Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T06:16:58.151Z Has data issue: false hasContentIssue false

Early magnetic resonance imaging biomarkers of schizophrenia spectrum disorders: Toward a fetal imaging perspective

Published online by Cambridge University Press:  03 June 2020

Tayyib T. A. Hayat*
Affiliation:
Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
Musa B. Sami
Affiliation:
Institute of Mental Health, Jubilee Campus, University of Nottingham, Innovation Park, Nottingham, UK
*
Author for correspondence: Tayyib T. A. Hayat, Division of Clinical Neuroscience, University of Nottingham, D floor West Block, Queens Medical Centre, Nottingham, NG7 2UH, UK; E-mail: [email protected].

Abstract

There is mounting evidence to implicate the intrauterine environment as the initial pathogenic stage for neuropsychiatric disease. Recent developments in magnetic resonance imaging technology are making a multimodal analysis of the fetal central nervous system a reality, allowing analysis of structural and functional parameters. Exposures to a range of pertinent risk factors whether preconception or in utero can now be indexed using imaging techniques within the fetus’ physiological environment. This approach may determine the first “hit” required for diseases that do not become clinically manifest until adulthood, and which only have subtle clinical markers during childhood and adolescence. A robust characterization of a “multi-hit” hypothesis may necessitate a longitudinal birth cohort; within this investigative paradigm, the full range of genetic and environmental risk factors can be assessed for their impact on the early developing brain. This will lay the foundation for the identification of novel biomarkers and the ability to devise methods for early risk stratification and disease prevention. However, these early markers must be followed over time: first, to account for neural plasticity, and second, to assess the effects of postnatal exposures that continue to drive the individual toward disease. We explore these issues using the schizophrenia spectrum disorders as an illustrative paradigm. However, given the potential richness of fetal magnetic resonance imaging, and the likely overlap of biomarkers, these concepts may extend to a range of neuropsychiatric conditions.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, K. M., Heuvelman, H. P., Jörgensen, L., Magnusson, C., Wicks, S., Susser, E., … Dalman, C. (2014). Severe bereavement stress during the prenatal and childhood periods and risk of psychosis in later life: Population based cohort study. BMJ, 348. doi:10.1136/bmj.f7679CrossRefGoogle ScholarPubMed
Adityanjee, A., Aderibigbe, Y. A., Theodoridis, D., & Vieweg, W. V. R. (1999). Dementia praecox to schizophrenia: The first 100 years. Psychiatry and Clinical Neurosciences, 53, 537548. doi:10.1046/j.1440-1819.1999.00584.xCrossRefGoogle ScholarPubMed
Adriano, F., Caltagirone, C., & Spalletta, G. (2012). Hippocampal volume reduction in first-episode and chronic schizophrenia: A review and meta-analysis. Neuroscientist, 18, 180200. doi:10.1177/1073858410395147CrossRefGoogle ScholarPubMed
Allievi, A. G., Arichi, T., Tusor, N., Kimpton, J., Arulkumaran, S., Counsell, S. J., … Burdet, E. (2016). Maturation of sensori-motor functional responses in the preterm brain. Cerebral Cortex, 26, 402413. doi:10.1093/cercor/bhv203CrossRefGoogle ScholarPubMed
Allswede, D. M., Buka, S. L., Yolken, R. H., Torrey, E. F., & Cannon, T. D. (2016). Elevated maternal cytokine levels at birth and risk for psychosis in adult offspring. Schizophrenia Research, 172, 4145. doi:10.1016/j.schres.2016.02.022CrossRefGoogle ScholarPubMed
Andreou, C., Nolte, G., Leicht, G., Polomac, N., Hanganu-Opatz, I. L., Lambert, M., … Mulert, C. (2015). Increased resting-state gamma-band connectivity in first-episode schizophrenia. Schizophrenia Bulletin, 41, 930939. doi:10.1093/schbul/sbu121CrossRefGoogle ScholarPubMed
Anticevic, A., Hu, X., Xiao, Y., Hu, J., Li, F., Bi, F., … Gong, Q. (2015). Early-course unmedicated schizophrenia patients exhibit elevated prefrontal connectivity associated with longitudinal change. Journal of Neuroscience, 35, 267286. doi:10.1523/JNEUROSCI.2310-14.2015CrossRefGoogle ScholarPubMed
Arthurs, O. J., Edwards, A., Austin, T., Graves, M. J., & Lomas, D. J. (2012). The challenges of neonatal magnetic resonance imaging. Pediatric Radiology, 42, 11831194. doi:10.1007/s00247-012-2430-2CrossRefGoogle ScholarPubMed
Bao, Y., Ibram, G., Blaner, W. S., Quesenberry, C. P., Shen, L., McKeague, I. W., … Brown, A. S. (2012). Low maternal retinol as a risk factor for schizophrenia in adult offspring. Schizophrenia Research, 137, 159165. doi:10.1016/j.schres.2012.02.004CrossRefGoogle ScholarPubMed
Batalle, D., Edwards, A. D., & O'Muircheartaigh, J. (2017). Annual Research Review: Not just a small adult brain: Understanding later neurodevelopment through imaging the neonatal brain. Journal of Child Psychology and Psychiatry and Allied Disciplines, 59, 350371. doi:10.1111/jcpp.12838CrossRefGoogle ScholarPubMed
Bayer, T. A., Falkai, P., & Maier, W. (1999). Genetic and non-genetic vulnerability factors in schizophrenia: The basis of the “two hit hypothesis.” Journal of Psychiatric Research, 33, 543548. doi:10.1016/S0022-3956(99)00039-4CrossRefGoogle ScholarPubMed
Belbasis, L., Köhler, C. A., Stefanis, N., Stubbs, B., van Os, J., Vieta, E., … Evangelou, E. (2018). Risk factors and peripheral biomarkers for schizophrenia spectrum disorders: An umbrella review of meta-analyses. Acta Psychiatrica Scandinavica, 137, 8897. doi:10.1111/acps.12847CrossRefGoogle ScholarPubMed
Ben-Ari, Y., Khalilov, I., Kahle, K. T., & Cherubini, E. (2012). The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist, 18, 467488. doi:10.1177/1073858412438697CrossRefGoogle ScholarPubMed
Birnbaum, R., & Weinberger, D. R. (2017). Genetic insights into the neurodevelopmental origins of schizophrenia. Nature Reviews Neuroscience, 18, 727740. doi:10.1038/nrn.2017.125CrossRefGoogle ScholarPubMed
Bohlken, M. M., Brouwer, R. M., Mandl, R. C. W., Van Den Heuvel, M. P., Hedman, A. M., De Hert, M., … Hulshoff Pol, H. E. (2016). Structural brain connectivity as a genetic marker for schizophrenia. JAMA Psychiatry, 73, 1119. doi:10.1001/jamapsychiatry.2015.1925CrossRefGoogle Scholar
Brent, B. K., Thermenos, H. W., Keshavan, M. S., & Seidman, L. J. (2013). Gray matter alterations in schizophrenia: High-risk youth and early-onset schizophrenia. Child and Adolescent Psychiatric Clinics of North America, 22, 689714. doi:10.1016/j.chc.2013.06.003CrossRefGoogle ScholarPubMed
