Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T07:04:08.812Z Has data issue: false hasContentIssue false

Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory

Published online by Cambridge University Press:  24 January 2011

Bruce J. Ellis*
Affiliation:
University of Arizona
W. Thomas Boyce
Affiliation:
University of British Columbia
Jay Belsky
Affiliation:
Birkbeck University of London
Marian J. Bakermans-Kranenburg
Affiliation:
Leiden University
Marinus H. van Ijzendoorn
Affiliation:
Leiden University
*
Address correspondence and reprint requests to: Bruce J. Ellis, John and Doris Norton School of Family and Consumer Sciences, University of Arizona, McClelland Park, 650 North Park Avenue, Tucson, AZ 85721-0078; E-mail: [email protected].

Abstract

Two extant evolutionary models, biological sensitivity to context theory (BSCT) and differential susceptibility theory (DST), converge on the hypothesis that some individuals are more susceptible than others to both negative (risk-promoting) and positive (development-enhancing) environmental conditions. These models contrast with the currently dominant perspective on personal vulnerability and environmental risk: diathesis stress/dual risk. We review challenges to this perspective based on emerging theory and data from the evolutionary, developmental, and health sciences. These challenges signify the need for a paradigm shift in conceptualizing Person × Environment interactions in development. In this context we advance an evolutionary–neurodevelopmental theory, based on DST and BSCT, of the role of neurobiological susceptibility to the environment in regulating environmental effects on adaptation, development, and health. We then outline current thinking about neurogenomic and endophenotypic mechanisms that may underpin neurobiological susceptibility, summarize extant empirical research on differential susceptibility, and evaluate the evolutionary bases and implications of BSCT and DST. Finally, we discuss applied issues including methodological and statistical considerations in conducting differential susceptibility research; issues of ecological, cultural, and racial–ethnic variation in neurobiological susceptibility; and implications of differential susceptibility for designing social programs. We conclude that the differential susceptibility paradigm has far-reaching implications for understanding whether and how much child and adult development responds, for better and for worse, to the gamut of species-typical environmental conditions.

Type
Special Section Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alkon, A., Lippert, S., Vujan, N., Rodriquez, M. E., Boyce, W. T., & Eskenazi, B. (2006). The ontogeny of autonomic measures in 6- and 12-month-old infants. Developmental Psychobiology, 48, 197208.CrossRefGoogle ScholarPubMed
Aron, E., & Aron, A. (1997). Sensory-processing sensitivity and its relation to introversion and emotionality. Journal of Personality and Social Psychology, 73, 345368.CrossRefGoogle ScholarPubMed
Aron, E., Aron, A., & Davies, K. M. (2005). Adult shyness: The interaction of temperamental sensitivity and an adverse childhood environment. Personality and Social Psychology Bulletin, 31, 181197.CrossRefGoogle Scholar
Astrin, K. H., Bishop, D. F., Wetmur, J. G., Kaul, B., Davidow, B., & Desnick, R. J. (1987). Delta-aminolevulinic acid dehydratase isozymes and lead toxicity. Annals of the New York Academy of Sciences, 514, 2329.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2006). Gene–environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 6, 406409.CrossRefGoogle Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Genetic vulnerability or differential susceptibility in child development: The case of attachment [Research review]. Journal of Child Psychology and Psychiatry, 48, 11601173.CrossRefGoogle ScholarPubMed
