Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-07T10:26:09.049Z Has data issue: false hasContentIssue false

Do executive functions explain the covariance between internalizing and externalizing behaviors?

Published online by Cambridge University Press:  16 November 2017

Alexander S. Hatoum*
Affiliation:
University of Colorado Boulder
Soo Hyun Rhee
Affiliation:
University of Colorado Boulder
Robin P. Corley
Affiliation:
University of Colorado Boulder
John K. Hewitt
Affiliation:
University of Colorado Boulder
Naomi P. Friedman
Affiliation:
University of Colorado Boulder
*
Address correspondence and reprint requests to: Alexander S. Hatoum, Institute for Behavioral Genetics, 447 UCB, University of Colorado, Boulder, CO 80309; E-mail: [email protected].

Abstract

This study examined whether executive functions (EFs) might be common features of internalizing and externalizing behavior problems across development. We examined relations between three EF latent variables (a common EF factor and factors specific to updating working memory and shifting sets), constructed from nine laboratory tasks administered at age 17, to latent growth intercept (capturing stability) and slope (capturing change) factors of teacher- and parent-reported internalizing and externalizing behaviors in 885 individual twins aged 7 to 16 years. We then estimated the proportion of intercept–intercept and slope–slope correlations predicted by EF as well as the association between EFs and a common psychopathology factor (P factor) estimated from all 9 years of internalizing and externalizing measures. Common EF was negatively associated with the intercepts of teacher-rated internalizing and externalizing behavior in males, and explained 32% of their covariance; in the P factor model, common EF was associated with the P factor in males. Shifting-specific was positively associated with the externalizing slope across sex. EFs did not explain covariation between parent-rated behaviors. These results suggest that EFs are associated with stable problem behavior variation, explain small proportions of covariance, and are a risk factor that that may depend on gender.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by NIH Grants MH063207, AG046938, HD010333, and MH016880.