Bresnahan, M., Schaefer, C. A., Brown, A. S., & Susser, E. S. (2005). Prenatal determinants of schizophrenia: What we have learned thus far? Epidemiologia E Psichiatria Sociale, 14, 194197. doi:10.1017/S1121189X00007946CrossRefGoogle ScholarPubMed
Brown, A. S., Begg, M. D., Gravenstein, S., Schaefer, C. A., Wyatt, R. J., Bresnahan, M., … Susser, E. S. (2004). Serologic evidence of prenatal influenza in the etiology of schizophrenia. Archives of General Psychiatry, 61, 774780. doi:10.1001/archpsyc.61.8.774CrossRefGoogle ScholarPubMed
Brown, A. S., & Derkits, E. J. (2010). Prenatal infection and schizophrenia: A review of epidemiologic and translational studies. American Journal of Psychiatry, 167, 261280. doi:10.1176/appi.ajp.2009.09030361CrossRefGoogle ScholarPubMed
Brown, A. S., Hooton, J., Schaefer, C. A., Zhang, H., Petkova, E., Babulas, V., … Susser, E. S. (2004). Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. American Journal of Psychiatry, 161, 889895. doi:10.1176/appi.ajp.161.5.889CrossRefGoogle ScholarPubMed
Brown, A., & McGrath, J. J. (2011). The prevention of schizophrenia. Schizophrenia Bulletin, 37, 257261. doi:10.1080/09540260701797803CrossRefGoogle ScholarPubMed
Brown, A. S., & Susser, E. S. (2008). Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophrenia Bulletin, 34, 10541063. doi:10.1093/schbul/sbn096CrossRefGoogle ScholarPubMed
Bryant, M., Santorelli, G., Fairley, L., West, J., Lawlor, D. A., Bhopal, R., … Born in Bradford Childhood Obesity Scientific Group. (2013). Design and characteristics of a new birth cohort, to study the early origins and ethnic variation of childhood obesity: The {BiB1000} study. Longitudinal Life Course Studies, 4, 119135.Google Scholar
Bui, T., Daire, J.-L., Chalard, F., Zaccaria, I., Alberti, C., Elmaleh, M., … Sebag, G. (2006). Microstructural development of human brain assessed in utero by diffusion tensor imaging. Pediatric Radiology, 36, 11331140. doi:10.1007/s00247-006-0266-3CrossRefGoogle ScholarPubMed
Cannon, T. D., van Erp, T. G. M., Rosso, I. M., Huttunen, M., Lönnqvist, J., Pirkola, T., … Standertskjöld-Nordenstam, C.-G. (2002). Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Archives of General Psychiatry, 59, 35. doi:10.1001/archpsyc.59.1.35CrossRefGoogle ScholarPubMed
Cannon, T. D., Yolken, R., Buka, S., & Torrey, E. F. (2008). Decreased neurotrophic response to birth hypoxia in the etiology of schizophrenia. Biological Psychiatry, 64, 797802. doi:10.1016/j.biopsych.2008.04.012CrossRefGoogle ScholarPubMed
Chang, C. H., Yu, C. H., Chang, F. M., Ko, H. C., & Chen, H. Y. (2003). The assessment of normal fetal brain volume by 3-D ultrasound. Ultrasound in Medicine and Biology, 29, 12671272. doi:10.1016/S0301-5629(03)00989-XCrossRefGoogle ScholarPubMed
Clarke, M. C., Kelleher, I., Clancy, M., & Cannon, M. (2012). Predicting risk and the emergence of schizophrenia. Psychiatric Clinics of North America, 35, 585610. doi:10.1016/j.psc.2012.06.003CrossRefGoogle ScholarPubMed
Clarke, M. C., Tanskanen, A., Huttunen, M., Whittaker, J. C., & Cannon, M. (2009). Evidence for an interaction between familial liability and prenatal exposure to infection in the causation of schizophrenia. American Journal of Psychiatry, 166, 10251030. doi:10.1176/appi.ajp.2009.08010031CrossRefGoogle ScholarPubMed
Class, Q. A., Abel, K. M., Khashan, A. S., Rickert, M. E., Dalman, C., Larsson, H., … D'Onofrio, B. M. (2014). Offspring psychopathology following preconception, prenatal and postnatal maternal bereavement stress. Psychological Medicine, 44, 7184. doi:10.1017/S0033291713000780CrossRefGoogle ScholarPubMed
Clouchoux, C., Kudelski, D., Gholipour, A., Warfield, S. K., Viseur, S., Bouyssi-Kobar, M., … Limperopoulos, C. (2012). Quantitative in vivo {MRI} measurement of cortical development in the fetus. Brain Structure and Function, 217, 127139.CrossRefGoogle ScholarPubMed
Cohort Strategic Review Subgroup. (2014). Maximising the value of {UK} population cohorts. London: UK Medical Research Council.Google Scholar
Crespo-Facorro, B., Roiz-Santiáñez, R., Párez-Iglesias, R., Rodriguez-Sanchez, J. M., Mata, I., Tordesillas-Gutierrez, D., … Vázquez-Barquero, J. L. (2011). Global and regional cortical thinning in first-episode psychosis patients: Relationships with clinical and cognitive features. Psychological Medicine, 41, 14491460. doi:10.1017/S003329171000200XCrossRefGoogle ScholarPubMed
Cross-Disorder Group of the Psychiatric Genomics Consortium. (2013). Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet, 381, 13711379. doi:10.1016/S0140-6736(12)62129-1CrossRefGoogle Scholar
Dalman, C. (2001). Signs of asphyxia at birth and risk of schizophrenia: Population-based case-control study. British Journal of Psychiatry, 179, 403408. doi:10.1192/bjp.179.5.403CrossRefGoogle ScholarPubMed
Davies, C., Cipriani, A., Ioannidis, J. P. A., Radua, J., Stahl, D., Provenzani, U., & Mcguire, P. (2018). Lack of evidence to favor specific preventive interventions in psychosis: A network meta-analysis. World Psychiatry, 17, 196209.CrossRefGoogle ScholarPubMed
den Bergh, B. R. H., van den Heuvel, M. I., Lahti, M., Braeken, M., de Rooij, S. R., Entringer, S., … Schwab, M. (2017). Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neuroscience Biobehavior Review. Advance online publication.Google Scholar
Department of Health. (2013). Annual Report of the Chief Medical Officer 2012: “Our Children Deserve Better: Prevention Pays.” Retrieved from https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/255237/2901304_CMO_complete_low_res_accessible.pdfGoogle Scholar
De Wilde, J. P., Rivers, A. W., & Price, D. L. (2005). A review of the current use of magnetic resonance imaging in pregnancy and safety implications for the fetus. Progress in Biophysics and Molecular Biology, 87, 335353. doi:10.1016/j.pbiomolbio.2004.08.010CrossRefGoogle ScholarPubMed
Douaud, G., MacKay, C., Andersson, J., James, S., Quested, D., Ray, M. K., … James, A. (2009). Schizophrenia delays and alters maturation of the brain in adolescence. Brain, 132, 24372448. doi:10.1093/brain/awp126CrossRefGoogle ScholarPubMed
Doyle, A., & Golding, J. (2009). The costing and funding of longitudinal birth cohort studies. Paediatric and Perinatal Epidemiology, 23(Suppl. 1), 8692.CrossRefGoogle ScholarPubMed
Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Hüppi, P. S., & Hertz-Pannier, L. (2014). The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience, 276, 4348. doi:10.1016/j.neuroscience.2013.12.044CrossRefGoogle ScholarPubMed
Egerton, A., Modinos, G., Ferrera, D., & McGuire, P. (2017). Neuroimaging studies of GABA in schizophrenia: A systematic review with meta-analysis. Translational Psychiatry, 7, e1147. doi:10.1038/tp.2017.124CrossRefGoogle ScholarPubMed