Bakermans–Kranenburg, M. J., & van IJzendoorn, M. H. (2010). Parenting matters: Family science in the genomic era. Family Science, 1, 2535.CrossRefGoogle Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23, 3952.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., & Juffer, F. (2008). Earlier is better: A meta-analysis of 70 years of intervention improving cognitive development in institutionalized children. Monographs of the Society for Research in Child Development, 73, 279293.CrossRefGoogle Scholar
Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Mesman, J., Alink, L. R., & Juffer, F. (2008). Effects of an attachment-based intervention on daily cortisol moderated by dopamine receptor D4: A randomized control trial on 1- to 3-year-olds screened for externalizing behavior. Development and Psychopathology, 20, 805820.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Pijlman, F. T. A., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers' externalizing behavior in a randomized trial. Developmental Psychology, 44, 293300.CrossRefGoogle Scholar
Barr, C. S., Newman, T. K., Becker, M. L., Parker, C. C., Champoux, M., Lesch, K. P., et al. (2003). The utility of the non-human primate model for studying gene by environment interactions in behavioral research. Genes, Brain and Behavior, 2, 336340.CrossRefGoogle ScholarPubMed
Barr, C. S., Newman, T. K., Shannon, C., Parker, C., Dvoskin, R. L., Becker, M. L., et al. (2004). Rearing condition and rh5-HTTLPR interact to influence limbic–hypothalamic–pituitary–adrenal axis response to stress in infant macaques. Biological Psychiatry, 55, 733738.CrossRefGoogle ScholarPubMed
Beach, S. R. H., Brody, G. H., Todorov, A. A., Gunter, T. D., & Philibert, R. A. (2010). Methylation at SLC6A4 is linked to family history of child abuse: An examination of the Iowa adoptee sample. American Journal of Medical Genetics, 153B, 710713.Google ScholarPubMed
Belsky, J. (1997a). Variation in susceptibility to rearing influences: An evolutionary argument. Psychological Inquiry, 8, 182186.CrossRefGoogle Scholar
Belsky, J. (1997b). Theory testing, effect-size evaluation, and differential susceptibility to rearing influence: The case of mothering and attachment. Child Development, 68, 598600.CrossRefGoogle ScholarPubMed
Belsky, J. (2000). Conditional and alternative reproductive strategies: Individual differences in susceptibility to rearing experience. In Rodgers, J., Rowe, D., & Miller, W. (Eds.), Genetic influences on human fertility and sexuality: Theoretical and empirical contributions from the biological and behavioral sciences (pp. 127146). Boston: Kluwer.CrossRefGoogle Scholar
Belsky, J. (2005). Differential susceptibility to rearing influences: An evolutionary hypothesis and some evidence. In Ellis, B. & Bjorklund, D. (Eds.), Origins of the social mind: Evolutionary psychology and child development (pp. 139163). New York: Guilford Press.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.CrossRefGoogle Scholar
Belsky, J., Hsieh, K., & Crnic, K. (1998). Mothering, fathering, and infant negativity as antecedents of boys' externalizing problems and inhibition at age 3: Differential susceptibility to rearing influence? Development and Psychopathology, 10, 301319.CrossRefGoogle Scholar
Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., & Williams, R. (2009). Vulnerability genes or plasticity genes? Molecular Psychiatry, 14, 746754.CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2009a). Beyond diathesis–stress: Differential susceptibility to environmental influence. Psychological Bulletin, 135, 885908.CrossRefGoogle Scholar
Belsky, J., & Pluess, M. (2009b). The nature (and nurture?) of plasticity in early human development. Perspectives in Psychological Science, 4, 345351.CrossRefGoogle ScholarPubMed
Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development and reproductive strategy: An evolutionary theory of socialization. Child Development, 62, 647670.CrossRefGoogle ScholarPubMed
Blair, C. (2002). Early intervention for low birth weight preterm infants: The role of negative emotionality in the specification of effects. Development and Psychopathology, 14, 311332.CrossRefGoogle ScholarPubMed
