Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-08T02:28:55.646Z Has data issue: false hasContentIssue false

Early adversity and adult health outcomes

Published online by Cambridge University Press:  15 July 2011

Shelley E. Taylor*
Affiliation:
University of California, Los Angeles
Baldwin M. Way
Affiliation:
University of California, Los Angeles
Teresa E. Seeman
Affiliation:
University of California, Los Angeles
*
Address correspondence and reprint requests to: Shelley E. Taylor, Department of Psychology, University of California, Los Angeles, 1282A Franz Hall, Los Angeles, CA 90095; E-mail: [email protected].

Abstract

Adversity in childhood has effects on mental and physical health, not only in childhood but across the lifespan. A chief task of our research has been to define the pathways by which childhood experience has these surprising health outcomes, often decades later. The concept of allostatic load, which refers to dysregulations across major biological regulatory systems that have cumulative interacting adverse effects over time, provides a mechanism for understanding these relations and defining specific pathways. To chart these pathways, we examine early childhood socioeconomic status, family environment, and genetic predispositions as antecedents to socioemotional functioning/psychological distress; and neural responses to threat that have downstream effects on major stress regulatory systems, ultimately culminating in risks to mental and physical health outcomes. This integrative approach to investigating the impact of childhood experience on adult health outcomes illustrates the significance of multilevel integrative approaches to understanding developmental psychopathology more generally.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, N. E., Marmot, M., McEwen, B. S., & Stewart, J. (1999). Socioeconomic status and health in industrial nations: Social, psychological, and biological pathways. New York: New York Academy of Sciences.Google Scholar
Aguilera, M., Arias, B., Wichers, M., Barrantes-Vidal, N., Moya, J., Villa, H., et al. (2009). Early adversity and 5-HTT/BDNF genes: New evidence of gene–environment interactions on depressive symptoms in a general population. Psychological Medicine, 39, 14251432.CrossRefGoogle ScholarPubMed
Alexander, N., Kuepper, Y., Schmitz, A., Osinsky, R., Kozyra, E., & Hennig, J. (2009). Gene–environment interactions predict cortisol responses after acute stress: Implications for the etiology of depression. Psychoneuroendocrinoloy, 34, 12941303.CrossRefGoogle ScholarPubMed
Allen, M. T., Matthews, K. A., & Sherman, F. S. (1997). Cardiovascular reactivity to stress and left ventricular mass in youth. Hypertension, 30, 782787.CrossRefGoogle ScholarPubMed
Antoni, M. H., & Goodkin, K. (1988). Host moderator variables in the promotion of cervical neoplasia. I: Personality facets. Journal of Psychosomatic Research, 32, 327338.CrossRefGoogle ScholarPubMed
Antoni, M. H., Lehman, J. M., Kilbourne, K. M., Boyers, A. E., Culver, J. L., Alferi, S. M., et al. (2001). Cognitive–behavioral stress management intervention decreases the prevalence of depression and enhances benefit finding among women under treatment of early-stage breast cancer. Health Psychology, 20, 2032.Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2006). Gene–environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48, 406409.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Genetic vulnerability or differential susceptibility in child development: The case of attachment. Journal of Child Psychology and Psychiatry, 48, 11601173.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Pijlman, F. T., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers' externalizing behavior in a randomized controlled trial. Developmental Psychology, 44, 293300.CrossRefGoogle ScholarPubMed
Barth, J., Schumacher, M., & Herrmann-Lingen, C. (2004). Depression as a risk factor for mortality in patients with coronary heart disease: A meta-analysis. Psychosomatic Medicine, 66, 802813.CrossRefGoogle ScholarPubMed
Bishop, S. R. (2002). What do we really know about mindfulness-based stress? Psychosomatic Medicine, 64, 7184.CrossRefGoogle ScholarPubMed
Bradley, R. G., Binder, E. B., Epstein, M. P., Tang, Y., Nair, H. P., Liu, W., et al. (2008). Influence of child abuse on adult depression: Moderation by the corticotropin-releasing hormone receptor gene. Archives of General Psychiatry, 65, 190200.CrossRefGoogle ScholarPubMed
Branchi, I., D'Andrea, I., Sietzema, J., Fiore, M., Di Fausto, V., Aloe, L., et al. (2006). Early social enrichment augments adult hippocampal BDNF levels and survival of BrdU-positive cells while increasing anxiety- and “depression”-like behavior. Journal of Neuroscience Research, 83, 690696.CrossRefGoogle ScholarPubMed