Ellman, L. M., Deicken, R. F., Vinogradov, S., Kremen, W. S., Poole, J. H., Kern, D. M., … Brown, A. S. (2010). Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophrenia Research, 121, 4654. doi:10.1016/j.schres.2010.05.014CrossRefGoogle ScholarPubMed
Eyre, J. A., Miller, S., Clowry, G. J., Conway, E. A., & Watts, C. (2000). Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain, 123, 5164. doi:10.1093/brain/123.1.51CrossRefGoogle ScholarPubMed
Feinberg, I. (1982). Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 17, 319334. doi:10.1016/0022-3956(82)90038-3CrossRefGoogle ScholarPubMed
Ferrazzi, G., Kuklisova Murgasova, M., Arichi, T., Malamateniou, C., Fox, M. J., Makropoulos, A., … Hajnal, J. V. (2014). Resting state fMRI in the moving fetus: A robust framework for motion, bias field and spin history correction. NeuroImage, 101, 555568. doi:10.1016/j.neuroimage.2014.06.074CrossRefGoogle ScholarPubMed
Fineberg, A. M., Ellman, L. M., Schaefer, C. A., Maxwell, S. D., Shen, L., Chaudhury, N. H., … Brown, A. S. (2016). Fetal exposure to maternal stress and risk for schizophrenia spectrum disorders among offspring: Differential influences of fetal sex. Psychiatry Research, 236, 9197. doi:10.1016/j.psychres.2015.12.026CrossRefGoogle ScholarPubMed
Fitzsimmons, J., Kubicki, M., & Shenton, M. E. (2013). Review of functional and anatomical brain connectivity findings in schizophrenia. Current Opinions in Psychiatry, 26, 172187.CrossRefGoogle Scholar
Fornito, A., & Bullmore, E. T. (2015). Reconciling abnormalities of brain network structure and function in schizophrenia. Current Opinion in Neurobiology, 30, 4450. doi:10.1016/j.conb.2014.08.006CrossRefGoogle Scholar
Fornito, A., Harrison, B. J., Goodby, E., Dean, A., Ooi, C., Nathan, P. J., … Bullmore, E. T. (2013). Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis. JAMA Psychiatry, 70, 11431151. doi:10.1001/jamapsychiatry.2013.1976CrossRefGoogle Scholar
Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62, 22982314. doi:10.1016/j.neuroimage.2011.12.090CrossRefGoogle ScholarPubMed
Forstner, A. J., Hecker, J., Hofmann, A., Maaser, A., Reinbold, C. S., Mühleisen, T. W., … Nöthen, M. M. (2017). Identification of shared risk loci and pathways for bipolar disorder and schizophrenia. PLOS ONE, 12, e0171898. doi:10.1371/journal.pone.0171595CrossRefGoogle Scholar
Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30, 115125. doi:10.1016/S0920-9964(97)00140-0CrossRefGoogle ScholarPubMed
Friston, K., Brown, H. R., Siemerkus, J., & Stephan, K. E. (2016). The dysconnection hypothesis. Schizophrenia Research, 176, 8394. doi:10.1016/j.schres.2016.07.014CrossRefGoogle ScholarPubMed
Gandal, M. J., Haney, J. R., Parikshak, N. N., Leppa, V., Ramaswami, G., Hartl, C., … Geschwind, D. H. (2018). Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science, 359, 693697. doi:10.1126/science.aad6469CrossRefGoogle ScholarPubMed
Garel, C., Chantrel, E., Brisse, H., Elmaleh, M., Luton, D., Oury, J. F., … Hassan, M. (2001). Fetal cerebral cortex: Normal gestational landmarks identified using prenatal {MR} imaging. American Journal of Neuroradiology, 22, 184189.Google ScholarPubMed
Gatt, J. M., Burton, K. L. O., Williams, L. M., & Schofield, P. R. (2015). Specific and common genes implicated across major mental disorders: A review of meta-analysis studies. Journal of Psychiatric Research, 60, 113. doi:10.1016/j.jpsychires.2014.09.014CrossRefGoogle ScholarPubMed
Geddes, J. R., & Lawrie, S. M. (1995). Obstetric complications and schizophrenia: A meta-analysis. British Journal of Psychiatry, 167, 786793. doi:10.1192/bjp.167.6.786CrossRefGoogle ScholarPubMed
Giegling, I., Hosak, L., Mössner, R., Serretti, A., Bellivier, F., Claes, S., … Rujescu, D. (2017). Genetics of schizophrenia: A consensus paper of the WFSBP Task Force on Genetics. World Journal of Biological Psychiatry, 18, 492505. doi:10.1080/15622975.2016.1268715CrossRefGoogle ScholarPubMed
Gilmore, J. H., & Jarskog, L. F. (1997). Exposure to infection and brain development: Cytokines in the pathogenesis of schizophrenia. Schizophrenia Research, 24, 365367. doi:10.1016/S0920-9964(96)00123-5CrossRefGoogle ScholarPubMed
Gilmore, J. H., Knickmeyer, R. C., & Gao, W. (2018). Imaging structural and functional brain development in early childhood. Nature Reviews Neuroscience, 19, 123137. doi:10.1038/nrn.2018.1CrossRefGoogle ScholarPubMed
Gilmore, J. H., Schmitt, J. E., Knickmeyer, R. C., Smith, J. K., Lin, W., Styner, M., … Neale, M. C. (2010). Genetic and environmental contributions to neonatal brain structure: A twin study. Human Brain Mapping, 31, 11741182. doi:10.1002/hbm.20926Google ScholarPubMed
Gilmore, J. H., Smith, L. C., Wolfe, H. M., Hertzberg, B. S., Smith, J. K., Chescheir, N. C., … Gerig, G. (2008). Prenatal mild ventriculomegaly predicts abnormal development of the neonatal brain. Biological Psychiatry, 64, 10691076. doi:10.1016/j.biopsych.2008.07.031CrossRefGoogle ScholarPubMed
Girard, N., Fogliarini, C., Viola, A., Confort-Gouny, S., Le Fur, Y., Viout, P., … Cozzone, P. (2006). {MRS} of normal and impaired fetal brain development. European Journal of Radiology, 57, 217225.CrossRefGoogle ScholarPubMed
Golding, J. (2009). Preparation, piloting and validation for a longitudinal birth cohort study. Paediatric and Perinatal Epidemiology, 23 (Suppl. 1), 201212.CrossRefGoogle ScholarPubMed
Griffiths, P. D., Bradburn, M., Campbell, M. J., Cooper, C. L., Graham, R., Jarvis, D., … MERIDIAN collaborative group. (2017). Use of {MRI} in the diagnosis of fetal brain abnormalities in utero ({MERIDIAN)}: A multicentre, prospective cohort study. Lancet, 389, 538546.CrossRefGoogle Scholar
Grossman, R., Hoffman, C., Mardor, Y., & Biegon, A. (2006). Quantitative {MRI} measurements of human fetal brain development in utero. Neuroimage, 33, 463470.CrossRefGoogle ScholarPubMed
Gu, D. S., Shambaugh, G. E., Metzger, B. E., Unterman, T. G., & Radosevich, J. A. (1992). Retardation of fetal brain cell growth during maternal starvation: Circulating factors versus altered cellular response. Neurochemical Research, 17, 529537. doi:10.1007/BF00968779CrossRefGoogle ScholarPubMed
Guloksuz, S., Pries, L. K., Delespaul, P., Kenis, G., Luykx, J. J., Lin, B. D., … van Os, J. (2019). Examining the independent and joint effects of molecular genetic liability and environmental exposures in schizophrenia: Results from the EUGEI study. World Psychiatry, 18, 173182. doi:10.1002/wps.20629CrossRefGoogle ScholarPubMed
Gur, R. E., & Gur, R. C. (2010). Functional magnetic resonance imaging in schizophrenia. Dialogues in Clinical Neuroscience, 12, 333343. doi:10.1017/CBO9780511781698.013Google Scholar
