Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T00:41:32.943Z Has data issue: false hasContentIssue false

Diurnal cortisol rhythms in youth from risky families: Effects of cumulative risk exposure and variation in the serotonin transporter linked polymorphic region gene

Published online by Cambridge University Press:  23 June 2014

Cynthia J. Willner*
Affiliation:
Pennsylvania State University
Pamela A. Morris
Affiliation:
New York University
Dana Charles McCoy
Affiliation:
Harvard University
Emma K. Adam
Affiliation:
Northwestern University
*
Address correspondence and reprint requests to: Cynthia J. Willner, Department of Human Development and Family Studies, College of Health and Human Development, Pennsylvania State University, 315-A Health and Human Development East Building, University Park, PA 16802; E-mail: [email protected].

Abstract

Building on research on cumulative risk and psychopathology, this study examines how cumulative risk exposure is associated with altered diurnal cortisol rhythms in an ethnically diverse, low-income sample of youth. In addition, consistent with a diathesis-stress perspective, this study explores whether the effect of environmental risk is moderated by allelic variation in the serotonin transporter linked polymorphic region (5-HTTLPR) gene. Results show that youth with greater cumulative risk exposure had flatter diurnal cortisol slopes, regardless of 5-HTTLPR genotype. However, the association of cumulative risk with average cortisol output (area under the curve [AUC]) was moderated by the 5-HTTLPR genotype. Among youth homozygous for the long allele, greater cumulative risk exposure was associated with lower cortisol AUC, driven by significant reductions in cortisol levels at waking. In contrast, there was a trend-level association between greater cumulative risk and higher cortisol AUC among youth carrying the short allele, driven by a trend-level increase in bedtime cortisol levels. Findings are discussed with regard to the relevance of dysregulated diurnal cortisol rhythms for the development of psychopathology and the implications of genetically mediated differences in psychophysiological adaptations to stress.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abidin, R. R. (1995). Manual for the Parenting Stress Index (3rd ed.). Charlottesville, VA: Pediatric Psychology Press.Google Scholar
Adam, E. K. (2012). Emotion–cortisol transactions occur over multiple time scales in development: Implications for research on emotion and the development of emotional disorders. Monographs of the Society for Research in Child Development, 77, 1727.CrossRefGoogle Scholar
Adam, E. K., Doane, L. D., Zinbarg, R. E., Mineka, S., Craske, M. G., & Griffith, J. W. (2010). Prospective prediction of major depressive disorder from cortisol awakening responses in adolescence. Psychoneuroendocrinology, 35, 921931.CrossRefGoogle ScholarPubMed
Adam, E. K., Hawkley, L. C., Kudielka, B. M., & Cacioppo, J. T. (2006). Day-to-day dynamics of experience–cortisol associations in a population-based sample of older adults. Proceedings of the National Academy of Sciences, 103, 1705817063.CrossRefGoogle Scholar
Adam, E. K., Klimes-Dougan, B., & Gunnar, M. R. (2007). Social regulation of the adrenocortical response to stress in infants, children and adolescents: Implications for psychopathology and education. In Coch, D., Dawson, G., & Fischer, K. (Eds.), Human behavior, learning, and the developing brain: Atypical development (pp. 264304). New York: Guilford Press.Google Scholar
Adam, E. K., & Kumari, M. (2009). Assessing salivary cortisol in large-scale, epidemiological research. Psychoneuroendocrinology, 34, 14231436.CrossRefGoogle ScholarPubMed
Adam, E. K., Sutton, J. M., Doane, L. D., & Mineka, S. (2008). Incorporating hypothalamic–pituitary–adrenal axis measures into preventive interventions for adolescent depression: Are we there yet? Development and Psychopathology, 20, 9751001.CrossRefGoogle ScholarPubMed