Brody, G., Beach, S., Philibert, R., Chen, Y., & Murry, V. (2009). Prevention effects moderate the association of 5-HTTLPR and youth risk behavior initiation: Gene × environment hypotheses tested via a randomized prevention design. Child Development, 80, 645661.CrossRefGoogle Scholar
Brody, G. H., & Flor, D. L. (1998). Maternal resources, parenting practices, and child competence in rural, single-parent African-American families. Child Development, 69, 803816.CrossRefGoogle ScholarPubMed
Brunner, E. J., Hemingway, H., Walker, B. R., Page, M., Clarke, P., Juneja, M., et al. (2002). Adrenocortical, autonomic, and inflammatory causes of the metabolic syndrome. Circulation, 106, 26592665.CrossRefGoogle ScholarPubMed
Camras, L. A., Ribordy, S., Hill, J., Martino, S., Spaccarelli, S., & Stefani, R. (1988). Recognition and posing of emotional expression by abused children and their mothers. Developmental Psychology, 24, 776781.Google Scholar
Carpenter, L. L., Carvalho, J. P., Tyrka, A. R., Wier, L. M., Mello, A. F., Mello, M. F., et al. (2007). Decreased adrenocortocotropic hormone and cortisol responses to stress in healthy adults reporting significant childhood maltreatment. Biological Psychiatry, 62, 10801087.CrossRefGoogle Scholar
Carver, C. S., & Scheier, M. F. (2002). Optimism. In Snyder, C. R. & Lopez, S. J. (Eds.), Handbook of positive psychology (pp. 231–243). New York: Oxford University Press.Google Scholar
Casey, B., Glatt, C., Tottenham, N., Soliman, F., Bath, K., Amso, D., et al. (2009). Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development. Neuroscience, 164, 108120.CrossRefGoogle Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Chipman, P., Jorm, A., Prior, M., Sanson, A., Smart, D., Tan, X., et al. (2007). No interaction between the serotonin transporter polymorphism (5-HTTLPR) and childhood adversity or recent stressful life events on symptoms of depression: Results from two community surveys. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, 144, 561565.CrossRefGoogle Scholar
Chorpita, B. F., & Barlow, D. H. (1998). The development of anxiety: The role of control in the early environment. Psychology Bulletin, 124, 321.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Gunnar, M. R. (2008). Integrating biological measures into the design and evaluation of preventive interventions. Development and Psychopathology, 20, 737743.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2001). Diverse patterns of neuroendocrine activity in maltreated children. Development and Psychopathology, 13, 677694.CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F. A., Gunnar, M. R., & Toth, S. L. (2010). The differential impacts of early abuse on internalizing problems and diurnal cortisol activity in school-aged children. Child Development, 25, 252269.CrossRefGoogle Scholar
Cicchetti, D., Rogosch, F. A., & Sturge-Apple, M. L. (2007). Interactions of child maltreatment and serotonin transporter and monoamine oxidase A polymorphisms: Depressive symptomatology among adolescents from low socioeconomic status backgrounds. Developmental Psychopathology, 19, 11611180.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Toth, S. L. (2009). The past achievements and future promises of developmental psychopathology: The coming of age of a discipline. Journal of Child Psychology and Psychiatry, 50, 1625.Google Scholar
Cohen, S., Doyle, W. J., Turner, R. B., Alper, C. M., & Skoner, D. P. (2003). Emotional style and susceptibility to the common cold. Psychosomatic Medicine, 65, 652657.CrossRefGoogle ScholarPubMed
Creswell, J. D., Welch, W. T., Taylor, S. E., Sherman, D. K., Gruenewald, T., & Mann, T. (2005). Affirmation of personal values buffers neuroendocrine and psychological stress responses. Psychological Science, 16, 846851.CrossRefGoogle ScholarPubMed
Crockenberg, S., & Lourie, A. (1996). Parents' conflict strategies with children and children's conflict strategies with peers. Merrill–Palmer Quarterly, 42, 495518.Google Scholar
Danese, A., Moffitt, T. E., Pariante, C. M., Ambler, A., Poulton, R., & Caspi, A. (2008). Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Archives of General Psychiatry, 65, 409415.CrossRefGoogle ScholarPubMed
Danese, A., Pariante, C. M., Caspi, A., Taylor, A., & Poulton, R. (2007). Childhood maltreatment predicts adult inflammation in a life-course study. Proceedings of the National Academy of Sciences of the United States of America, 104, 13191324.CrossRefGoogle Scholar
DeBellis, M. D., Chrousos, G. P., Dorn, L. D., Burke, L., Helmers, K., Kling, M. A., et al. (1994). Hypothalamic–pituitary–adrenal axis dysregulation in sexually abused girls. Journal of Clinical Endocrinology & Metabolism, 78, 249255.Google Scholar