Boyce, W. T. (1996). Biobehavioral reactivity and injuries in children and adolescents. In Bornstein, M. H. & Genevro, J. (Eds.), Child development and behavioral pediatrics: Toward understanding children and health. Mahwah, NJ: Erlbaum.Google Scholar
Boyce, W. T. (2007). A biology of misfortune: Stress reactivity, social context, and the ontogeny of psychopathology in early life. In Masten, A. (Ed.), Minnesota Symposium on Child Development: Vol. 34. Multilevel dynamics in developmental psychopathology: Pathways to the future (pp. 4582). Minneapolis, MN: University of Minnesota.Google Scholar
Boyce, W. T., Chesney, M., Alkon, A., Tschann, J. M., Adams, S., Chesterman, B., et al. (1995). Psychobiologic reactivity to stress and childhood respiratory illnesses: Results of two prospective studies. Psychosomatic Medicine, 57, 411422.CrossRefGoogle ScholarPubMed
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.CrossRefGoogle ScholarPubMed
Boyce, W. T., Essex, M. J., Alkon, A., Goldsmith, H. H., Kraemer, H. C., & Kupfer, D. J. (2006). Early father involvement moderates biobehavioral susceptibility to mental health problems in middle childhood. Journal of the American Academy of Child & Adolescent Psychiatry, 45, 15101520.CrossRefGoogle ScholarPubMed
Boyce, W. T., Quas, J., Alkon, A., Smider, N., Essex, M., & Kupfer, D. J. (2001). Autonomic reactivity and psychopathology in middle childhood. British Journal of Psychiatry, 179, 144150.CrossRefGoogle ScholarPubMed
Boutros, N. N., Torello, M. W., Barker, B. A., Tueting, P. A., Wu, S. C., & Nasrallah, H. A. (1995). The P50 evoked potential component and mismatch detection in normal volunteers: Implications for the study of sensory gating. Psychiatry Research, 57, 8388.CrossRefGoogle Scholar
Bradley, R. H., & Corwyn, R. F. (2008). Infant temperament, parenting, and externalizing behavior in first grade: A test of the differential susceptibility hypothesis. Journal of Child Psychology and Psychiatry and Allied Disciplines, 49, 124131.CrossRefGoogle Scholar
Brody, G. H., Beach, S. R., Philibert, R. A., Chen, Y. F., & Murry, V. M. (2009). Prevention effects moderate the association of 5-HTTLPR and youth risk behavior initiation: Gene × Environment hypotheses tested via a randomized prevention design. Child Development, 80, 645661.CrossRefGoogle Scholar
Bronfenbrenner, U. (1979). The ecology of human development. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Bronfenbrenner, U. (1993). The ecology of cognitive development. In Wozniak, R. & Fischer, K. (Eds.), Scientific environments (pp. 344). Hillsdale, NJ: Erlbaum.Google Scholar
Bubier, J. B., Drabick, D. A., & Breiner, T. (2009). Autonomic functioning moderates the relations between contextual factors and externalizing behaviors among inner-city children. Journal of Family Psychology, 23, 500510.CrossRefGoogle ScholarPubMed
Bull, J. J. (1987). Evolution of phenotypic variance. Evolution, 41, 303315.CrossRefGoogle ScholarPubMed
Burmeister, M., McInnis, M. G., & Zollner, S. (2008). Psychiatric genetics: Progress amid controversy. Nature Reviews Genetics, 9, 527540.CrossRefGoogle ScholarPubMed
Cameron, N. M., Champagne, F. A., Parent, C., Fish, E. W., Osaki-Kuroda, K., & Meaney, M. J. (2005). The programming of individual differences in defensive responses and reproductive strategies in the rat through variations in maternal care. Neuroscience and Biobehavioral Review, 29, 843865.CrossRefGoogle ScholarPubMed
Cameron, N. M., Del Corpo, A., Diorio, J., Mackallister, K., Sharma, S., & Meaney, M. J. (2008). Maternal programming of sexual behavior and hypothalamic–pituitary gonadal function in the female rat. PLoS ONE, 3, 112.CrossRefGoogle ScholarPubMed
Caspi, A., McClay, J., Moffitt, T., Mill, J., Martin, J., Craig, I., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.CrossRefGoogle ScholarPubMed