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks, CA: Sage.Google Scholar
Alexander, N., Kuepper, Y., Schmitz, A., Osinsky, R., Kozyra, E., & Hennig, J. (2009). Gene–environment interactions predict cortisol responses after acute stress: Implications for the etiology of depression. Psychoneuroendocrinology, 34, 12941303.CrossRefGoogle ScholarPubMed
Andrews, M. H., & Matthews, S. G. (2004). Programming of the hypothalamo–pituitary–adrenal axis: Serotonergic involvement. Stress, 7, 1527.CrossRefGoogle ScholarPubMed
Armbruster, D., Mueller, A., Moser, D., Lesch, K., Brocke, B., & Kirschbaum, C. (2009). Interaction effect of D4 dopamine receptor gene and serotonin transporter promoter polymorphism on the cortisol stress response. Behavioral Neuroscience, 123, 12881295.CrossRefGoogle ScholarPubMed
Barocas, R., Seifer, R., & Sameroff, A. J. (1985). Defining environmental risk: Multiple dimensions of psychological vulnerability. American Journal of Community Psychology, 13, 433447.CrossRefGoogle ScholarPubMed
Bouma, E., Riese, H., Nederhof, E., Ormel, J., & Oldehinkel, A. (2010). No replication of genotype effect of 5-HTTLPR on cortisol response to social stress in larger adolescent sample. Biological Psychiatry, 68, e33e34.CrossRefGoogle ScholarPubMed
Bradbury, M. J., Akana, S. F., & Dallman, M. F. (1994). Roles of type I and II corticosteroid receptors in regulation of basal activity in the hypothalamo–pituitary–adrenal axis during the diurnal trough and the peak: Evidence for a nonadditive effect of combined receptor occupation. Endocrinology, 134, 12861296.CrossRefGoogle ScholarPubMed
Broderick, J. E., Arnold, D., Kudielka, B. M., & Kirschbaum, C. (2004). Salivary cortisol sampling compliance: Comparison of patients and healthy volunteers. Psychoneuroendocrinology, 29, 636650.CrossRefGoogle ScholarPubMed
Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. Focus, 8, 398416.CrossRefGoogle Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Chen, M. C., Joormann, J., Hallmayer, J., & Gotlib, I. H. (2009). Serotonin transporter polymorphism predicts waking cortisol in young girls. Psychoneuroendocrinology, 34, 681686.CrossRefGoogle ScholarPubMed
Chida, Y., & Steptoe, A. (2009). Cortisol awakening response and psychosocial factors: A systematic review and meta-analysis. Biological Psychology, 80, 265278.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2001). The impact of child maltreatment and psychopathology on neuroendocrine functioning. Development and Psychopathology, 13, 783804.CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F. A., Gunnar, M. R., & Toth, S. L. (2010). The differential impacts of early physical and sexual abuse and internalizing problems on daytime cortisol rhythm in school-aged children. Child Development, 81, 252269.CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F. A., & Oshri, A. (2011). Interactive effects of corticotropin releasing hormone receptor 1, serotonin transporter linked polymorphic region, and child maltreatment on diurnal cortisol regulation and internalizing symptomatology. Development and Psychopathology, 23, 11251138.CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F. A., & Thibodeau, E. L. (2012). The effects of child maltreatment on early signs of antisocial behavior: Genetic moderation by tryptophan hydroxylase, serotonin transporter, and monoamine oxidase A genes. Development and Psychopathology, 24, 907928.CrossRefGoogle ScholarPubMed
Conway, C. C., Keenan-Miller, D., Hammen, C., Lind, P. A., Najman, J. M., & Brennan, P. A. (2012). Coaction of stress and serotonin transporter genotype in predicting aggression at the transition to adulthood. Journal of Clinical Child & Adolescent Psychology, 41, 5363.CrossRefGoogle ScholarPubMed
Cunningham-Bussel, A. C., Root, J. C., Butler, T., Tuescher, O., Pan, H., Epstein, J., et al. (2009). Diurnal cortisol amplitude and fronto-limbic activity in response to stressful stimuli. Psychoneuroendocrinology, 34, 694704.CrossRefGoogle ScholarPubMed