Dembroski, T. M., MacDougall, J. M., Williams, R. B., Haney, T. L., & Blumenthal, J. A. (1985). Components of type A, hostility, and anger-in: Relationship to angiographic findings. Psychosomatic Medicine, 47, 219233.CrossRefGoogle ScholarPubMed
Dishion, T. J. (1990). The family ecology of boys' peer relations in middle childhood. Child Development, 61, 874891.CrossRefGoogle ScholarPubMed
Dube, S. R., Fairweather, D., Pearson, W. S., Felitti, V. J., Anda, R. F., & Croft, J. B. (2009). Cumulative childhood stress and autoimmune diseases in adults. Psychosomatic Medicine, 71, 243250.CrossRefGoogle ScholarPubMed
Dunn, J., & Brown, J. (1994). Affect expression in the family, children's understanding of emotions, and their interactions with others. Merrill–Palmer Quarterly, 40, 120137.Google Scholar
Eisenberg, N., & Spinrad, T. (2004). Emotion-related regulation: Sharpening the definition. Child Development, 75, 334339.Google Scholar
Eley, T. C., Sugden, K., Corsico, A., Gregory, A. M., Sham, P., McGuffin, P., et al. (2004). Gene–environment interaction analysis of serotonin system markers with adolescent depression. Molecular Psychiatry, 9, 908915.CrossRefGoogle ScholarPubMed
Evans, G. W., & English, K. (2002). The environment of poverty: Multiple stressor exposure, psychophysiological stress, and socioemotional adjustment. Child Development, 73, 12381248.CrossRefGoogle ScholarPubMed
Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Apitz, A. M., Edwards, V., et al. (1998). Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. American Journal of Preventive Medicine, 14, 245258.CrossRefGoogle ScholarPubMed
Fields, L., Burt, V., Cutler, J., Hughes, J., Roccella, E., & Sorlie, P. (2004). The burden of adult hypertension in the United States 1999 to 2000: A rising tide. Hypertension, 44, 398404.CrossRefGoogle ScholarPubMed
Flinn, M. V., & England, B. G. (1997). Social economics of childhood glucocorticoid stress responses and health. American Journal of Physical Anthropology, 102, 3353.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Ford, E. S., Giles, W. H., & Dietz, W. H. (2002). Prevalence of the metabolic syndrome among US adults: Findings from the third national health and nutrition examination survey. Journal of the American Medical Association, 287, 356359.CrossRefGoogle ScholarPubMed
Francis, D. D., Caldji, C., Champagne, F., Plotsky, P. M., & Meaney, M. J. (1999). The role of corticotropin-releasing factor—Norepinephrine systems in mediating the effects of early experience on the development of behavioral and endocrine responses to stress. Biological Psychiatry, 46, 11531166.CrossRefGoogle ScholarPubMed
Frasure-Smith, N., Lesperance, F., & Talajic, M. (1995). The impact of negative emotions on prognosis following myocardial infarction: Is it more than depression? Health Psychology, 14, 388398.CrossRefGoogle ScholarPubMed
Fries, A. B. W., Shirtcliff, E. A., & Pollak, S. D. (2008). Neuroendocrine dysregulation following early social deprivation in children. Developmental Psychobiology, 50, 588599.Google Scholar
Fujinami, A., Ohta, K., Obayashi, H., Fukui, M., Hasegawa, G., Nakamura, N., et al. (2008). Serum brain-derived neurotrophic factor in patients with type 2 diabetes mellitus: Relationship to glucose metabolism and biomarkers of insulin resistance. Clinical Biochemistry, 41, 812817.Google Scholar
Gatt, J., Nemeroff, C., Dobson-Stone, C., Paul, R., Bryant, R., Schofield, P., et al. (2009). Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry, 14, 681695.CrossRefGoogle ScholarPubMed
Gonzalez, A., Jenkins, J. M., Steiner, M., & Fleming, A. S. (2009). The relation between early life adversity, cortisol awakening response and diurnal salivary cortisol levels in postpartum women. Psychoneuroendocrinology, 34, 7686.Google Scholar
Gordis, E. B., Granger, D. A., Susman, E. J., & Trickett, P. K. (2008). Salivary alpha amylase-cortisol asymmetry in maltreated youth. Hormones and Behavior, 53, 96103.CrossRefGoogle ScholarPubMed
Gotlib, I. H., Joormann, J., Minor, K. L. & Hallmayer, J. (2008). HPA axis reactivity: A mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biological Psychiatry, 63, 847851.CrossRefGoogle ScholarPubMed
Groop, L., & Orho-Melander, M. (2001). The dysmetabolic syndrome. Journal of Internal Medicine, 250, 105120.Google Scholar
Gunnar, M. R., & Donzella, B. (2002). Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 27, 199220.CrossRefGoogle ScholarPubMed
Hariri, A. R., Bookheimer, S. Y., & Mazziotta, J. C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. NeuroReport, 11, 4348.CrossRefGoogle ScholarPubMed