References

Achenbach, T. (1991a). Manual for the Child Behavior Checklist/4–18 and 1991 profile. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
Achenbach, T. (1991b). Manual for the Teacher Report Form and 1991 profile. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
Achenbach, T. M., McConaughy, S. H., & Howell, C. T. (1987). Child/adolescent behavioral and emotional problems: Implications of cross-informant correlations for situational specificity. Psychological Bulletin, 101, 213232. doi:10.1037/0033-2909.101.2.213Google Scholar
Arseneault, L., Moffitt, T. E., Caspi, A., Taylor, A., Rijsdijk, F. V, Jaffee, S. R., … Measelle, J. R. (2003). Strong genetic effects on cross-situational antisocial behaviour among 5-year-old children according to mothers, teachers, examiner-observers, and twins’ self-reports. Journal of Child Psychology and Psychiatry, 44, 832848. doi:10.1111/1469-7610.00168Google Scholar
Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8, 338363. doi:10.1037/1082-989X.8.3.338Google Scholar
Bilenberg, N. (1999). The Child Behavior Checklist (CBCL) and related material: Standardization and validation in Danish population based and clinically based samples. Acta Psychiatrica Scandinavica, 100, 252. doi:10.1111/j.1600-0447.1999.tb10703.xGoogle Scholar
Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.Google Scholar
Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. Hoboken, NJ: Wiley.Google Scholar
Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., … Moffitt, T. E. (2014). The P factor. Clinical Psychological Science, 2, 119137. doi:10.1177/2167702613497473Google Scholar
Cerdá, M., Sagdeo, A., & Galea, S. (2008). Comorbid forms of psychopathology: Key patterns and future research directions. Epidemiologic Reviews, 30, 155177. doi:10.1093/epirev/mxn003Google Scholar
Cohen, N. J., Gotlieb, H., Kershner, J., & Wehrspann, W. (1985). Concurrent validity of the internalizing and externalizing profile patterns of the Achenbach Child Behavior Checklist. Journal of Consulting and Clinical Psychology, 53, 724728. doi:10.1037/0022-006X.53.5.724Google Scholar
Cole, D. A. (1987). Utility of confirmatory factor analysis in test validation research. Journal of Consulting and Clinical Psychology, 55, 584594. doi:10.1037/0022-006X.55.4.584Google Scholar
Cosgrove, V. E., Rhee, S. H., Gelhorn, H. L., Boeldt, D., Corley, R. C., Ehringer, M. A., & Hewitt, J. K. (2011). Structure and etiology of co-occurring internalizing and externalizing disorders in adolescents. Journal of Abnormal Child Psychology, 39, 109123. doi:10.1007/s10802-010-9444-8Google Scholar
Derks, E. M., Dolan, C. V., & Boomsma, D. I. (2004). Effects of censoring on parameter estimates and power in genetic modeling. Twin Research, 7, 659669. doi:10.1375/twin.7.6.659Google Scholar
Derks, E. M., Hudziak, J. J., Beijsterveldt, C. E. M., Dolan, C. V., & Boomsma, D. I. (2004). A study of genetic and environmental influences on maternal and paternal CBCL syndrome scores in a large sample of 3-year-old Dutch twins. Behavior Genetics, 34, 571583. doi:10.1007/s10519-004-5585-2Google Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168. doi:10.1146/annurev-psych-113011-143750Google Scholar
Ellingson, J. M., Richmond-Rakerd, L. S., & Slutske, W. S. (2015). Brief report: Cognitive control helps explain comorbidity between alcohol use disorder and internalizing disorders. Journal of Studies on Alcohol and Drugs, 76, 8994. doi:10.15288/jsad.2015.76.89Google Scholar
Fleming, K. A., Heintzelman, S. J., & Bartholow, B. D. (2015). Specifying associations between conscientiousness and executive functioning: Mental set shifting, not prepotent response inhibition or working memory updating. Journal of Personality, 84, 348360. doi:10.1111/jopy.12163Google Scholar
Friedman, N. P., Corley, R. P., Hewitt, J. K., & Wright, K. P. (2009). Individual differences in childhood sleep problems predict later cognitive executive control. Sleep, 32, 323333.Google Scholar
Friedman, N. P., Haberstick, B. C., Willcutt, E. G., Miyake, A., Young, S. E., Corley, R. P., & Hewitt, J. K. (2007). Greater attention problems during childhood predict poorer executive functioning in late adolescence. Psychological Science, 18, 893900. doi:10.1111/j.1467-9280.2007.01997.xGoogle Scholar
Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186204. doi:10.1016/j.cortex.2016.04.023Google Scholar
Friedman, N. P., Miyake, A., Altamirano, L. J., Corley, R. P., Young, S. E., Rhea, S. A., & Hewitt, J. K. (2016). Stability and change in executive function abilities from late adolescence to early adulthood: A longitudinal twin study. Developmental Psychology, 52, 326340. doi:10.1037/dev0000075Google Scholar
Friedman, N. P., Miyake, A., Young, S. E., Defries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology: General, 137, 201225. doi:10.1037/0096-3445.137.2.201Google Scholar
Gilliom, M., & Shaw, D. S. (2004). Codevelopment of externalizing and internalizing problems in early childhood. Development and Psychopathology, 16, 313333. doi:10.1017/S0954579404044530Google Scholar
Goschke, T. (2014). Dysfunctions of decision-making and cognitive control as transdiagnostic mechanisms of mental disorders: Advances, gaps, and needs in current research. International Journal of Methods in Psychiatric Research, 23, 4157. doi:10.1002/mpr.1410Google Scholar
Herd, S. A., O'Reilly, R. C., Hazy, T. E., Chatham, C. H., Brant, A. M., & Friedman, N. P. (2014). A neural network model of individual differences in task switching abilities. Neuropsychologia, 62, 375389. doi:10.1016/j.neuropsychologia.2014.04.014Google Scholar
Hink, L. K., Rhee, S. H., Corley, R. P., Cosgrove, V. E., Hewitt, J. K., Schulz-Heik, R. J., & Waldman, I. D. (2013). Personality dimensions as common and broadband-specific features for internalizing and externalizing disorders. Journal of Abnormal Child Psychology, 41, 939957. doi:10.1007/s10802-013-9730-3Google Scholar
Hinshaw, S. P. (2002). Process, mechanism, and explanation related to externalizing behavior in developmental psychopathology. Journal of Abnormal Child Psychology, 30, 431446. doi:10.1023/A:1019808712868Google Scholar
Hofstra, M. B., van der Ende, J., & Verhulst, F. C. (2000). Continuity and change of psychopathology from childhood into adulthood: A 14-year follow-up study. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 850858. doi:10.1097/00004583-200007000-00013Google Scholar
Holmes, C. J., Kim-Spoon, J., & Deater-Deckard, K. (2016). Linking executive function and peer problems from early childhood through middle adolescence. Journal of Abnormal Child Psychology, 44, 3142.Google Scholar
Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424453. doi:10.1037/1082-989X.3.4.424Google Scholar
Hughes, C., & Ensor, R. (2011). Individual differences in growth in executive function across the transition to school predict externalizing and internalizing behaviors and self-perceived academic success at 6 years of age. Journal of Experimental Child Psychology, 108, 663676. doi:10.1016/j.jecp.2010.06.005Google Scholar
Johnson, D. P., Whisman, M. A., Corley, R. P., & Hewitt, J. K., & Rhee, S. H. (2012). Association between depressive symptoms and negative dependent life events from late childhood to adolescence. Journal of Abnormal Child Psychology, 40, 13851400. doi:10.1007/s10802-012-9642-7Google Scholar
Jung, T., & Wickrama, K. A. S. (2008). An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass, 2, 302317. doi:10.1111/j.1751-9004.2007.00054.xGoogle Scholar
Kazdin, A. E., & Kagan, J. (1994). Models of dysfunction in developmental psychopathology. Clinical Psychology: Science and Practice, 1, 3552. doi:10.1111/j.1468-2850.1994.tb00005.xGoogle Scholar
Keiley, M. K., Bates, J. E., Dodge, K. A., & Pettit, G. S. (2000). A cross-domain growth analysis: Externalizing and internalizing behaviors during 8 years of childhood. Journal of Abnormal Child Psychology, 28, 161179. doi:10.1023/A:1005122814723Google Scholar
Keiley, M. K., Lofthouse, N., Bates, J. E., Dodge, K. A., & Pettit, G. S. (2003). Differential risks of covarying and pure components in mother and teacher reports of externalizing and internalizing behavior across ages 5 to 14. Journal of Abnormal Child Psychology, 31, 267283. doi:10.1023/A:1023277413027Google Scholar