Habas, P. A., Scott, J. A., Roosta, A., Rajagopalan, V., Kim, K., Rousseau, F., … Studholme, C. (2012). Early folding patterns and asymmetries of the normal human brain detected from in utero {MRI}. Cerebral Cortex, 22, 1325.CrossRefGoogle ScholarPubMed
Haijma, S. V., Van Haren, N., Cahn, W., Koolschijn, P. C. M. P., Hulshoff Pol, H. E., & Kahn, R. S. (2013). Brain volumes in schizophrenia: A meta-analysis in over 18 000 subjects. Schizophrenia Bulletin, 39, 11291138. doi:10.1093/schbul/sbs118CrossRefGoogle ScholarPubMed
Hardy, J. B. (2003). The Collaborative Perinatal Project: Lessons and legacy. Annals of Epidemiology, 13, 303311. doi:10.1016/S1047-2797(02)00479-9CrossRefGoogle ScholarPubMed
Harper, S., Towers-Evans, H., & MacCabe, J. (2015). The aetiology of schizophrenia: What have the Swedish Medical Registers taught us? Social Psychiatry and Psychiatric Epidemiology, 50, 14711479. doi:10.1007/s00127-015-1081-7CrossRefGoogle ScholarPubMed
Hayat, T. T. A., Martinez-Biarge, M., Kyriakopoulou, V., Hajnal, J. V., & Rutherford, M. A. (2018). Neurodevelopmental correlates of fetal motor behavior assessed using cine MR imaging. American Journal of Neuroradiology, 39, 15191522.Google ScholarPubMed
Hayat, T. T. A., Nihat, A., Martinez-Biarge, M., McGuinness, A., Allsop, J. M., Hajnal, J. V., & Rutherford, M. A. (2011). Optimization and initial experience of a multisection balanced steady-state free precession cine sequence for the assessment of fetal behavior in utero. American Journal of Neuroradiology, 32, 331338.CrossRefGoogle ScholarPubMed
Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., … Lumey, L. H. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences, 105, 1704617049. doi:10.1073/pnas.0806560105CrossRefGoogle ScholarPubMed
Hemb, M., Cammarota, M., & Nunes, M. L. (2010). Effects of early malnutrition, isolation and seizures on memory and spatial learning in the developing rat. International Journal of Developmental Neuroscience, 28, 303307. doi:10.1016/j.ijdevneu.2010.03.001CrossRefGoogle ScholarPubMed
Hillenbrand, C. M., & Reykowski, A. (2012). MR imaging of the newborn: A technical perspective. Magnetic Resonance Imaging Clinics of North America, 20, 6379. doi:10.1016/j.mric.2011.10.002CrossRefGoogle ScholarPubMed
Hjorthøj, C., Stürup, A. E., McGrath, J., & Nordentoft, M. (2017). Years of potential life lost and life expectancy in schizophrenia: A systematic review and meta-analysis. Lancet Psychiatry, 4, 295301.CrossRefGoogle ScholarPubMed
Howes, O. D., Bose, S. K., Turkheimer, F., Valli, I., Egerton, A., Valmaggia, L. R., … McGuire, P. (2011). Dopamine synthesis capacity before onset of psychosis: A prospective [18F]-DOPA PET imaging study. American Journal of Psychiatry, 168, 13111317. doi:10.1176/appi.ajp.2011.11010160CrossRefGoogle ScholarPubMed
Howes, O. D., Kambeitz, J., Kim, E., Stahl, D., Slifstein, M., Abi-Dargham, A., & Kapur, S. (2012). The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Archives of General Psychiatry, 69, 776786. doi:10.1001/archgenpsychiatry.2012.169CrossRefGoogle ScholarPubMed
Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: Version III—The final common pathway. Schizophrenia Bulletin, 35, 549562. doi:10.1093/schbul/sbp006CrossRefGoogle ScholarPubMed
Huang, H., Zhang, J., Wakana, S., Zhang, W., Ren, T., Richards, L. J., … Mori, S. (2006). White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage, 33, 2738.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex—Developmental changes and effects of aging. Brain Research, 163, 195205. doi:10.1016/0006-8993(79)90349-4Google ScholarPubMed
Huttunen, M. O., & Niskanen, P. (1978). Prenatal loss of father and psychiatric disorders. Archives of General Psychiatry, 35, 429431. doi:10.1001/archpsyc.1978.01770280039004CrossRefGoogle ScholarPubMed
Insel, T. R. (2010). Rethinking schizophrenia. Nature, 468, 187193. doi:10.1038/nature09552CrossRefGoogle ScholarPubMed
Isohanni, M., Murray, G. K., Jokelainen, J., Croudace, T., & Jones, P. B. (2004). The persistence of developmental markers in childhood and adolescence and risk for schizophrenic psychoses in adult life. A 34-year follow-up of the Northern Finland 1966 birth cohort. Schizophrenia Research, 71, 213225. doi:10.1016/j.schres.2004.03.008CrossRefGoogle ScholarPubMed
Jääskeläinen, E., Haapea, M., Rautio, N., Juola, P., Penttilä, M., Nordström, T., … Miettunen, J. (2015). Twenty years of schizophrenia research in the Northern Finland Birth Cohort 1966: A systematic review. Schizophrenia Research and Treatment, 2015, 12. doi:10.1155/2015/524875CrossRefGoogle ScholarPubMed
Jacka, F. N., & Berk, M. (2014). Prevention of schizophrenia—Will a broader prevention agenda support this aim? Schizophrenia Bulletin, 40, 237239. doi:10.1093/schbul/sbt202CrossRefGoogle ScholarPubMed
Jacob, F. D., Habas, P. A., Kim, K., Corbett-Detig, J., Xu, D., Studholme, C., & Glenn, O. A. (2011). Fetal hippocampal development: Analysis by magnetic resonance imaging volumetry. Pediatric Research, 69(5, Pt. 1), 425429.CrossRefGoogle ScholarPubMed
Jacobi, W., & Winkler, H. (1927). Encephalographische Studien an chronisch Schizophrenen. Archiv Für Psychiatrie Und Nervenkrankheiten, 81, 299332. doi:10.1007/BF01825649CrossRefGoogle Scholar
Jansen, P. R., Polderman, T. J. C., Bolhuis, K., van der Ende, J., Jaddoe, V. W. V., Verhulst, F. C., … Tiemeier, H. (2018). Polygenic scores for schizophrenia and educational attainment are associated with behavioural problems in early childhood in the general population. Journal of Child Psychology and Psychiatry and Allied Disciplines, 59, 3947. doi:10.1111/jcpp.12759CrossRefGoogle ScholarPubMed
Jauhar, S., Nour, M. M., Veronese, M., Rogdaki, M., Bonoldi, I., Azis, M., … Howes, O. D. (2017). A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and schizophrenia. JAMA Psychiatry, 74, 12061213. doi:10.1001/jamapsychiatry.2017.2943CrossRefGoogle Scholar
Johnstone, E., Frith, C. D., Crow, T. J., Husband, J., & Kreel, L. (1976). Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet, 308, 924926. doi:10.1016/S0140-6736(76)90890-4CrossRefGoogle Scholar
Jones, P., Murray, R., Jones, P., Rodgers, B., & Marmot, M. (1994). Child developmental risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet, 344, 13981402. doi:10.1016/S0140-6736(94)90569-XCrossRefGoogle ScholarPubMed
Kahn, R. S., Sommer, I. E., Murray, R. M., Meyer-Lindenberg, A., Weinberger, D. R., Cannon, T. D., … Insel, T. R. (2015). Schizophrenia. Nature Reviews Disease Primers, 1. doi:10.1038/nrdp.2015.67CrossRefGoogle ScholarPubMed
Kang, D.-H., Kim, S. H., Kim, C.-W., Choi, J.-S., Jang, J. H., Jung, M. H., … Kwon, J. S. (2008). Thalamus surface shape deformity in obsessive-compulsive disorder and schizophrenia. Neuroreport, 19, 609613.CrossRefGoogle Scholar