Hariri, A. R., Tessitore, A., Mattay, V. S., Fera, F., & Weinberger, D. R. (2002). The amygdala response to emotional stimuli: A comparison of faces and scenes. NeuroImage, 17, 317323.CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Bonsall, R., Miller, A. H., & Nemeroff, C. B. (2003). Altered pituitary–adrenal axis responses to provocative challenge tests in adult survivors of childhood abuse. Focus, 1, 282289.CrossRefGoogle Scholar
Heim, C., Newport, D. J., Heit, S., Graham, Y. P., Wilcox, M., Bonsall, R., et al. (2000). Pituitary–adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. Journal of the American Medical Association, 284, 592597.CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2008). The link between childhood trauma and depression: Insights from HPA-axis studies in humans. Psychoneuroendocrinology, 33, 693710.CrossRefGoogle ScholarPubMed
Heisler, L. A., Pronchuk, N., Nonogaki, K., Zhou, L., Raber, J., Tung, L., et al. (2007). Serotonin activates the hypothalamic–pituitary–adrenal axis via serotonin 2C receptor stimulation. Journal of Neuroscience, 27, 69566964.CrossRefGoogle ScholarPubMed
Hemingway, H., Shipley, M., Mullen, M. J., Kumari, M., Brunner, E., Taylor, M., et al. (2003). Social and psychosocial influences on inflammatory markers and vascular function in civil servants (the Whitehall II study). American Journal of Cardiology, 92, 984987.CrossRefGoogle ScholarPubMed
Henningsson, S., Borg, J., Lundberg, J., Bah, J., Lindström, M., Ryding, E., et al. (2009). Genetic variation in brain-derived neurotrophic factor is associated with serotonin transporter but not serotonin-1A receptor availability in men. Biological Psychiatry, 66, 477485.Google Scholar
Herbert, T. B., & Cohen, S. (1993). Depression and immunity: A meta-analytic review. Psychology Bulletin, 113, 115.CrossRefGoogle ScholarPubMed
House, J. S., Umberson, D., & Landis, K. R. (1988). Structures and processes of social support. Annual Review of Sociology, 14, 293318.CrossRefGoogle Scholar
Jirtle, R., & Skinner, M. (2007). Environmental epigenomics and disease susceptibility. Nature Reviews Genetics, 8, 253262.Google Scholar
Johnson, V., & Pandina, R. J. (1991). Effects of the family environment on adolescent substance use, delinquency, and coping styles. American Journal of Drug and Alcohol Abuse, 17, 7188.Google Scholar
Jousilahti, P., Salomaa, V., Rasi, V., Vahtera, E., & Palosuo, T. (2003). Association of markers of systemic inflammation, C-reactive protein, serum amyloid A, and fibrinogen, with socioeconomic status. Journal of Epidemiology and Community Health, 57, 730733.CrossRefGoogle ScholarPubMed
Julkunen, J., Salonen, R., Kaplan, G. A., Chesney, M. A., & Salonen, J. T. (1994). Hostility and the progression of carotid artherosclerosis. Psychosomatic Medicine, 56, 519525.CrossRefGoogle Scholar
Karasek, R. A., Theorell, T., Schwartz, J., Pieper, C., & Alfredsson, L. (1982). Job, psychological factors and coronary heart disease: Swedish prospective findings and U.S. prevalence findings using a new occupational inference method. Advances in Cardiology, 29, 6267.Google Scholar
Kaufman, J., Yang, B., Douglas-Palumberi, H., Grasso, D., Lipschitz, D., Houshyar, S., et al. (2006). Brain-derived neurotrophic factor–5-HTTLPR gene interactions and environmental modifiers of depression in children. Biological Psychiatry, 59, 673680.CrossRefGoogle ScholarPubMed
Kawachi, I., Sparrow, D., Vokonas, P. S., & Weiss, S. T. (1995). Decreased heart rate variability in men with phobic anxiety (data from the Normative Aging Study). American Journal of Cardiology, 75, 882885.CrossRefGoogle ScholarPubMed
King, D. E., Mainous, A. G., & Taylor, M. L. (2004). Clinical use of C-reactive protein for cardiovascular disease. Southern Medical Journal, 97, 985988.CrossRefGoogle ScholarPubMed
Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The “Trier Social Stress Test”—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 7681.Google Scholar
Klaassens, E. R., van Noorden, M. S., Giltay, E. J., van Pelt, J., van Veen, T., & Zitman, F. G. (2009). Effects of childhood trauma on HPA-axis reactivity in women free of lifetime psychopathology. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33, 889894.Google Scholar
Krabbe, K., Nielsen, A., Krogh-Madsen, R., Plomgaard, P., Rasmussen, P., Erikstrup, C., et al. (2007). Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia, 50, 431438.CrossRefGoogle ScholarPubMed
Kubzansky, L. D., Kawachi, I., Weiss, S. T., & Sparrow, D. (1998). Anxiety and coronary heart disease: A synthesis of epidemiological, psychological, and experimental evidence. Annals of Behavioral Medicine, 20, 4758.Google Scholar