Dahl, R. E., Ryan, N., Puig-Antich, J., Nguyen, N., Al-Shabbout, M., Meyer, V., et al. (1991). 24-hour cortisol measures in adolescents with major depression: A controlled study. Biological Psychiatry, 30, 2536.CrossRefGoogle ScholarPubMed
Dallman, M. F., Akana, S. F., Bradbury, M. J., Strack, A. M., Hanson, E. S., & Scribner, K. A. (1994). Regulation of the hypothalamo–pituitary–adrenal axis during stress: Feedback, facilitation and feeding. Seminars in Neuroscience, 6, 205213.CrossRefGoogle Scholar
de Kloet, E. R., Vreugdenhil, E., Oitzl, M. S., & Joëls, M. (1998). Brain corticosteroid receptor balance in health and disease. Endocrine Reviews, 19, 269301.Google ScholarPubMed
DeSantis, A. S., DiezRoux, A. V., Hajat, A., Aiello, A. E., Golden, S. H., Jenny, N. S., et al. (2012). Associations of salivary cortisol levels with inflammatory markers: The Multi-Ethnic Study of Atherosclerosis. Psychoneuroendocrinology, 37, 10091018.CrossRefGoogle ScholarPubMed
DeSantis, A. S., Kuzawa, C., & Adam, E. K. (2011). Prospective associations between socioeconomic status and adult diurnal cortisol patterns in a birth cohort. Manuscript submitted for publication.Google Scholar
Disner, S. G., Beevers, C. G., Haigh, E. A. P., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12, 467477.CrossRefGoogle ScholarPubMed
Doane, L. D., & Adam, E. K. (2010). Loneliness and cortisol: Momentary, day-to-day, and trait associations. Psychoneuroendocrinology, 35, 430441.CrossRefGoogle ScholarPubMed
Doane, L. D., Mineka, S., Zinbarg, R. E., Craske, M., Griffith, J. W., & Adam, E. K. (2013). Are flatter diurnal cortisol rhythms associated with major depression and anxiety disorders in late adolescence? The role of life stress and daily negative emotion. Development and Psychopathology, 25, 629642.CrossRefGoogle ScholarPubMed
Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168, 10411049.CrossRefGoogle ScholarPubMed
Eaton, W. (2000). The sociology of mental disorders. New York: Greenwood Press.Google Scholar
Ellenbogen, M. A., & Hodgins, S. (2009). Structure provided by parents in middle childhood predicts cortisol reactivity in adolescence among the offspring of parents with bipolar disorder and controls. Psychoneuroendocrinology, 34, 773785.CrossRefGoogle ScholarPubMed
Essex, M. J., Klein, M. H., Cho, E., & Kalin, N. H. (2002). Maternal stress beginning in infancy may sensitize children to later stress exposure: Effects on cortisol and behavior. Biological Psychiatry, 52, 776784.CrossRefGoogle ScholarPubMed
Essex, M. J., Shirtcliff, E. A., Burk, L. R., Ruttle, P. L., Klein, M. H., Slattery, M. J., et al. (2011). Influence of early life stress on later hypothalamic–pituitary–adrenal axis functioning and its covariation with mental health symptoms: A study of the allostatic process from childhood into adolescence. Development and Psychopathology, 23, 10391058.CrossRefGoogle ScholarPubMed
Evans, G. W. (2003). A multimethodological analysis of cumulative risk and allostatic load among rural children. Developmental Psychology, 39, 924933.CrossRefGoogle ScholarPubMed
Evans, G. W., & English, K. (2002). The environment of poverty: Multiple stressor exposure, psychophysiological stress, and socioemotional adjustment. Child Development, 73, 12381248.CrossRefGoogle ScholarPubMed
Evans, G. W., & Kantrowitz, E. (2002). Socioeconomic status and health: The potential role of environmental risk exposure. Annual Review of Public Health, 23, 303331.CrossRefGoogle ScholarPubMed
Evans, G. W., & Kim, P. (2007). Childhood poverty and health: Cumulative risk exposure and stress dysregulation. Psychological Science, 18, 953957.CrossRefGoogle ScholarPubMed
Evans, G. W., Kim, P., Ting, A. H., Tesher, H. B., & Shannis, D. (2007). Cumulative risk, maternal responsiveness, and allostatic load among young adolescents. Developmental Psychology, 43, 341351.CrossRefGoogle ScholarPubMed
