospective investigation of physical health outcomes in abused and neglected children: New findings from a 30-year follow-up. American Journal of Public Health, 102, 11351144.CrossRefGoogle Scholar
Williams, K., Christensen, J., & Helin, K. (2012). DNA methylation: Tet proteins-guardians of CpG islands? EMBO Reports, 13, 2835.CrossRefGoogle Scholar
Witzmann, S. R., Turner, J. D., Meriaux, S. B., Meijer, O. C., & Muller, C. P. (2012). Epigenetic regulation of the glucocorticoid receptor promoter 1(7) in adult rats. Epigenetics, 7, 12901301.CrossRefGoogle ScholarPubMed
Yang, B.-Z., Zhang, H., Ge, W., Weder, N., Douglas-Palumberi, H., Perepletchikova, F., et al. (2013). Child abuse and epigenetic mechanisms of disease risk. American Journal of Preventive Medicine, 44, 101107.CrossRefGoogle ScholarPubMed
Yehuda, R., Daskalakis, N. P., Desarnaud, F., Makotkine, I., Lehrner, A. L., Koch, E., et al. (2013). Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Frontiers in Psychiatry, 4, 118.CrossRefGoogle ScholarPubMed
Zhang, T. Y., Hellstrom, I. C., Bagot, R. C., Wen, X., Diorio, J., & Meaney, M. J. (2010). Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus. Journal of Neuroscience, 30, 1313013137.CrossRefGoogle ScholarPubMed
Zill, P., Baghai, T. C., Schüle, C., Born, C., Früstück, C., Büttner, A., et al. (2012). DNA methylation analysis of the angiotensin converting enzyme (ACE) gene in major depression. PLOS ONE, 7, e40479.CrossRefGoogle ScholarPubMed