Laible, D. J., & Thompson, R. A. (1998). Attachment and emotional understanding in preschool children. Developmental Psychology, 34, 10381045.CrossRefGoogle ScholarPubMed
Lakka, H. M., Laaksonen, D. E., Lakka, T. A., Niskanen, L. K., Kumpusalo, E., Tuomilehto, J., et al. (2002). The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. Journal of the American Medical Association, 288, 27092716.CrossRefGoogle ScholarPubMed
Lasky-Su, J., Faraone, S., Lange, C., Tsuang, M., Doyle, A., Smoller, J., et al. (2007). A study of how socioeconomic status moderates the relationship between SNPs encompassing BDNF and ADHD symptom counts in ADHD families. Behavior Genetics, 37, 487497.CrossRefGoogle ScholarPubMed
LeDoux, J. (1996). The emotional brain: The mysterious underpinnings of emotional life. New York: Simon & Schuster.Google Scholar
Lee, J., Kim, H., Kim, J., Ryu, V., Kim, B., Kang, D., et al. (2007). Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neuroscience Research, 58, 3239.Google Scholar
Lehman, B. J., Taylor, S. E., Kiefe, C. I., & Seeman, T. E. (2005). Relation of childhood socioeconomic status and family environment to adult metabolic functioning in the CARDIA study. Psychosomatic Medicine, 67, 846854.CrossRefGoogle ScholarPubMed
Lehman, B. J., Taylor, S. E., Kiefe, C. I., & Seeman, T. E. (2009). Relationship of early life stress and psychological functioning to blood pressure in the CARDIA Study. Health Psychology, 28, 338346.Google Scholar
Lemaire, V., Lamarque, S., LeMoal, M., Piazza, P., & Abrous, D. N. (2006). Postnatal stimulation of the pups counteracts prenatal stress-induced deficits in hippocampal neurogenesis. Biological Psychiatry, 59, 786792.Google Scholar
Lepore, S. J., & Smyth, J. (Eds.). (2002). The writing cure: How expressive writing influences health and well-being. Washington, DC: American Psychological Association.Google Scholar
Lieberman, M. D., Hariri, A., Jarcho, J. M., Eisenberger, N. I., & Bookheimer, S. Y. (2005). An fMRI investigation of race-related amygdala activity in African-American and Caucasian-American individuals. Nature Neuroscience, 8, 720722.CrossRefGoogle ScholarPubMed
Lindblad, U., Langer, R. D., Wingard, D. L., Thomas, R. G., & Barrett-Connor, E. L. (2001). Metabolic syndrome and ischemic heart disease in elderly men and women. American Journal of Epidemiology, 153, 481489.Google Scholar
Lippmann, M., Bress, A., Nemeroff, C., Plotsky, P., & Monteggia, L. (2007). Long-term behavioural and molecular alterations associated with maternal separation in rats. European Journal of Neuroscience, 25, 30913098.Google Scholar
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science, 277, 16591662.Google Scholar
Lupien, S. J., Ouelle-Morin, I., Hupback, A., Walker, D., Tu, M. T., & Buss, C. (2006). Beyond the stress concept: Allostatic load—A developmental biological and cognitive perspective. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology: Developmental neuroscience (Vol. 2, 2nd ed.). New York: Wiley.Google Scholar
Lyons, W., Mamounas, L., Ricaurte, G., Coppola, V., Reid, S., Bora, S., et al. (1999). Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proceedings of the National Academy of Sciences, 96, 1523915244.CrossRefGoogle ScholarPubMed
Manuck, S. B., Flory, J. D., Ferrell, R. E., & Muldoon, M. F. (2004). Socio-economic status covaries with central nervous system serotonergic responsivity as a function of allelic variation in the serotonin transporter gene-linked polymorphic region. Psychoneuroendocrinology, 29, 651668.Google Scholar
Martin, L. R., Friedman, H. S., Tucker, J. S., Schwartz, J. E., Criqui, M. H., Wingard, D., et al. (1995). An archival prospective study of mental health and longevity. Health Psychology, 14, 381387.Google Scholar
Matthews, K. A., Woodall, K. L., Kenyon, K., & Jacob, T. (1996). Negative family environment as a predictor of boys' future status on measures of hostile attitudes, interview behavior, and anger expression. Health Psychology, 15, 3037.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171179.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Sapolsky, R. M. (1995). Stress and cognitive function. Current Opinions in Neurobiology, 5, 205216.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Seeman, T. E. (2003). Stress and affect: Applicability of the concepts of allostasis and allostatic load. In Davidson, R. J.Scherer, K. R., & Goldsmith, H. H. (Eds.), Handbook of affective sciences (pp. 1117–1137). New York: Oxford University Press.Google Scholar
McEwen, B. S., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153, 20932101.CrossRefGoogle ScholarPubMed
McGowan, P., Sasaki, A., D'Alessio, A., Dymov, S., Labonté, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348.CrossRefGoogle ScholarPubMed