Caspi, A., & Moffitt, T. E. (2006). Gene–environment interactions in psychiatry: Joining forces with neuroscience. Nature Reviews Neuroscience, 7, 583590.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5 HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Cassidy, J., Woodhouse, S. S., Sherman, L. J., Stupica, B., & Lejuez, C. W. (2011). Enhancing infant attachment security: An examination of treatment efficacy and differential susceptibility. Development and Psychopathology, 23, 131148.CrossRefGoogle ScholarPubMed
Champagne, D. L., Bagot, R. C., van Hasselt, F., Ramakers, G., Meaney, M. J., de Kloet, R. E., et al. (2008). Maternal care and hippocampal plasticity: Evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. Journal of Neuroscience, 28, 60376045.CrossRefGoogle ScholarPubMed
Chen, C., Burton, M., Greenberger, E., & Dmitrieva, J. (1999). Population migration and the variation of dopamine D4 receptor (DRD4) allele frequencies around the globe. Evolution and Human Behavior, 20, 309324.CrossRefGoogle Scholar
Chisholm, J. S. (1999). Death, hope and sex: Steps to an evolutionary ecology of mind and morality. New York: Cambridge University Press.CrossRefGoogle Scholar
Cicchetti, D. (1993). Developmental psychopathology—Reactions, reflections, projections. Developmental Review, 13, 471502.CrossRefGoogle Scholar
Cicchetti, D., & Garmezy, N. (1993). Prospects and promises in the study of resilience. Development and Psychopathology, 5, 497502.CrossRefGoogle Scholar
Cicchetti, D., & Valentino, K. (2006). An ecological transactional perspective on child maltreatment: Failure of the average expectable environment and its influence upon child development. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Risk, disorder, and adaptation (Vol. 3, 2nd ed., pp. 129201). New York: Wiley.Google Scholar
Crean, A. J., & Marshall, D. J. (2009). Coping with environmental uncertainty: Dynamic bet hedging as a maternal effect. Philosophical Transactions of the Royal Society B, 364, 10871096.CrossRefGoogle ScholarPubMed
Dearing, E., & Hamilton, L. C. (2006). Contemporary advances and classic advice for analyzing mediating and moderating variables. Monographs of the Society for Research in Child Development, 71, 88104.Google Scholar
Deater-Deckard, K., Bates, J. E., Dodge, K. A., & Pettit, G. S. (1996). Physical discipline among African American and European American mothers: Links to children's externalizing behaviors. Developmental Psychology, 32, 10651072.CrossRefGoogle Scholar
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (in press). The adaptive calibration model of stress responsivity. Neuroscience and Biobehavioral Reviews.Google Scholar
Devries, M. W. (1984). Temperament and infant-mortality among the Masai of East-Africa. American Journal of Psychiatry, 141, 11891194.Google ScholarPubMed
Dobrova-Krol, N. A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., & Juffer, F. (2010). Effects of perinatal HIV infection and early institutional rearing on physical and cognitive development of children in Ukraine. Child Development, 81, 237251.CrossRefGoogle ScholarPubMed
Donaldson-Matasci, M. C. (2008). Adaptation in a changing environment: Phenotypic diversity in response to environmental uncertainty and information. Unpublished doctoral dissertation, University of Washington.Google Scholar
Donaldson-Matasci, M. C., Lachmann, M., & Bergstrom, C. T. (2008). Phenotypic diversity as an adaptation to environmental uncertainty. Evolutionary Ecology Research, 10, 493515.Google Scholar
Dopkins Stright, A., Cranley Gallagher, K., & Kelley, K. (2008). Infant temperament moderates relations between maternal parenting in early childhood and children's adjustment in first grade. Child Development, 79, 186200.CrossRefGoogle Scholar
Einum, S., & Fleming, I. A. (2004). Environmental unpredictability and offspring size: Conservative versus diversified bet-hedging. Evolutionary Ecology Research, 6, 443455.Google Scholar
Eley, T. C., Sugden, K., Corsico, A., Gregory, A. M., Sham, P., McGuffin, P., et al. (2004). Gene–environment interaction analysis of serotonin system markers with adolescent depression. Molecular Psychiatry, 9, 908915.CrossRefGoogle ScholarPubMed