Khan, S., Vasung, L., Marami, B., Rollins, C. K., Afacan, O., Ortinau, C. M., … Gholipour, A. (2019). Fetal brain growth portrayed by a spatiotemporal diffusion tensor MRI atlas computed from in utero images. NeuroImage, 185, 593608. doi:10.1016/j.neuroimage.2018.08.030CrossRefGoogle ScholarPubMed
Khashan, A. S., Abel, K. M., McNamee, R., Pedersen, M. G., Webb, R. T., Baker, P. N., … Mortensen, P. B. (2008). Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Archives of General Psychiatry, 65, 146152. doi:10.1001/archgenpsychiatry.2007.20CrossRefGoogle ScholarPubMed
Kirkbride, J. B., Susser, E., Kundakovic, M., Kresovich, J. K., Davey Smith, G., & Relton, C. L. (2012). Prenatal nutrition, epigenetics and schizophrenia risk: Can we test causal effects? Epigenomics, 4, 303315. doi:10.2217/epi.12.20CrossRefGoogle ScholarPubMed
Klebanoff, M. A. (2009). The Collaborative Perinatal Project: A 50-year retrospective. Paediatric and Perinatal Epidemiology, 23, 28. doi:10.1111/j.1365-3016.2008.00984.xCrossRefGoogle ScholarPubMed
Kraepelin, E., & Barclay, R. M. (1919). Dementia praecox and paraphrenia [English translation]. Retrieved from https://archive.org/stream/dementiapraecoxp00kraeiala#page/224/mode/2upGoogle Scholar
Kyriakopoulou, V., Vatansever, D., Davidson, A., Patkee, P., Elkommos, S., Chew, A., … Rutherford, M. A. (2017). Normative biometry of the fetal brain using magnetic resonance imaging. Brain Structure and Function, 222, 22952307.CrossRefGoogle ScholarPubMed
Kyriakopoulou, V., Vatansever, D., Elkommos, S., Dawson, S., McGuinness, A., Allsop, J., … Rutherford, M. (2014). Cortical overgrowth in fetuses with isolated ventriculomegaly. Cerebral Cortex, 24, 21412150.CrossRefGoogle ScholarPubMed
Laurens, K. R., Luo, L., Matheson, S. L., Carr, V. J., Raudino, A., Harris, F., & Green, M. J. (2015). Common or distinct pathways to psychosis? A systematic review of evidence from prospective studies for developmental risk factors and antecedents of the schizophrenia spectrum disorders and affective psychoses. BMC Psychiatry, 15, 205. doi:10.1186/s12888-015-0562-2CrossRefGoogle ScholarPubMed
Leithner, K., Pörnbacher, S., Assem-Hilger, E., Krampl-Bettelheim, E., & Prayer, D. (2009). Prenatal magnetic resonance imaging: Towards optimized patient information. Ultrasound in Obstetrics and Gynecology, 34, 182187. doi:10.1002/uog.6391CrossRefGoogle ScholarPubMed
Leithner, K., Pörnbacher, S., Assem-Hilger, E., Krampl, E., Ponocny-Seliger, E., & Prayer, D. (2008). Psychological reactions in women undergoing fetal magnetic resonance imaging. Obstetrics and Gynecology, 111, 396402. doi:10.1097/AOG.0b013e3181610281CrossRefGoogle ScholarPubMed
Li, G., Wang, L., Shi, F., Lyall, A. E., Ahn, M., Peng, Z., … Shen, D. (2016). Cortical thickness and surface area in neonates at high risk for schizophrenia. Brain Structure and Function, 221, 447461. doi:10.1007/s00429-014-0917-3CrossRefGoogle ScholarPubMed
Lie, M. L. S., Graham, R. H., Robson, S. C., & Griffiths, P. D. (2018). MRI for fetal developmental brain abnormalities: Perspectives from the pregnant patient. Qualitative Health Research, 28, 12951307. doi:10.1177/1049732318764390CrossRefGoogle ScholarPubMed
Link, D., Braginsky, M. B., Joskowicz, L., Ben Sira, L., Harel, S., Many, A., … Ben Bashat, D. (2017). Automatic measurement of fetal brain development from magnetic resonance imaging: New reference data. Fetal Diagnosis and Therapy, 43, 113122.CrossRefGoogle ScholarPubMed
Lyall, A. E., Woolson, S., Wolfe, H. M., Goldman, B. D., Reznick, J. S., Hamer, R. M., … Gilmore, J. H. (2012). Prenatal isolated mild ventriculomegaly is associated with persistent ventricle enlargement at ages 1 and 2. Early Human Development, 88, 691698. doi:10.1016/j.earlhumdev.2012.02.003CrossRefGoogle ScholarPubMed
Malaspina, D., Corcoran, C., Kleinhaus, K. R., Perrin, M. C., Fennig, S., Nahon, D., … Harlap, S. (2008). Acute maternal stress in pregnancy and schizophrenia in offspring: A cohort prospective study. BMC Psychiatry, 8. doi:10.1186/1471-244X-8-71CrossRefGoogle ScholarPubMed
Mamah, D., Harms, M. P., Wang, L., Barch, D., Thompson, P., Kim, J., … Csernansky, J. G. (2008). Basal ganglia shape abnormalities in the unaffected siblings of schizophrenia patients. Biological Psychiatry, 64, 111120.CrossRefGoogle ScholarPubMed
Marami, B., Mohseni Salehi, S. S., Afacan, O., Scherrer, B., Rollins, C. K., Yang, E., … Gholipour, A. (2017). Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis. Neuroimage, 156, 475488.CrossRefGoogle ScholarPubMed
Marriott, A. L., Rojas-Mancilla, E., Morales, P., Herrera-Marschitz, M., & Tasker, R. A. (2017). Models of progressive neurological dysfunction originating early in life. Progress in Neurobiology, 155, 220. doi:10.1016/j.pneurobio.2015.10.001CrossRefGoogle ScholarPubMed
Marshall, C. R., Howrigan, D. P., Merico, D., Thiruvahindrapuram, B., Wu, W., Greer, D. S., … Sebat, J. (2017). Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 49, 2735. doi:10.1038/ng.3725CrossRefGoogle ScholarPubMed
Marshall, M., Lewis, S., Lockwood, A., Drake, R., Jones, P., & Croudace, T. (2005). Association between duration of untreated psychosis and outcome in cohorts of first-episode patients. Archives of General Psychiatry, 62, 975983. doi:10.1001/archpsyc.62.9.975CrossRefGoogle ScholarPubMed
Marsman, A., Van Den Heuvel, M. P., Klomp, D. W. J., Kahn, R. S., Luijten, P. R., & Hulshoff Pol, H. E. (2013). Glutamate in schizophrenia: A focused review and meta-analysis of 1H-MRS studies. Schizophrenia Bulletin, 39, 120129. doi:10.1093/schbul/sbr069CrossRefGoogle Scholar
McGuire, P. K., & Frith, C. D. (1996). Disordered functional connectivity in schizophrenia. Psychological Medicine, 26, 663667.CrossRefGoogle Scholar
McGuire, P., Sato, J. R., Mechelli, A., Jackowski, A., Bressan, R. A., & Zugman, A. (2015). Can neuroimaging be used to predict the onset of psychosis? Lancet Psychiatry, 2, 11171122. doi:10.1016/S2215-0366(15)00308-9CrossRefGoogle Scholar
Mcintosh, A. M., Owens, D. C., Moorhead, W. J., Whalley, H. C., Stanfield, A. C., Hall, J., … Lawrie, S. M. (2011). Longitudinal volume reductions in people at high genetic risk of schizophrenia as they develop psychosis. Biological Psychiatry, 69, 953958. doi:10.1016/j.biopsych.2010.11.003CrossRefGoogle ScholarPubMed
Merritt, K., Egerton, A., Kempton, M. J., Taylor, M. J., & McGuire, P. K., (2016). Nature of glutamate alterations in schizophrenia. JAMA Psychiatry, 52, 9981007. doi:10.1001/jamapsychiatry.2016.0442Google Scholar
Mollon, J., David, A. S., Zammit, S., Lewis, G., & Reichenberg, A. (2018). Course of cognitive development from infancy to early adulthood in the psychosis spectrum. JAMA Psychiatry, 75, 270279. doi:10.1001/jamapsychiatry.2017.4327CrossRefGoogle ScholarPubMed