McLoyd, V. C. (1998). Socioeconomic disadvantage and child development. American Psychologist, 53, 185204.CrossRefGoogle ScholarPubMed
Meaney, M. J., & Szyf, M. (2005). Environmental programming of stress responses through DNA methylation: Life at the interface between a dynamic environment and a fixed genome. Dialogues in Clinical NeuroSciences, 7, 103123.Google Scholar
Miller, G. E., & Chen, E. (2007). Unfavorable socioeconomic conditions in early life presage expression of proinflammatory phenotype in adolescence. Psychosomatic Medicine, 69, 402409.CrossRefGoogle ScholarPubMed
Miller, G. E., & Chen, E. (2010). Harsh family climate in early life presages the emergence of a proinflammatory phenotype in adolescence. Psychological Science, 21, 848856.CrossRefGoogle ScholarPubMed
Miller, G. E., Chen, E., Fok, A. K., Walker, H., Lim, A., Nicholls, E. F., et al. (2009). Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased inflammatory signaling. Proceedings of the National Academy of Sciences, 106, 1471614721.CrossRefGoogle Scholar
Miller, G. E., Cohen, S., & Ritchey, A. K. (2002). Chronic psychological stress and the regulation of pro-inflammatory cytokines: A glucocorticoid-resistance model. Health Psychology, 21, 531541.CrossRefGoogle ScholarPubMed
Miller, G. E., Rohleder, N., Stetler, C., & Kirschbaum, C. (2005). Clinical depression and regulation of the inflammatory response during acute stress. Psychosomatic Medicine, 67, 679687.Google Scholar
Miller, J., Kinnally, E., Ogden, R., Oquendo, M., Mann, J., & Parsey, R. (2009). Reported childhood abuse is associated with low serotonin transporter binding in vivo in major depressive disorder. Synapse, 63, 565573.CrossRefGoogle ScholarPubMed
National Cholesterol Education Panel. (2001). Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel 111). Journal of the American Medical Association, 285, 24862497.Google Scholar
Nobile, M., Giorda, R., Marino, C., Carlet, O., Pastore, V., Vanzin, L., et al. (2007). Socioeconomic status mediates the genetic contribution of the dopamine receptor D4 and serotonin transporter linked promoter region repeat polymorphisms to externalization in preadolescence. Development and Psychopathology, 19, 11471160.CrossRefGoogle ScholarPubMed
O'Brien, M., Margolin, G., John, R. S., & Krueger, L. (1991). Mothers' and sons' cognitive and emotional reactions to simulated marital and family conflict. Journal of Consulting and Clinical Psychology, 59, 692703.CrossRefGoogle Scholar
Oberlander, T., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3, 97106.Google Scholar
Pace, T. W. W., Mletzko, T. C., Alagbe, O., Musselman, D. L., Nemeroff, C. B., Miller, A. H., et al. (2006). Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. American Journal of Psychiatry, 163, 16301633.Google Scholar
Pelleymounter, M., Cullen, M. & Wellman, C. (1995). Characteristics of BDNF-induced weight loss. Experimental Neurology, 131, 229238.CrossRefGoogle ScholarPubMed
Pettit, G. S., Dodge, K. A., & Brown, M. M. (1988). Early family experience, social problem solving patterns, and children's social competence. Child Development, 59, 107120.Google Scholar
Polanczyk, G., Caspi, A., Williams, B., Price, T., Danese, A., Sugden, K., et al. (2009). Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: Replication and extension. Archives of General Psychiatry, 66, 978985.CrossRefGoogle ScholarPubMed
Powell, L. H., William, R. L., Matthews, K. A., Meyer, P., Midgley, A. R., Baum, A., et al. (2002). Physiologic markers of chronic stress in premenopausal, middle-aged women. Psychosomatic Medicine, 64, 502509.CrossRefGoogle ScholarPubMed
Pruessner, M., Hellhammer, D. H., Pruessner, J. C., & Lupien, S. J. (2003). Self-reported depressive symptoms and stress levels in healthy young men: Associations with the cortisol response to awakening. Psychosomatic Medicine, 65, 9299.Google Scholar
Ramsay, S. E., Whincup, P. H., Morris, R. W., Lennon, L. T., & Wannamethee, S. G. (2007). Are childhood socio-economic circumstances related to coronary heart disease risk? Findings from a population-based study of older men. International Journal of Epidemiology, 36, 561567.Google Scholar
Reid, W. J., & Crisafulli, A. (1990). Marital discord and child behavior problems: A meta-analysis. Journal of Abnormal Child Psychology, 18, 105117.Google Scholar
Repetti, R. L., Taylor, S. E., & Saxbe, D. (2007). The influence of early socialization experiences on the development of biological systems. In Grusec, J. & Hastings, P. (Eds.), Handbook of socialization (pp. 124–152). New York: Guilford Press.Google Scholar
Repetti, R. L., Taylor, S. E., & Seeman, T. E. (2002). Risky families: Family social environments and the mental and physical health of offspring. Psychological Bulletin, 128, 330366.Google Scholar