Ewell Foster, C. J., Garber, J., & Durlak, J. A. (2008). Current and past maternal depression, maternal interaction behaviors, and children's externalizing and internalizing symptoms. Journal of Abnormal Child Psychology, 36, 527537.CrossRefGoogle Scholar
Firk, C., & Markus, C. R. (2007). Review: Serotonin by stress interaction: A susceptibility factor for the development of depression? Journal of Psychopharmacology, 21, 538544.CrossRefGoogle ScholarPubMed
Franklin, T. B., Saab, B. J., & Mansuy, I. M. (2012). Neural mechanisms of stress resilience and vulnerability. Neuron, 75, 747761.CrossRefGoogle ScholarPubMed
Frodl, T., & O'Keane, V. (2013). How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans. Neurobiology of Disease, 52, 2437.CrossRefGoogle Scholar
Ganzel, B. L., Morris, P. A., & Wethington, E. (2010). Allostasis and the human brain: Integrating models of stress from the social and life sciences. Psychological Review, 117, 134174.CrossRefGoogle ScholarPubMed
Gelernter, J., Kranzler, H., & Cubells, J. F. (1997). Serotonin transporter protein (SLC6A4) allele and haplotype frequencies and linkage disequilibria in African- and European-American and Japanese populations and in alcohol-dependent subjects. Human Genetics, 101, 243246.CrossRefGoogle ScholarPubMed
Glenn, A. L. (2011). The other allele: Exploring the long allele of the serotonin transporter gene as a potential risk factor for psychopathy: A review of the parallels in findings. Neuroscience & Biobehavioral Reviews, 35, 612620.CrossRefGoogle Scholar
Goodyer, I. M., Bacon, A., Ban, M., Croudace, T., & Herbert, J. (2009). Serotonin transporter genotype, morning cortisol and subsequent depression in adolescents. British Journal of Psychiatry, 195, 3945.CrossRefGoogle ScholarPubMed
Goodyer, I. M., Herbert, J., Tamplin, A., & Altham, P. M. E. (2000). First-episode major depression in adolescents: Affective, cognitive and endocrine characteristics of risk status and predictors of onset. British Journal of Psychiatry, 176, 142149.CrossRefGoogle ScholarPubMed
Gotlib, I. H., Joormann, J., Minor, K. L., & Hallmayer, J. (2008). HPA axis reactivity: A mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biological Psychiatry, 63, 847851.CrossRefGoogle ScholarPubMed
Gustafsson, P. E., Anckarsäter, H., Lichtenstein, P., Nelson, N., & Gustafsson, P. A. (2010). Does quantity have a quality all its own? Cumulative adversity and up-and down-regulation of circadian salivary cortisol levels in healthy children. Psychoneuroendocrinology, 35, 14101415.CrossRefGoogle ScholarPubMed
Halberstadt, A. G., Cassidy, J., Stifter, C. A., Parke, R. D., & Fox, N. A. (1995). Self-expressiveness within the family context: Psychometric support for a new measure. Psychological Assessment, 7, 93103.CrossRefGoogle Scholar
Halligan, S. L., Herbert, J., Goodyer, I. M., & Murray, L. (2004). Exposure to postnatal depression predicts elevated cortisol in adolescent offspring. Biological Psychiatry, 55, 376381.CrossRefGoogle ScholarPubMed
Halligan, S. L., Herbert, J., Goodyer, I., & Murray, L. (2007). Disturbances in morning cortisol secretion in association with maternal postnatal depression predict subsequent depressive symptomatology in adolescents. Biological Psychiatry, 62, 4046.CrossRefGoogle ScholarPubMed
Hauner, K. Y., Adam, E. K., Mineka, S., Doane, L. D., DeSantis, A. S., Zinbarg, R., et al. (2008). Neuroticism and introversion are associated with salivary cortisol patterns in adolescents. Psychoneuroendocrinology, 33, 13441356.CrossRefGoogle ScholarPubMed
Heils, A., Teufel, A., Petri, S., Stöber, G., Riederer, P., Bengel, D., et al. (1996). Allelic variation of human serotonin transporter gene expression. Journal of Neurochemistry, 66, 26212624.CrossRefGoogle ScholarPubMed