Kendler, K. S., Martin, N. G., Heath, A. C., & Eaves, L. J. (1995). Self-report psychiatric symptoms in twins and their nontwin relatives: Are twins different? American Journal of Medical Genetics, 60, 588591. doi:10.1002/ajmg.1320600622Google Scholar
Kim, J., & Cicchetti, D. (2006). Longitudinal trajectories of self-system processes and depressive symptoms among maltreated and nonmaltreated children. Child Development, 77, 624639. doi:10.1111/j.1467-8624.2006.00894.xGoogle Scholar
Kroes, M., Kalff, A. C., Steyaert, J., Kessels, G. H., Feron, F. J. M., Hendriksen, J. G. M., … Vles, J. S. H. (2002). A longitudinal community study: Do psychosocial risk factors and child behavior checklist scores at 5 years of age predict psychiatric diagnoses at a later age? Journal of the American Academy of Child & Adolescent Psychiatry, 41, 955963. doi:10.1097/00004583-200208000-00014Google Scholar
Krueger, R. F., & Tackett, J. L. (2003). Personality and psychopathology: Working toward the bigger picture. Personality, Personality Disorder, and Psychopathology, 17, 109128. doi:10.1521/pedi.17.2.109.23986Google Scholar
Laceulle, O. M., Vollebergh, W. A. M., & Ormel, J. (2015). The structure of psychopathology in adolescence: Replication of a general psychopathology factor in the TRAILS study. Clinical Psychological Science, 3, 850860. doi:10.1177/2167702614560750Google Scholar
Lee, E. J., & Bukowski, W. M. (2012). Co-development of internalizing and externalizing problem behaviors: Causal direction and common vulnerability. Journal of Adolescence, 35, 713729. doi:10.1016/j.adolescence.2011.10.008Google Scholar
Lilienfeld, S. O. (2003). Comorbidity between and within childhood externalizing and internalizing disorders: Reflections and directions. Journal of Abnormal Child Psychology, 31, 285291. doi:10.1023/A:1023229529866Google Scholar
Lochman, J. E. (1995). Screening of child behavior problems for prevention programs at school entry. Journal of Consulting and Clinical Psychology, 63, 549559. doi:10.1037/0022-006X.63.4.549Google Scholar
Marsh, H. W. (1989). Confirmatory factor analyses of multitrait-multimethod data: Many problems and a few solutions. Applied Psychological Measurement, 13, 335361. doi:10.1177/014662168901300402Google Scholar
Martel, M. M., Pan, P. M., Hoffmann, M. S., Gadelha, A., do Rosário, M. C., Mari, J. J., … Salum, G. A. (2017). A general psychopathology factor (P factor) in children: Structural model analysis and external validation through familial risk and child global executive function. Journal of Abnormal Psychology, 126, 137148. doi:10.1037/abn0000205Google Scholar
McGrath, L. M., Braaten, E. B., Doty, N. D., Willoughby, B. L., Wilson, H. K., O'Donnell, E. H., … Doyle, A. E. (2016). Extending the “cross-disorder” relevance of executive functions to dimensional neuropsychiatric traits in youth. Journal of Child Psychology and Psychiatry, 57, 462471. doi:10.1111/jcpp.12463Google Scholar
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21, 814. doi:10.1177/0963721411429458Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100. doi:10.1006/cogp.1999.0734Google Scholar
Morgan, A. B., & Lilienfeld, S. O. (2000). A meta-analytic review of the relation between antisocial behavior and neuropsychological measures of executive function. Clinical Psychology Review, 20, 113136. doi:10.1016/S0272-7358(98)00096-8Google Scholar
Murray, A. L., Eisner, M., & Ribeaud, D. (2016). The development of the general factor of psychopathology “P factor” through childhood and adolescence. Journal of Abnormal Child Psychology, 44, 15731586. doi:10.1007/s10802-016-0132-1Google Scholar
Muthén, L. K., & Muthén, B. O. (1998–2014). Mplus user's guide (7th ed.). Los Angeles: Author.Google Scholar
Nagin, D. S. (1999). Analyzing developmental trajectories: A semiparametric, group-based approach. Psychological Methods, 4, 139157.Google Scholar
Nigg, J. T., Jester, J. M., Stavro, G. M., Ip, K. I., Puttler, L. I., & Zucker, R. A. (2017). Specificity of executive functioning and processing speed problems in common psychopathology. Neuropsychology, 31, 448466. doi:10.1037/neu0000343Google Scholar