Retz, W., Freitag, C. M., Retz-Junginger, P., Wenzler, D., Schneider, M., Kissling, C., et al. (2008). A functional serotonin transporter promoter gene polymorphism increases ADHD symptoms in delinquents: Interaction with adverse childhood environment. Psychiatry Research, 158, 123131.Google Scholar
Rodin, J., Timko, C., & Harris, S. (1985). The construct of control: Biological and psychosocial correlates. Annual Review of Gerontology and Geriatrics, 5, 355.Google ScholarPubMed
Roth, T., Lubin, F., Funk, A., & Sweatt, J. (2009). Lasting epigenetic influence of early-life adversity on the BDNF gene. Biological Psychiatry, 65, 760769.CrossRefGoogle ScholarPubMed
Roy, A., Hu, X. Z., Janal, M. N., & Goldman, D. (2007). Interaction between childhood trauma and serotonin transporter gene variation in suicide. Neuropsychopharmacology, 32, 20462052.Google Scholar
Scheier, M. F., & Carver, C. S. (1992). Effects of optimism on psychological and physical well-being: Theoretical overview and empirical update. Cognitive Therapy Research, 16, 201228.CrossRefGoogle Scholar
Scheier, M. F., Matthews, K. A., Owens, J., Magovern, G. J., Sr., Lefebvre, R. C., Abbott, R. A., et al. (1989). Dispositional optimism and recovery from coronary artery bypass surgery: The beneficial effects on physical and psychological well-being. Journal of Personality and Social Psychology, 57, 10241040.CrossRefGoogle ScholarPubMed
Scheier, M. F., Weintraub, J. K., & Carver, C. S. (1986). Coping with stress: Divergent strategies of optimists and pessimists. Journal of Personality and Social Psychology, 51, 12571264.Google Scholar
Schwartz, D., Dodge, K. A., Pettit, G. S., & Bates, J. E. (1997). The early socialization of aggressive victims of bullying. Child Development, 68, 665675.Google Scholar
Seeman, M., & Lewis, S. (1995). Powerlessness, health, and mortality: A longitudinal study of older men and mature women. Social Science and Medicine, 41, 517525.Google Scholar
Seeman, T. E. (1996). Social ties and health: The benefits of social integration. Annals of Epidemiology, 6, 442451.Google Scholar
Segerstrom, S. C., Taylor, S. E., Kemeny, M. E., & Fahey, J. L. (1998). Optimism is associated with mood, coping, and immune change in response to stress. Journal of Personality and Social Psychology, 74, 16461655.CrossRefGoogle ScholarPubMed
Sen, S., Duman, R., & Sanacora, G. (2008). Serum brain-derived neurotrophic factor, depression, and antidepressant medications: Meta-analyses and implications. Biological Psychiatry, 64, 527532.CrossRefGoogle ScholarPubMed
Sheese, B., Voelker, P., Rothbart, M., & Posner, M. (2007). Parenting quality interacts with genetic variation in dopamine receptor D4 to influence temperament in early childhood. Development and Psychopathology, 19, 10391046.Google Scholar
Shirtcliff, E. A., Coe, C. L., & Pollak, S. D. (2009). Early childhood stress is associated with elevated antibody levels to herpes simplex virus type 1. Proceedings of the National Academy of Sciences, 106, 29632967.CrossRefGoogle ScholarPubMed
Shonkoff, J. P., Boyce, W. T., & McEwen, B. S. (2009). Neuroscience, molecular biology, and the childhood roots of health disparities: Building a new framework for health promotion and disease prevention. Journal of the American Medical Association, 301, 22522259.Google Scholar
Smith, T. W. (1992). Hostility and health: Current status of a psychosomatic hypothesis. Journal of Personality and Social Psychology, 48, 813838.CrossRefGoogle Scholar
Steckler, T., & Holsboer, F. (1999). Corticotropin-releasing hormone receptor subtypes and emotion. Biological Psychiatry, 46, 14801508.Google Scholar
Stein, M. B., Schork, N. J., & Gelernter, J. (2007). Gene-by-environment (serotonin transporter and childhood maltreatment) interaction for anxiety sensitivity, an intermediate phenotype for anxiety disorders. Neuropsychopharmacology, 33, 312319.Google Scholar
Suarez, E. C. (2004). C-reactive protein is associated with psychological risk factors of cardiovascular disease in apparently healthy adults. Psychosomatic Medicine, 66, 684691.CrossRefGoogle ScholarPubMed
Surtees, P., Wainwright, N., Willis-Owen, S., Luben, R., Day, N., & Flint, J. (2006). Social adversity, the serotonin transporter (5-HTTLPR) polymorphism and major depressive disorder. Biological Psychiatry, 59, 224229.CrossRefGoogle ScholarPubMed
Taylor, S. E. (2009). Health psychology (7th ed.). New York: McGraw–Hill.Google Scholar
Taylor, S. E. (2010). Social support: A review. In Friedman, H. S. (Ed.), Oxford handbook of health psychology. New York: Oxford University Press.Google Scholar