Herbert, J., Goodyer, I. M., Grossman, A. B., Hastings, M. H., de Kloet, E. R., Lightman, S. L., et al. (2006). Do corticosteroids damage the brain? Journal of Neuroendocrinology, 18, 393411.CrossRefGoogle ScholarPubMed
Herman, J. P., Ostrander, M. M., Mueller, N. K., & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: Hypothalamo–pituitary–adrenocortical axis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29, 12011213.CrossRefGoogle ScholarPubMed
Holmes, M. C., French, K. L., & Seckl, J. R. (1997). Dysregulation of diurnal rhythms of serotonin 5-HT2C and corticosteroid receptor gene expression in the hippocampus with food restriction and glucocorticoids. Journal of Neuroscience, 17, 40564065.CrossRefGoogle ScholarPubMed
Holsboer, F. (2000). The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 23, 477501.CrossRefGoogle ScholarPubMed
Homberg, J. R., & Lesch, K. P. (2011). Looking on the bright side of serotonin transporter gene variation. Biological Psychiatry, 69, 513519.CrossRefGoogle ScholarPubMed
Horta, B. L., Victora, C. G., Menezes, A. M., Halpern, R., & Barros, F. C. (1997). Low birthweight, preterm births and intrauterine growth retardation in relation to maternal smoking. Paediatric and Perinatal Epidemiology, 11, 140151.CrossRefGoogle ScholarPubMed
Indredavik, M. S., Vik, T., Heyerdahl, S., Kulseng, S., Fayers, P., & Brubakk, A.-M. (2004). Psychiatric symptoms and disorders in adolescents with low birth weight. Archives of Disease in Childhood Fetal & Neonatal Edition, 89, F445F450.CrossRefGoogle ScholarPubMed
Jiang, W.-G., Li, S.-X., Liu, J.-F., Sun, Y., Zhou, S.-J., Zhu, W.-L., et al. (2013). Hippocampal CLOCK protein participates in the persistence of depressive-like behavior induced by chronic unpredictable stress. Psychopharmacology, 227, 7992.CrossRefGoogle ScholarPubMed
Jiang, X., Wang, J., Luo, T., & Li, Q. (2009). Impaired hypothalamic–pituitary–adrenal axis and its feedback regulation in serotonin transporter knockout mice. Psychoneuroendocrinology, 34, 317331.CrossRefGoogle ScholarPubMed
Karatsoreos, I. N., & McEwen, B. S. (2011). Psychobiological allostasis: Resistance, resilience, and vulnerability. Trends in Cognitive Sciences, 15, 576584.CrossRefGoogle ScholarPubMed
Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Archives of General Psychiatry, 68, 444454.CrossRefGoogle ScholarPubMed
Kim, S., LeBlanc, A., & Michalopoulos, C. (2009). Working toward wellness: Early results from a telephone care management program for Medicaid recipients with depression. New York: MDRC.Google Scholar
Kim, S., LeBlanc, A., Morris, P., Simon, G., & Walter, J. (2010). Working toward wellness: Telephone care management for Medicaid recipients with depression, eighteen months after random assignment. New York: MDRC.Google Scholar
Kino, T., & Chrousos, G. P. (2011). Acetylation-mediated epigenetic regulation of glucocorticoid receptor activity: Circadian rhythm-associated alterations of glucocorticoid actions in target tissues. Molecular and Cellular Endocrinology, 336, 2330.CrossRefGoogle ScholarPubMed
Kirschbaum, C., & Hellhammer, D. H. (1989). Salivary cortisol in psycho-biological research: An overview. Neuropsychobiology, 22, 150169.CrossRefGoogle Scholar
Knight, J. M., Avery, E. F., Janssen, I., & Powell, L. H. (2010). Cortisol and depressive symptoms in a population-based cohort of midlife women. Psychosomatic Medicine, 72, 855861.CrossRefGoogle Scholar
Koenigs, M., & Grafman, J. (2009). Posttraumatic stress disorder: The role of medial prefrontal cortex and amygdala. Neuroscientist, 15, 540548.CrossRefGoogle ScholarPubMed
Koolhaas, J. M., Korte, S. M., De Boer, S. F., Van Der Vegt, B. J., Van Reenen, C. G., Hopster, H., et al. (1999). Coping styles in animals: Current status in behavior and stress-physiology. Neuroscience & Biobehavioral Reviews, 23, 925935.CrossRefGoogle ScholarPubMed
Kudielka, B. M., & Kirschbaum, C. (2005). Sex differences in HPA axis response to stress: A review. Biological Psychology, 69, 113132.CrossRefGoogle ScholarPubMed