Ellis, B. J. (2004). Timing of pubertal maturation in girls: An integrated life history approach. Psychological Bulletin, 130, 920958.CrossRefGoogle ScholarPubMed
Ellis, B. J., & Boyce, W. T. (2008). Biological sensitivity to context. Current Directions in Psychological Science, 17, 183187.CrossRefGoogle Scholar
Ellis, B. J., Essex, M. J., & Boyce, W. T. (2005). Biological sensitivity to context: II. Empirical explorations of an evolutionary–developmental theory. Development and Psychopathology, 17, 303328.CrossRefGoogle ScholarPubMed
Ellis, B. J., Figueredo, A. J., Brumbach, B. H., & Schlomer, G. L. (2009). Fundamental dimensions of environmental risk: The impact of harsh versus unpredictable environments on the evolution and development of life history strategies. Human Nature, 20, 204268.CrossRefGoogle ScholarPubMed
Ellis, B. J., Jackson, J. J., & Boyce, W. T. (2006). The stress response systems: Universality and adaptive individual differences. Developmental Review, 26, 175212.CrossRefGoogle Scholar
Ellis, B. J., Shirtcliff, E. A., Boyce, W. T., Deardorff, J., & Essex, M. J. (2011). Quality of early family relationships and the timing and tempo of puberty: Effects depend on biological sensitivity to context. Development and Psychopathology, 23, 8599.CrossRefGoogle ScholarPubMed
Essex, M. J., Armstrong, J. M., Burk, L. R., Goldsmith, H. H., & Boyce, W. T. (2011). Biological sensitivity to context moderates the effects of the early teacher–child relationship on the development of mental health by adolescence. Development and Psychopathology, 23, 149161.CrossRefGoogle ScholarPubMed
Feder, A., Nestler, E. J., & Charney, D. S. (2009). Psychobiology and molecular genetics of resilience. Nature Reviews Neuroscience, 10, 446457.CrossRefGoogle ScholarPubMed
Gannon, L., Banks, J., Shelton, D., & Luchetta, T. (1989). The mediating effects of psychophysiological reactivity and recovery on the relationship between environmental stress and illness. Journal of Psychosomatic Research, 33, 167175.CrossRefGoogle ScholarPubMed
Gatzke-Kopp, L. M. (2010). The canary in the coalmine: The sensitivity of mesolimbic dopamine to environmental adversity during development. Neuroscience and Biobehavioral Reviews. Advance online publication. doi:10.1016/j.neubiorev.2010.09.013Google ScholarPubMed
Gelernter, J., Cubells, J. F., Kidd, J. R., Pakstis, A. J., & Kidd, K. K. (1999). Population studies of polymorphisms of the serotonin transporter protein gene. American Journal of Medical Genetics, 88, 6166.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Gluckman, P. D., Hanson, M. A., Cooper, C., & Thornburg, K. L. (2008). Effect of in utero and early-life conditions on adult health and disease. New England Journal of Medicine, 359, 6173.CrossRefGoogle ScholarPubMed
Gottesman, I. I., & Shields, J. (1967). A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 58, 199205.CrossRefGoogle ScholarPubMed
Gross, M. R. (1996). Alternative reproductive strategies and tactics: Diversity within sexes. Trends in Ecology and Evolution, 11, 9298.CrossRefGoogle ScholarPubMed
Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145173.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Frenn, K., Wewerka, S. S., & Van Ryzin, M. J. (2009). Moderate versus severe early life stress: Associations with stress reactivity and regulation in 10-12-year-old children. Psychoneuroendocrinology, 34, 6275.CrossRefGoogle ScholarPubMed
Hariri, A. R., Drabant, E. M., Munoz, K. E., Kolachana, B. S., Mattay, V. S., Egan, M. F., et al. (2005). A susceptibility gene for affective disorders and the response of the human amygdala. Archives of General Psychiatry, 62, 146152.CrossRefGoogle ScholarPubMed
Hartmann, H. (1958). Ego psychology and the problem of adaptation. New York: International Universities Press.CrossRefGoogle Scholar
Hinde, R., & Stevenson-Hinde, J. (1990). Attachment: Biological, cultural and individual desiderata. Human Development, 33, 6272.CrossRefGoogle Scholar