Moore, K., Manlove, J., Richter, K., Halle, T., Le Menestrel, S., Zaslow, M., … Bridges, L. (1999). A birth cohort study: Conceptual and design considerations and rationale. Washington, DC: US Department of Education, National Center for Education Statistics.Google Scholar
Mullins, P. G., McGonigle, D. J., O'Gorman, R. L., Puts, N. A. J., Vidyasagar, R., Evans, C. J., … Wilson, M. (2014). Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. NeuroImage, 86, 4352. doi:10.1016/j.neuroimage.2012.12.004CrossRefGoogle ScholarPubMed
Murphy, V., Short, S., Cornea, E., Goldman, B., Li, G., Shen, D., & Gilmore, J. H. (2018). Early brain and cognitive development in children at risk for schizophrenia. Schizophrenia Bulletin, 44(Suppl. 1), S103S104.CrossRefGoogle Scholar
Murray, R. M., & Lewis, S. W. (1987). Is schizophrenia a neurodevelopmental disorder? British Medical Journal, 295, 681682.CrossRefGoogle ScholarPubMed
Nadel, A. S., & Benacerraf, B. R. (1995). Lateral ventricular atrium: Larger in male than female fetuses. International Journal of Gynaecology and Obstetrics, 51, 123126.CrossRefGoogle ScholarPubMed
Narr, K. L., Toga, A. W., Szeszko, P., Thompson, P. M., Woods, R. P., Robinson, D., … Bilder, R. M. (2005). Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biological Psychiatry, 58, 3240. doi:10.1016/j.biopsych.2005.03.043CrossRefGoogle ScholarPubMed
Niarchou, M., Zammit, S., & Lewis, G. (2015). The Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort as a resource for studying psychopathology in childhood and adolescence: A summary of findings for depression and psychosis. Social Psychiatry and Psychiatric Epidemiology, 50, 10171027. doi:10.1007/s00127-015-1072-8CrossRefGoogle ScholarPubMed
Oliver, D., Davies, C., Crossland, G., Lim, S., Gifford, G., McGuire, P., & Fusar-Poli, P. (2018). Can we reduce the duration of untreated psychosis? A systematic review and meta-analysis of controlled interventional studies. Schizophrenia Bulletin, 44, 13621372. doi:10.1093/schbul/sbx166CrossRefGoogle ScholarPubMed
O'Neill, A., Mechelli, A., & Bhattacharyya, S. (2018). Dysconnectivity of large-scale functional networks in early psychosis: A meta-analysis. Schizophrenia Bulletin, 45, 579590. doi:10.1093/schbul/sby094CrossRefGoogle Scholar
O'Rahilly, R., & Muller, F. (1990). Ventricular system and choroid plexuses of the human brain during the embryonic period proper. American Journal of Anatomy, 189, 285302.CrossRefGoogle ScholarPubMed
Ordóñez, A. E., Sastry, N. V., & Gogtay, N. (2015). Functional and clinical insights from neuroimaging studies in childhood-onset schizophrenia. CNS Spectrums, 20, 442450. doi:10.1017/S1092852915000437CrossRefGoogle ScholarPubMed
Orliac, F., Delamillieure, P., Delcroix, N., Naveau, M., Brazo, P., Razafimandimby, A., … Joliot, M. (2017). Network modeling of resting state connectivity points towards the bottom up theories of schizophrenia. Psychiatry Research—Neuroimaging, 266, 1926. doi:10.1016/j.pscychresns.2017.04.003CrossRefGoogle ScholarPubMed
Palaniyappan, L., Das, T. K., Winmill, L., Hough, M., & James, A. (2019). Progressive post-onset reorganisation of MRI-derived cortical thickness in adolescents with schizophrenia. Schizophrenia Research. Advance online publication. doi:10.1016/j.schres.2019.01.041CrossRefGoogle ScholarPubMed
Palaniyappan, L., Marques, T. R., Taylor, H., Mondelli, V., Reinders, A. A. T. S., Bonaccorso, S., … Dazzan, P. (2016). Globally efficient brain organization and treatment response in psychosis: A connectomic study of gyrification. Schizophrenia Bulletin, 42, 14461456. doi:10.1093/schbul/sbw069CrossRefGoogle ScholarPubMed
Palaniyappan, L., Park, B., Balain, V., Dangi, R., & Liddle, P. (2015). Abnormalities in structural covariance of cortical gyrification in schizophrenia. Brain Structure and Function, 220, 20592071. doi:10.1007/s00429-014-0772-2CrossRefGoogle Scholar
Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., … McGuire, P. K. (2003). Neuroanatomical abnormalities before and after onset of psychosis: A cross-sectional and longitudinal MRI comparison. Lancet, 361, 281288. doi:10.1016/S0140-6736(03)12323-9CrossRefGoogle ScholarPubMed
Pathak, S., & Lees, C. (2009). Ultrasound structural fetal anomaly screening: An update. Archives of Disease in Childhood: Fetal and Neonatal Edition, 94, F384F390.CrossRefGoogle ScholarPubMed
Patterson, P. H. (2009). Immune involvement in schizophrenia and autism: Etiology, pathology and animal models. Behavioural Brain Research, 204, 313321. doi:10.1016/j.bbr.2008.12.016CrossRefGoogle ScholarPubMed
Penttila, M., Jaaskelainen, E., Hirvonen, N., Isohanni, M., & Miettunen, J. (2014). Duration of untreated psychosis as predictor of long-term outcome in schizophrenia: Systematic review and meta-analysis. British Journal of Psychiatry, 205, 8894.CrossRefGoogle ScholarPubMed
Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P., & Mechelli, A. (2011). Dysconnectivity in schizophrenia: Where are we now? Neuroscience and Biobehavioral Reviews, 35, 11101124. doi:10.1016/j.neubiorev.2010.11.004CrossRefGoogle ScholarPubMed
Poels, E. M. P., Kegeles, L. S., Kantrowitz, J. T., Slifstein, M., Javitt, D. C., Lieberman, J. A., … Girgis, R. R. (2014). Imaging glutamate in schizophrenia: Review of findings and implications for drug discovery. Molecular Psychiatry, 19, 2029. doi:10.1038/mp.2013.136CrossRefGoogle ScholarPubMed
Rados, M., Judas, M., & Kostović, I. (2006). In vitro {MRI} of brain development. European Journal of Radiology, 57, 187198.CrossRefGoogle ScholarPubMed
Radua, J., Ramella-Cravaro, V., Ioannidis, J. P. A., Reichenberg, A., Phiphopthatsanee, N., & Amir, T. (2018). What causes psychosis? An umbrella review of risk and protective factors. World Psychiatry, 17, 4966. doi:10.1002/wps.20490CrossRefGoogle ScholarPubMed
Rajagopalan, V., Scott, J., Habas, P. A., Kim, K., Corbett-Detig, J., Rousseau, F., … Studholme, C. (2011). Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. Journal of Neuroscience, 31, 28782887.CrossRefGoogle ScholarPubMed
Rakers, F., Rupprecht, S., Dreiling, M., Bergmeier, C., Witte, O. W., & Schwab, M. (2016). Transfer of maternal psychosocial stress to the fetus. Neuroscience and Biobehavioral Reviews. Advance online publication. doi:10.1016/j.neubiorev.2017.02.019Google Scholar
Reed, K., Kochetkova, I., & Whitby, E. (2016). Visualising uncertainty: Examining women's views on the role of Magnetic Resonance Imaging (MRI) in late pregnancy. Social Science & Medicine, 164, 1926. doi:10.1016/j.socscimed.2016.07.012CrossRefGoogle Scholar
Reichel, T. F., Ramus, R. M., Caire, J. T., Hynan, L. S., Magee, K. P., & Twickler, D. M. (2003). Fetal central nervous system biometry on {MR} imaging. American Journal of Roentgenology, 180, 11551158.CrossRefGoogle ScholarPubMed