Kumari, M., Badrick, E., Chandola, T., Adam, E. K., Stafford, M., Marmot, M. G., et al. (2009). Cortisol secretion and fatigue: Associations in a community based cohort. Psychoneuroendocrinology, 34, 14761485.CrossRefGoogle Scholar
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 15271531.CrossRefGoogle ScholarPubMed
Liston, C., Miller, M. M., Goldwater, D. S., Radley, J. J., Rocher, A. B., Hof, P. R., et al. (2006). Journal of Neuroscience, 26, 78707874.CrossRefGoogle Scholar
Loney, B. R., Butler, M. A., Lima, E. N., Counts, C. A., & Eckel, L. A. (2006). The relation between salivary cortisol, callous-unemotional traits, and conduct problems in an adolescent non-referred sample. Journal of Child Psychology and Psychiatry, 47, 3036.CrossRefGoogle Scholar
Lopez-Duran, N. L., Kovacs, M., & George, C. J. (2009). Hypothalamic–pituitary–adrenal axis dysregulation in depressed children and adolescents: A meta-analysis. Psychoneuroendocrinology, 34, 12721283.CrossRefGoogle ScholarPubMed
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2000). Child's stress hormone levels correlate with mother's socioeconomic status and depressive state. Biological Psychiatry, 48, 976980.CrossRefGoogle ScholarPubMed
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2001). Can poverty get under your skin? Basal cortisol levels and cognitive function in children from low and high socioeconomic status. Development and Psychopathology, 13, 653676.CrossRefGoogle ScholarPubMed
Matthews, K., Schwartz, J., Cohen, S., & Seeman, T. (2006). Diurnal cortisol decline is related to coronary calcification: CARDIA study. Psychosomatic Medicine, 68, 657661.CrossRefGoogle ScholarPubMed
McClung, C. A. (2013). How might circadian rhythms control mood? Let me count the ways…. Biological Psychiatry, 74, 242249.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 3344.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2004). Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Annals of the New York Academy of Sciences, 1032, 17.CrossRefGoogle Scholar
McEwen, B. S. (2005). Glucocorticoids, depression, and mood disorders: Structural remodeling in the brain. Metabolism: Clinical and Experimental, 54, 2023.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87, 873901.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Seeman, T. (2003). Stress & affect: Applicability of the concepts of allostasis and allostatic load. In Davidson, R., Scherer, S., & Hill Goldsmith, H. (Eds.), Handbook of affective sciences (pp. 11171137). Oxford: Oxford University Press.Google Scholar
McEwen, B. S., & Stellar, E. (1993). Stress and the individual. Archives of Internal Medicine, 153, 20932101.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., & Weinberger, D. R. (2006). Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience, 7, 818827.CrossRefGoogle ScholarPubMed
Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic–pituitary–adrenocortical axis in humans. Psychological Bulletin, 133, 2545.CrossRefGoogle ScholarPubMed
Miller, R., Wankerl, M., Stalder, T., Kirschbaum, C., & Alexander, N. (2013). The serotonin transporter gene-linked polymorphic region (5-HTTLPR) and cortisol stress reactivity: A meta-analysis. Molecular Psychiatry, 18, 10181024.CrossRefGoogle ScholarPubMed
Moffitt, T. E., Caspi, A., & Rutter, M. (2006). Measured gene–environment interactions in psychopathology: Concepts, research strategies, and implications for research, intervention, and public understanding of genetics. Perspectives on Psychological Science, 1, 527.CrossRefGoogle ScholarPubMed
Mueller, A., Armbruster, D., Moser, D. A., Canli, T., Lesch, K. P., Brocke, B., et al. (2011). Interaction of serotonin transporter gene-linked polymorphic region and stressful life events predicts cortisol stress response. Neuropsychopharmacology, 36, 13321339.CrossRefGoogle ScholarPubMed