Nolen-Hoeksema, S., & Watkins, E. R. (2011). A heuristic for developing transdiagnostic models of psychopathology: Explaining multifinality and divergent trajectories. Perspectives on Psychological Science, 6, 589609. doi:10.1177/1745691611419672Google Scholar
Oglivie, J. M., Steward, A. L., Chan, R. C. K., & Shum, D. H. K. (2011). Neuropsychological measures of executive function and antisocial behavior: A meta-analysis. Criminology, 49, 10631107. doi:10.1111/j.1745-9125.2011.00252.xGoogle Scholar
Rhea, S. A., Gross, A. A., Haberstick, B. C., & Corley, R. P. (2013). Colorado twin registry: An update. Twin Research and Human Genetics, 16, 351357. doi:10.1017/thg.2012.93Google Scholar
Rhee, S. H., Lahey, B. B., & Waldman, I. D. (2015). Comorbidity among dimensions of childhood psychopathology: Converging evidence from behavior genetics. Child Development Perspectives, 9, 2631. doi:10.1111/cdep.12102Google Scholar
Riggs, N. R., Blair, C. B., & Greenberg, M. T. (2004). Concurrent and 2-year longitudinal relations between executive function and the behavior of 1st and 2nd grade children. Child Neuropsychology, 9, 267276. doi:10.1076/chin.9.4.267.23513Google Scholar
Rutter, M., Caspi, A., & Moffitt, T. E. (2003). Using sex differences in psychopathology to study causal mechanisms: Unifying issues and research strategies. Journal of Child Psychology and Psychiatry, 44, 10921115. doi:10.1111/1469-7610.00194Google Scholar
Sergeant, J. A., Geurts, H., & Oosterlaan, J. (2002). How specific is a deficit of executive functioning for attention-deficit/hyperactivity disorder? Behavioural Brain Research, 130, 328. doi:10.1016/S0166-4328(01)00430-2Google Scholar
Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychological Bulletin, 139, 81132. doi:10.1037/a0028727Google Scholar
Snyder, H. R., Kaiser, R. H., Warren, S. L., & Heller, W. (2015). Obsessive-compulsive disorder is associated with broad impairments in executive function: A meta-analysis. Clinical Psychological Science, 3, 301330. doi:10.1177/2167702614534210Google Scholar
Snyder, H. R., Miyake, A., & Hankin, B. L. (2015). Advancing understanding of executive function impairments and psychopathology: Bridging the gap between clinical and cognitive approaches. Frontiers in Psychology, 6, 328. doi:10.3389/fpsyg.2015.00328Google Scholar
Snyder, H. R., Young, J. F., & Hankin, B. L. (2017). Strong homotypic continuity in common psychopathology-, internalizing-, and externalizing-specific factors over time in adolescents. Clinical Psychological Science, 5, 98110. doi:10.1177/2167702616651076Google Scholar
Tackett, J. L., Lahey, B. B., Van Hulle, C., Waldman, I., Krueger, R. F., & Rathouz, P. J. (2013). Common genetic influences on negative emotionality and a general psychopathology factor in childhood and adolescence. Journal of Abnormal Psychology, 122, 11421153. doi:10.1037/a0034151Google Scholar
Webster-Stratton, C. (1988). Mothers’ and fathers’ perceptions of child deviance: Roles of parent and child behaviors and parent adjustment. Journal of Consulting and Clinical Psychology, 56, 909915. doi:10.1037/0022-006X.56.6.909Google Scholar
Weiss, B., Susser, K., & Catron, T. (1998). Common and specific features of childhood psychopathology. Journal of Abnormal Psychology, 107, 118127. doi:10.1037/0021-843X.107.1.118Google Scholar
Young, S. E., Friedman, N. P., Miyake, A., Willcutt, E. G., Corley, R. P., Haberstick, B. C., & Hewitt, J. K. (2009). Behavioral disinhibition: Liability for externalizing spectrum disorders and its genetic and environmental relation to response inhibition across adolescence. Journal of Abnormal Psychology, 118, 117130. doi:10.1037/a0014657Google Scholar
Zahn-Waxler, C., Shirtcliff, E. A., & Marceau, K. (2008). Disorders of childhood and adolescence: Gender and psychopathology. Annual Review of Clinical Psychology, 4, 275303. doi:10.1146/annurev.clinpsy.3.022806.091358Google Scholar
Zelazo, P. D., & Cunningham, W. A. (2007). Executive function: Mechanisms underlying emotion regulation. In Gross, J. J. (Ed.), Handbook of emotion regulation (pp. 135158). New York: Guilford Press.Google Scholar
Supplementary material: File

Hatoum et al supplementary material

Hatoum et al supplementary material 1

Download Hatoum et al supplementary material(File)
File 3.1 MB