Rigucci, S., Marques, T. R., Di Forti, M., Taylor, H., Dell'Acqua, F., Mondelli, V., … Dazzan, P. (2015). Effect of high-potency cannabis on corpus callosum microstructure. Psychological Medicine, 1, 114. doi:10.1017/S0033291715002342Google Scholar
Ripke, S., Neale, B. M., Corvin, A., Walters, J. T. R., Farh, K. H., Holmans, P. A., … O'Donovan, M. C. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421427. doi:10.1038/nature13595Google Scholar
Roelfsema, N. M., Hop, W. C., Boito, S. M., & Wladimiroff, J. W. (2004). Three-dimensional sonographic measurement of normal fetal brain volume during the second half of pregnancy. American Journal of Obstetrics and Gynecology, 190, 275280.CrossRefGoogle ScholarPubMed
Ross, R. G., Hunter, S. K., McCarthy, L., Beuler, J., Hutchison, A. K., Wagner, B. D., … Freedman, R. (2013). Perinatal choline effects on neonatal pathophysiology related to later schizophrenia risk. American Journal of Psychiatry, 170, 290298. doi:10.1176/appi.ajp.2012.12070940CrossRefGoogle ScholarPubMed
Rosso, I. M., Cannon, T. D., Huttunen, T., Huttunen, M. O., Lönnqvist, J., & Gasperoni, T. L. (2000). Obstetric risk factors for early-onset schizophrenia in a Finnish birth cohort. American Journal of Psychiatry, 157, 801807. doi:10.1176/appi.ajp.157.5.801CrossRefGoogle Scholar
Rutherford, M., Jiang, S., Allsop, J., Perkins, L., Srinivasan, L., Hayat, T., … Hajnal, J. (2008). {MR} imaging methods for assessing fetal brain development. Developmental Neurobiology, 68, 700711.CrossRefGoogle ScholarPubMed
Sarnat, H. B. (1989). Do the corticospinal and corticobulbar tracts mediate functions in the human newborn? Canadian Journal of Neurological Sciences, 16, 157160.CrossRefGoogle ScholarPubMed
Schmidt-Kastner, R., Van Os, J., Esquivel, G., Steinbusch, H. W. M., & Rutten, B. P. F. (2012). An environmental analysis of genes associated with schizophrenia: Hypoxia and vascular factors as interacting elements in the neurodevelopmental model. Molecular Psychiatry, 17, 11941205. doi:10.1038/mp.2011.183CrossRefGoogle ScholarPubMed
Schultz, C. C., Koch, K., Wagner, G., Roebel, M., Schachtzabel, C., Gaser, C., … Schlösser, R. G. M. (2010). Reduced cortical thickness in first episode schizophrenia. Schizophrenia Research, 116, 204209. doi:10.1016/j.schres.2009.11.001CrossRefGoogle ScholarPubMed
Schür, R. R., Draisma, L. W., Wijnen, J. P., Boks, M. P., Koevoets, M. G., Joëls, M., … Vinkers, C. H. (2016). Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of 1H-MRS studies. Human Brain Mapping, 37, 337352. doi:10.1002/hbm.23244CrossRefGoogle Scholar
Sekar, A., Bialas, A. R., De Rivera, H., Davis, A., Hammond, T. R., Kamitaki, N., … McCarroll, S. A. (2016). Schizophrenia risk from complex variation of complement component 4. Nature, 530, 177183. doi:10.1038/nature16549CrossRefGoogle ScholarPubMed
Shafee, R., Nanda, P., Padmanabhan, J. L., Tandon, N., Alliey-Rodriguez, N., Kalapurakkel, S., … Robinson, E. B. (2018). Polygenic risk for schizophrenia and measured domains of cognition in individuals with psychosis and controls. Translational Psychiatry, 8. doi:10.1038/s41398-018-0124-8CrossRefGoogle ScholarPubMed
Sheffield, J. M., & Barch, D. M. (2016). Cognition and resting-state functional connectivity in schizophrenia. Neuroscience and Biobehavioral Reviews, 61, 108120. doi:10.1016/j.neubiorev.2015.12.007CrossRefGoogle Scholar
Shi, F., Yap, P. T., Gao, W., Lin, W., Gilmore, J. H., & Shen, D. (2012). Altered structural connectivity in neonates at genetic risk for schizophrenia: A combined study using morphological and white matter networks. NeuroImage, 62, 16221633. doi:10.1016/j.neuroimage.2012.05.026CrossRefGoogle ScholarPubMed
Short, S. J., Lubach, G. R., Karasin, A. I., Olsen, C. W., Styner, M., Knickmeyer, R. C., … Coe, C. L. (2010). Maternal influenza infection during pregnancy impacts postnatal brain development in the Rhesus monkey. Biological Psychiatry, 67, 965973. doi:10.1016/j.biopsych.2009.11.026CrossRefGoogle ScholarPubMed
Singh, S. P. (2007). Outcome measures in early psychosis: Relevance of duration of untreated psychosis. British Journal of Psychiatry, 50, s58s63. doi:10.1192/bjp.191.50.s58CrossRefGoogle ScholarPubMed
Story, L., Damodaram, M. S., Allsop, J. M., McGuinness, A., Wylezinska, M., Kumar, S., & Rutherford, M. A. (2011). Proton magnetic resonance spectroscopy in the fetus. European Journal of Obstetrics, Gynecology and Reproductive Biology, 158, 38.CrossRefGoogle ScholarPubMed
Studholme, C. (2011). Mapping fetal brain development in utero using magnetic resonance imaging: The Big Bang of brain mapping. Annual Review of Biomedical Engineering, 13, 345368.CrossRefGoogle ScholarPubMed
Thomason, M. E., Dassanayake, M. T., Shen, S., Katkuri, Y., Alexis, M., Anderson, A. L., … Romero, R. (2013). Cross-hemispheric functional connectivity in the human fetal brain. Science Translational Medicine, 5, 173ra24.CrossRefGoogle ScholarPubMed
Toulopoulou, T., Zhang, X., Cherny, S., Dickinson, D., Berman, K. F., Straub, R. E., … Weinberger, D. R. (2019). Polygenic risk score increases schizophrenia liability through cognition-relevant pathways. Brain, 142, 471485. doi:10.1093/brain/awy279CrossRefGoogle ScholarPubMed
Townsend, M. L., Riepsamen, A., Georgiou, C., Flood, V. M., Caputi, P., Wright, I. M., … Grenyer, B. F. S. (2016). Longitudinal intergenerational birth cohort designs: A systematic review of Australian and New Zealand studies. PLOS ONE, 11, e0150491.CrossRefGoogle ScholarPubMed
Urbanik, A., Cichocka, M., Kozub, J., Karcz, P., & Herman-Sucharska, I. (2019). Evaluation of changes in biochemical composition of fetal brain between 18th and 40th gestational week in proton magnetic resonance spectroscopy. Journal of Maternal–Fetal and Neonatal Medicine, 32, 24932499.CrossRefGoogle ScholarPubMed
Ursini, G., Punzi, G., Chen, Q., Marenco, S., Robinson, J. F., Porcelli, A., … Weinberger, D. R. (2018). Convergence of placenta biology and genetic risk for schizophrenia article. Nature Medicine, 24, 792801. doi:10.1038/s41591-018-0021-yCrossRefGoogle Scholar
van den Heuvel, M. I., & Thomason, M. E. (2016). Functional connectivity of the human brain in utero. Trends in Cognitive Science, 20, 931939.CrossRefGoogle ScholarPubMed
van den Heuvel, M. I., Turk, E., Manning, J. H., Hect, J., Hernandez-Andrade, E., Hassan, S. S., … Thomason, M. E. (2018). Hubs in the human fetal brain network. Developmental Cognitive Neuroscience, 30, 108115.CrossRefGoogle ScholarPubMed
van der Gaag, M., Smit, F., Bechdolf, A., French, P., Linszen, D. H., Yung, A. R., … Cuijpers, P. (2013). Preventing a first episode of psychosis: Meta-analysis of randomized controlled prevention trials of 12 month and longer-term follow-ups. Schizophrenia Research, 149, 5662. doi:10.1016/j.schres.2013.07.004CrossRefGoogle ScholarPubMed