Nader, N., Chrousos, G. P., & Kino, T. (2010). Interactions of the circadian CLOCK system and the HPA axis. Trends in Endocrinology and Metabolism, 21, 277286.CrossRefGoogle ScholarPubMed
Pendry, P., & Adam, E. K. (2007). Associations between parents' marital functioning, maternal parenting quality, maternal emotion and child cortisol levels. International Journal of Behavioral Development, 31, 218231.CrossRefGoogle Scholar
Porter, R. J., Gallagher, P., Watson, S., & Young, A. H. (2004). Corticosteroid-serotonin interactions in depression: A review of the human evidence. Psychopharmacology, 173, 117.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., & Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology, 28, 916931.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Wolf, O. T., Hellhammer, D. H., Buske-Kirschbaum, A., von Auer, K., Jobst, S., et al. (1997). Free cortisol levels after awakening: A reliable biological marker for the assessment of adrenocortical activity. Life Sciences, 61, 25392549.CrossRefGoogle ScholarPubMed
Repetti, R. L., Taylor, S. E., & Seeman, T. E. (2002). Risky families: Family social environments and the mental and physical health of offspring. Psychological Bulletin, 128, 330366.CrossRefGoogle ScholarPubMed
Rotenberg, S., McGrath, J. J., Roy-Gagnon, M.-H., & Tu, M. T. (2012). Stability of the diurnal cortisol profile in children and adolescents. Psychoneuroendocrinology, 37, 19811989.CrossRefGoogle ScholarPubMed
Rush, J. A., Trivedi, M. H., Ibrahim, H. M., Carmody, T. J., Arnow, B., Klein, D. N., et al. (2003). The 16-item quick inventory of depressive symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): A psychometric evaluation in patients with chronic major depression. Biological Psychiatry, 54, 573583.CrossRefGoogle ScholarPubMed
Rutter, M. (1993). Stress, coping, and development. In Garmezy, N. & Rutter, M. (Eds.), Stress, coping, and development in children (pp. 141). New York: McGraw–Hill.Google Scholar
Rutter, M. (2008). Biological implications of gene–environment interaction. Journal of Abnormal Child Psychology, 36, 969975.CrossRefGoogle ScholarPubMed
Sadeh, N., Javdani, S., Jackson, J. J., Reynolds, E. K., Potenza, M. N., Gelernter, J., et al. (2010). Serotonin transporter gene associations with psychopathic traits in youth vary as a function of socioeconomic resources. Journal of Abnormal Psychology, 119, 604609.CrossRefGoogle ScholarPubMed
Sameroff, A., Seifer, R., Zax, M., & Barocas, R. (1987). Early indicators of developmental risk: Rochester Longitudinal Study. Schizophrenia Bulletin, 13, 383394.CrossRefGoogle ScholarPubMed
SAS Institute Inc. (2009). SAS/STAT® 9.2 user's guide (2nd ed.). Cary, NC: Author.Google Scholar
Sheline, Y. I. (2003). Neuroimaging studies of mood disorder effects on the brain. Biological Psychiatry, 54, 338352.CrossRefGoogle ScholarPubMed
Shirtcliff, E. A., & Essex, M. J. (2008). Concurrent and longitudinal associations of basal and diurnal cortisol with mental health symptoms in early adolescence. Developmental Psychobiology, 50, 690703.CrossRefGoogle ScholarPubMed
Shirtcliff, E. A., Granger, D. A., Booth, A., & Johnson, D. (2005). Low salivary cortisol levels and externalizing behavior problems in youth. Development and Psychopathology, 17, 167184.CrossRefGoogle ScholarPubMed
Shoal, G. D., Giancola, P. R., & Kirillova, G. P. (2003). Salivary cortisol, personality, and aggressive behavior in adolescent boys: A 5-year longitudinal study. Journal of the American Academy of Child & Adolescent Psychiatry, 42, 11011107.CrossRefGoogle ScholarPubMed
Spencer, R. L., Kim, P. J., Kalman, B. A., & Cole, M. A. (1998). Evidence for mineralocorticoid receptor facilitation of glucocorticoid receptor-dependent regulation of hypothalamic–pituitary–adrenal axis activity. Endocrinology, 139, 27182726.CrossRefGoogle ScholarPubMed
Sterling, P., & Eyer, J. (1988). Allostasis: A new paradigm to explain arousal pathology. In Fisher, S. & Reason, J. (Eds.), Handbook of life stress, cognition and health (pp. 629649). New York: Wiley.Google Scholar