Taylor, S. E., Eisenberger, N. I., Saxbe, D., Lehman, B. J., & Lieberman, M. D. (2006). Neural responses to emotional stimuli are associated with childhood family stress. Biological Psychiatry, 60, 296301.Google Scholar
Taylor, S. E., Helgeson, V. S., Reed, G. M., & Skokan, L. A. (1991). Self-generated feelings of control and adjustment to physical illness. Journal of Social Issues, 47, 91109.Google Scholar
Taylor, S. E., Lehman, B. J., Kiefe, C. I., & Seeman, T. E. (2006). Relationship of early life stress and psychological functioning to adult C-reactive protein in the Coronary Artery Risk Development in Young Adults study. Biological Psychiatry, 60, 819824.Google Scholar
Taylor, S. E., Lerner, J. S., Sage, R. M., Lehman, B. J., & Seeman, T. E. (2004). Early environment, emotions, responses to stress, and health. Special Issue on Personality and Health. Journal of Personality, 72, 13651393.Google Scholar
Taylor, S. E., & Seeman, T. E. (1999). Psychosocial resources and the SES–health relationship. In Adler, N.Marmot, M.McEwen, B., & Stewart, J. (Eds.), Socioeconomic status and health in industrial nations: Social, psychological, and biological pathways (pp. 210–225). New York: New York Academy of Sciences.Google Scholar
Taylor, S. E., Way, B. M., Welch, W. T., Hilmert, C. J., Lehman, B. J., & Eisenberger, N. I. (2006). Early family environment, current adversity, the serotonin transporter polymorphism, and depressive symptomatology. Biological Psychiatry, 60, 671676.CrossRefGoogle ScholarPubMed
Thompson, S. C. (1981). Will it hurt less if I can control it? A complex answer to a simple question. Psychological Bulletin, 90, 89101.Google Scholar
Trevisan, M., Liu, J., Bahsas, F. B., & Menotti, A. (1998). Syndrome X and mortality: A population-based study. American Journal of Epidemiology, 148, 958966.CrossRefGoogle ScholarPubMed
Trickett, P. K., Noll, J. G., Susman, E. J., Shenk, C. E., & Putnam, F. W. (2010). Attenuation of cortisol across development for victims of sexual abuse. Development and Psychopathology, 22, 165175.Google Scholar
Tyrka, A. R., Price, L. H., Gelernter, J., Schepker, C., Anderson, G. M., & Carpenter, L. L. (2009). Interaction of childhood maltreatment with the corticotropin-releasing hormone receptor gene: Effects of hypothalamic–pituitary–adrenal axis reactivity. Biological Psychiatry, 66, 681685.CrossRefGoogle ScholarPubMed
Valentiner, D. P., Holahan, C. J., & Moos, R. H. (1994). Social support, appraisals of event controllability, and coping: An integrative model. Journal of Personality and Social Psychology, 66, 10941102.CrossRefGoogle Scholar
van de Mheen, H., Stronks, K., Looman, C. W., & Mackenbach, J. P. (1998). Does childhood socioeconomic status influence adult health through behavioural factors? International Journal of Epidemiology, 27, 431437.CrossRefGoogle ScholarPubMed
van der Vegt, E. J. M., van der Ende, J., Kirschbaum, C., Verhulst, F. C., & Tiemeier, H. (2009). Early neglect and abuse predict diurnal cortisol patterns in adults: A study of international adoptees. Psychoneuroendocrinology, 34, 660669.CrossRefGoogle ScholarPubMed
van Melle, J. P., de Jonge, P., Spijkerman, T. A., Tijssen, J. G. P., Ormel, J., van Veldhuisen, D. J., et al. (2004). Prognostic association of depression following myocardial infarction with mortality and cardiovascular events: A meta-analysis. Psychosomatic Medicine, 66, 814822.CrossRefGoogle ScholarPubMed
Van Praag, H. M. (2004). Can stress cause depression? Progress in Neuropsychopharmacology and Biological Psychiatry, 28, 891907.Google Scholar
Way, B. M., & Taylor, S. E. (2010a). The serotonin transporter promoter polymorphism (5-HTTLPR) is associated with cortisol response to psychosocial stress. Biological Psychiatry, 67, 487492.Google Scholar
Way, B. M., & Taylor, S. E. (2010b). Social influences on health: Is serotonin a critical mediator? Psychosomatic Medicine, 72, 107112.Google Scholar
Weaver, I. C. G., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., & Seckl, J. R. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.Google Scholar
Wichers, M., Kenis, G., Jacobs, N., Mengelers, R., Derom, C., Vlietinck, R., et al. (2008). The BDNF Val66Met × 5-HTTLPR × Child Adversity interaction and depressive symptoms: An attempt at replication. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, 147, 120123.Google Scholar
Xu, B., Goulding, E., Zang, K., Cepoi, D., Cone, R., Jones, K., et al. (2003). Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature Neuroscience, 6, 736742.Google Scholar
Zhang, T. Y., Bagot, R., Parent, C., Nesbitt, C., Bredy, T. W., Caldji, C., et al. (2006). Maternal programming of defensive responses through sustained effects on gene expression. Biological Psychology, 73, 7289.Google Scholar