Van Erp, T. G. M., Saleh, P. A., Rosso, I. M., Huttunen, M., Lönnqvist, J., Pirkola, T., … Cannon, T. D. (2002). Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers. American Journal of Psychiatry, 159, 15141520. doi:10.1176/appi.ajp.159.9.1514CrossRefGoogle ScholarPubMed
Van Os, J., Kenis, G., & Rutten, B. P. F. (2010). The environment and schizophrenia. Nature, 468, 203212. doi:10.1038/nature09563CrossRefGoogle Scholar
Van Os, J., Rutten, B. P. F., & Poulton, R. (2008). Gene-environment interactions in schizophrenia: Review of epidemiological findings and future directions. Schizophrenia Bulletin, 34, 10661082. doi:10.1093/schbul/sbn117CrossRefGoogle ScholarPubMed
Van Os, J., & Selten, J. P. (1998). Prenatal exposure to maternal stress and subsequent schizophrenia. The May 1940 invasion of the Netherlands. British Journal of Psychiatry, 172, 324326. doi:10.1192/bjp.172.4.324CrossRefGoogle ScholarPubMed
Vinkesteijn, A. S., Mulder, P. G., & Wladimiroff, J. W. (2000). Fetal transverse cerebellar diameter measurements in normal and reduced fetal growth. Ultrasound and Obstetric Gynecology, 15, 4751.CrossRefGoogle ScholarPubMed
Vita, A., De Peri, L., Silenzi, C., & Dieci, M. (2006). Brain morphology in first-episode schizophrenia: A meta-analysis of quantitative magnetic resonance imaging studies. Schizophrenia Research, 82, 7588. doi:10.1016/j.schres.2005.11.004CrossRefGoogle ScholarPubMed
Waddington, J. L., Brown, A. S., Lane, A., Schaefer, C. A., Goetz, R. R., Bresnahan, M., & Susser, E. S. (2008). Congenital anomalies and early functional impairments in a prospective birth cohort: Risk of schizophrenia-spectrum disorder in adulthood. British Journal of Psychiatry, 192, 264267. doi:10.1192/bjp.bp.107.035535CrossRefGoogle Scholar
Waddington, J. L., Lane, A., Larkin, C., & O'Callaghan, E. (1999). The neurodevelopmental basis of schizophrenia: Clinical clues from cerebro-craniofacial dysmorphogenesis, and the roots of a lifetime trajectory of disease. Biological Psychiatry, 46, 3139. doi:10.1016/S0006-3223(99)00055-4CrossRefGoogle ScholarPubMed
Walker, E. F., Savole, T., & Davis, D. (1994). Neuromotor precursors of schizophrenia. Schizophrenia Bulletin, 20, 441451. doi:10.1093/schbul/20.3.441CrossRefGoogle ScholarPubMed
Wallace, S., & Linscott, R. J. (2018). Intra-individual variability and psychotic-like experiences in adolescents: Findings from the ALSPAC cohort. Schizophrenia Research, 195, 154159. doi:10.1016/j.schres.2017.10.028CrossRefGoogle ScholarPubMed
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660669. doi:10.1001/archpsyc.1987.01800190080012CrossRefGoogle ScholarPubMed
Weinberger, D. R., Wagner, R. L., & Wyatt, R. J. (1983). Neuropathological studies of schizophrenia: A selective review. Schizophrenia Bulletin, 9, 193212. doi:10.1093/schbul/9.2.193CrossRefGoogle ScholarPubMed
Weir, R. K., Forghany, R., Smith, S. E. P., Patterson, P. H., McAllister, A. K., Schumann, C. M., & Bauman, M. D. (2015). Preliminary evidence of neuropathology in nonhuman primates prenatally exposed to maternal immune activation. Brain, Behavior, and Immunity, 48, 139146. doi:10.1016/j.bbi.2015.03.009CrossRefGoogle ScholarPubMed
White, T., & Gottesman, I. (2012). Brain connectiviity and gyrification as endophenotypes for schizophrenia: Weight of the evidence. Current Topics in Medicinal Chemistry, 12, 23932403.CrossRefGoogle ScholarPubMed
Whiteford, H. A., Ferrari, A. J., Degenhardt, L., Feigin, V., & Vos, T. (2015). The global burden of mental, neurological and substance use disorders: An analysis from the global burden of disease study 2010. PLOS ONE, 10, e0116820. doi:10.1371/journal.pone.0116820CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., McCarley, R. W., … Seidman, L. J. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences, 106, 12791284. doi:10.1073/pnas.0809141106CrossRefGoogle ScholarPubMed
Whitworth, M., Bricker, L., Neilson, J. P., & Dowswell, T. (2010). Ultrasound for fetal assessment in early pregnancy. Cochrane Database Systems Review, 4, CD007058.Google Scholar
Wright, R., Kyriakopoulou, V., Ledig, C., Rutherford, M. A., Hajnal, J. V, Rueckert, D., & Aljabar, P. (2014). Automatic quantification of normal cortical folding patterns from fetal brain {MRI}. Neuroimage, 91, 2132.CrossRefGoogle ScholarPubMed
Wright, R., Makropoulos, A., Kyriakopoulou, V., Patkee, P. A., Koch, L. M., Rutherford, M. A., … Aljabar, P. (2015). Construction of a fetal spatio-temporal cortical surface atlas from in utero {MRI}: Application of spectral surface matching. Neuroimage, 120, 467480.CrossRefGoogle ScholarPubMed
Wright, I. C., Rabe-Hesketh, S., Woodruff, P. W. R., David, A. S., Murray, R. M., & Bullmore, E. T. (2000). Meta-analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry, 157, 1625. doi:10.1176/ajp.157.1.16CrossRefGoogle Scholar
Xu, T., Chan, R. C. K., & Compton, M. T. (2011). Minor physical anomalies in patients with schizophrenia, unaffected first-degree relatives, and healthy controls: A meta-analysis. PLOS ONE, 6, e24129. doi:10.1371/journal.pone.0024129CrossRefGoogle ScholarPubMed
Yung, A. R., Killackey, E., Hetrick, S. E., Parker, A. G., Schultze-Lutter, F., Klosterkoetter, J., … McGorry, P. D. (2007). The prevention of schizophrenia. International Review of Psychiatry, 19, 633646. doi:10.1080/09540260701797803CrossRefGoogle ScholarPubMed
Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: Identifying differences in brain networks. NeuroImage, 53, 11971207. doi:10.1016/j.neuroimage.2010.06.041CrossRefGoogle ScholarPubMed
Zanin, E., Ranjeva, J.-P., Confort-Gouny, S., Guye, M., Denis, D., Cozzone, P. J., & Girard, N. (2011). White matter maturation of normal human fetal brain. An in vivo diffusion tensor tractography study. Brain and Behavior, 1, 95108.Google ScholarPubMed
Zheutlin, A. B., Dennis, J., Linnér, R. K., Moscati, A., Restrepo, N., Straub, P., … Smoller, J. W. (2019). Penetrance and pleiotropy of polygenic risk scores for schizophrenia in 106,160 patients across four healthcare systems. bioRxiv, 421164. doi:10.1101/421164Google Scholar
Zilles, K., Palomero-Gallagher, N., & Amunts, K. (2013). Development of cortical folding during evolution and ontogeny. Trends in Neuroscience, 36, 275284.CrossRefGoogle ScholarPubMed
Zornberg, G. L., Buka, S. L., & Tsuang, M. T. (2000). Hypoxic-ischemia-related fetal/neonatal complications and risk of schizophrenia and other nonaffective psychoses: A 19-year longitudinal study. American Journal of Psychiatry, 157, 196202. doi:10.1176/appi.ajp.157.2.196CrossRefGoogle ScholarPubMed