Talge, N. M., Neal, C., Glover, V., & the Early Stress, Translational Research and Prevention Science Network: Fetal and Neonatal Experience on Child and Adolescent Mental Health. (2007). Antenatal maternal stress and long-term effects on child neurodevelopment: How and why? Journal of Child Psychology and Psychiatry, 48, 245261.CrossRefGoogle ScholarPubMed
Taylor, S. E., Eisenberger, N. I., Saxbe, D., Lehman, B. J., & Lieberman, M. D. (2006). Neural responses to emotional stimuli are associated with childhood family stress. Biological Psychiatry, 60, 296301.CrossRefGoogle ScholarPubMed
Thomas, S. L., & Heck, R. H. (2001). Analysis of large-scale secondary data in higher education research: Potential perils associated with complex sampling designs. Research in Higher Education, 42, 517540.CrossRefGoogle Scholar
Tomiyama, A. J., O'Donovan, A., Lin, J., Puterman, E., Lazaro, A., Chan, J., et al. (2012). Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiology & Behavior, 106, 4045.CrossRefGoogle ScholarPubMed
Uher, R., & McGuffin, P. (2008). The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: Review and methodological analysis. Molecular Psychiatry, 13, 131146.CrossRefGoogle ScholarPubMed
Uher, R., & McGuffin, P. (2010). The moderation by the serotonin transporter gene of environmental adversity in the etiology of depression: 2009 update. Molecular Psychiatry, 15, 1822.CrossRefGoogle ScholarPubMed
Van den Bergh, B. R. H., & Van Calster, B. (2009). Diurnal cortisol profiles and evening cortisol in post-pubertal adolescents scoring high on the Children's Depression Inventory. Psychoneuroendocrinology, 34, 791794.CrossRefGoogle ScholarPubMed
Van den Bergh, B. R. H., Van Calster, B., Smits, T., Van Huffel, S., & Lagae, L. (2008). Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: A prospective study on the fetal origins of depressed mood. Neuropsychopharmacology, 33, 536545.CrossRefGoogle ScholarPubMed
Vinberg, M., Mellerup, E., Andersen, P. K., Bennike, B., & Kessing, L. V. (2010). Variations in 5-HTTLPR: Relation to familiar risk of affective disorder, life events, neuroticism and cortisol. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34, 8691.CrossRefGoogle ScholarPubMed
Vrshek-Schallhorn, S., Mineka, S., Zinbarg, R. E., Craske, M. G., Griffith, J. W., Sutton, J., et al. (2014). Refining the candidate environment: Interpersonal stress, the serotonin transporter polymorphism, and gene–environment interactions in major depression. Clinical Psychological Science, 2, 235248.CrossRefGoogle ScholarPubMed
Wadhwa, P. D. (2005). Psychoneuroendocrine processes in human pregnancy influence fetal development and health. Psychoneuroendocrinology, 30, 724743.CrossRefGoogle ScholarPubMed
Way, B. M., & Taylor, S. E. (2010). The serotonin transporter promoter polymorphism is associated with cortisol response to psychosocial stress. Biological Psychiatry, 67, 487492.CrossRefGoogle ScholarPubMed
Weitzman, E. D., Fukushima, D., Nogeire, C., Roffwarg, H., Gallagher, T. F., & Hellman, L. (1971). Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. Journal of Clinical Endocrinology and Metabolism, 33, 1422.CrossRefGoogle ScholarPubMed
Wellman, C. L. (2001). Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. Journal of Neurobiology, 49, 245253.CrossRefGoogle ScholarPubMed
Wüst, S., Kumsta, R., Treutlein, J., Frank, J., Entringer, S., Schulze, T. G., et al. (2009). Sex-specific association between the 5-HTT gene-linked polymorphic region and basal cortisol secretion. Psychoneuroendocrinology, 34, 972982.CrossRefGoogle ScholarPubMed
Zalewski, M., Lengua, L. J., Kiff, C. J., & Fisher, P. A. (2012). Understanding the relation of low income to HPA-axis functioning in preschool children: Cumulative family risk and parenting as pathways to disruptions in cortisol. Child Psychiatry & Human Development, 43, 924942.CrossRefGoogle ScholarPubMed