Hrdy, S. B. (1999). Mother nature: A history of mothers, infants and natural selection. New York: Pantheon.Google Scholar
Jagiellowicz, J., Xu, X., Aron, A., Aron, E., Cao, G., Feng, T., et al. (in press). The trait of sensory processing sensitivity and neural responses to changes in visual scenes. Social Cognitive and Affective Neuroscience.Google Scholar
Jokela, M., Lehtimaki, T., & Keltikangas-Jarvinen, L. (2007). The serotonin receptor 2A gene moderates the influence of parental socioeconomic status on adulthood harm avoidance. Behavior Genetics, 37, 567574.CrossRefGoogle ScholarPubMed
Kagan, J., Reznick, J. S., & Snidman, N. (1988). Biological bases of childhood shyness. Science, 240, 167171.CrossRefGoogle ScholarPubMed
Kern, J. K., Trivedi, M. H., Grannemann, B. D., Garver, C. R., Johnson, D. G., Andrews, A. A., et al. (2007). Sensory correlations in autism. Autism, 11, 123134.CrossRefGoogle ScholarPubMed
Klein Velderman, M., Bakermans-Kranenburg, M. J., Juffer, F., & van IJzendoorn, M. H. (2006). Effects of attachment-based interventions on maternal sensitivity and infant attachment: Differential susceptibility of highly reactive infants. Journal of Family Psychology, 20, 266274.CrossRefGoogle ScholarPubMed
Kochanska, G., Aksan, N., & Joy, M. E. (2007). Children's fearfulness as a moderator of parenting in early socialization. Developmental Psychology, 43, 222237.CrossRefGoogle ScholarPubMed
Kochanska, G., Kim, S., Barry, R. A., & Philibert, R. A. (in press). Children's genotypes interact with maternal response care in predicting children's competence: Diathesis–stress or differential susceptibility? Development and Psychopathology.Google Scholar
Kraemer, H. C., Stice, E., Kazdin, A., Offord, D., & Kupfer, D. (2001). How do risk factors work together? Mediators, moderators, independent, overlapping and proxy-risk factors. American Journal of Psychiatry, 158, 848856.CrossRefGoogle ScholarPubMed
Leekam, S. R., Nieto, C., Libby, S. J., Wing, L., & Gould, J. (2007). Describing the sensory abnormalities of children and adults with autism. Journal of Autism and Developmental Disorders, 37, 894910.CrossRefGoogle ScholarPubMed
Lengua, L. J. (2008). Anxiousness, frustration, and effortful control as moderators of the relation between parenting and adjustment in middle-childhood. Social Development, 17, 554577.CrossRefGoogle Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445.CrossRefGoogle ScholarPubMed
Luthar, S. S. (1999). Poverty and children's adjustment. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
Luthar, S. S. (2006). Resilience in development: A synthesis of research across five decades. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Vol. 3. Risk, disorder, and adaptation (2nd ed., pp. 739795). Hoboken, NJ: Wiley.Google Scholar
Lykken, D. T., McGue, M., Tellegen, A., & Bouchard, T. J. Jr. (1992). Emergenesis. Genetic traits that may not run in families. American Psychologist, 47, 15651577.CrossRefGoogle Scholar
Macrì, S., & Würbel, H. (2006). Developmental plasticity of HPA and fear responses in rats: A critical review of the maternal mediation hypothesis. Hormones and Behavior, 50, 667680.CrossRefGoogle ScholarPubMed
Main, M. (1990). Cross-cultural studies of attachment organization: Recent studies, changing methodologies, and the concept of conditional strategies. Human Development, 33, 4861.CrossRefGoogle Scholar
Manuck, S. B. (2009). The reaction norm in Gene × Environment interaction. Molecular Psychiatry, 15, 881882.CrossRefGoogle Scholar
Mason, J. B. (2009). Folate, cancer risk, and the Greek god, Proteus: A tale of two chameleons. Nutrition Reviews, 67, 206212.CrossRefGoogle ScholarPubMed
Masten, A. S., & Obradović, J. (2006). Competence and resilience in development. Annals of the New York Academy of Science, 1094, 1327.CrossRefGoogle ScholarPubMed
Maynard Smith, J. (1998). Evolutionary genetics. Oxford: Oxford University Press.Google Scholar
McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties in detecting interactions and moderator effects. Psychological Bulletin, 114, 376390.CrossRefGoogle ScholarPubMed
McCormick, D. A., & Bal, T. (1994). Sensory gating mechanisms of the thalamus. Current Opinion in Neurobiology, 4, 550556.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87, 873904.CrossRefGoogle ScholarPubMed
McGowan, P. O., Meaney, M. J., & Szyf, M. (2008). Diet and the epigenetic (re)programming of phenotypic differences in behavior. Brain Research, 1237, 1224.CrossRefGoogle ScholarPubMed
McLoyd, V. C. (1998). Socioeconomic disadvantage and child development. American Psychologist, 53, 185204.CrossRefGoogle ScholarPubMed
Mealey, L. (1995). The sociobiology of sociopathy: An integrated evolutionary model. Behavioral and Brain Sciences, 18, 523541.CrossRefGoogle Scholar
Miller, L. (2000). Neurosensitization: A model for persistent disability in chronic pain, depression, and posttraumatic stress disorder following injury. Neurorehabilitation, 14, 2532.CrossRefGoogle Scholar
Mills-Koonce, W. R., Propper, C. B., Gariepy, J. L., Blair, C., Garrett-Peters, P., & Cox, M. J. (2007). Bidirectional genetic and environmental influences on mother and child behavior: The family system as the unit of analyses. Development and Psychopathology, 19, 10731087.CrossRefGoogle Scholar
Monroe, S. M., & Simons, A. D. (1991). Diathesis–stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110, 406425.CrossRefGoogle ScholarPubMed
Mulvihill, D. (2005). The health impact of childhood trauma: An interdisciplinary review, 1997–2003. Issues in Comprehensive Pediatric Nursing, 28, 115136.CrossRefGoogle ScholarPubMed
Munafo, M. R., Durrant, C., Lewis, G., & Flint, J. (2009). Gene × Environment interactions at the serotonin transporter locus. Biological Psychiatry, 65, 211219.CrossRefGoogle ScholarPubMed
Nelson, C. A., Zeanah, C. H., Fox, N. A., Marshall, P. J., Smyke, A., & Guthrie, D. (2007). Cognitive recovery in socially deprived young children: The Bucharest Early Intervention Project. Science, 318, 19371940.CrossRefGoogle ScholarPubMed
Obradović, J., & Boyce, W. T. (2009). Individual differences in behavioral, physiological, and genetic sensitivities to contexts: Implications for development and adaptation. Developmental Neuroscience, 31, 300308.CrossRefGoogle ScholarPubMed
Obradović, J., Bush, N. R., & Boyce, W. T. (2011). The interactive effect of marital conflict and stress reactivity on externalizing and internalizing symptoms: The role of laboratory stressors. Development and Psychopathology, 23, 101114.CrossRefGoogle ScholarPubMed
Obradović, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: The interactive effects of stress reactivity and family adversity on socio-emotional behavior and school readiness. Child Development, 81, 270289.CrossRefGoogle Scholar
Painter, R. C., de Rooij, S. R., Bossuyt, P. M., Simmers, T. A., Osmond, C., Baker, D. J., et al. (2006). Early onset of coronary artery disease after prenatal exposure to the Dutch famine. American Journal of Clinical Nutrition, 84, 322327.CrossRefGoogle Scholar
Palmer, C. T., & Tilley, C. F. (1995). Sexual access to females as a motivation for joining gangs: An evolutionary approach. Journal of Sex Research, 32, 213217.CrossRefGoogle Scholar
Penke, L., Jaap, J., Dennissen, A., & Miller, G. F. (2007). The evolutionary genetics of personality. European Journal of Personality, 21, 549587.CrossRefGoogle Scholar
Philibert, R. A., Madan, A., Anderson, A., Cadoret, R., Packer, H., & Sandhu, H. (2007). Serotonin transporter mRNA levels are associated with the methylation of an upstream CpG island. American Journal of Medical Genetics, 144B, 101105.Google ScholarPubMed
Philippi, T., & Seger, J. (1989). Hedging one's evolutionary bets, revisited. Trends in Ecology and Evolution, 4, 4144.CrossRefGoogle ScholarPubMed
Pigliucci, M. (2001). Phenotypic plasticity: Beyond nature and nurture. Baltimore, MD: John Hopkins University Press.CrossRefGoogle Scholar
Pigliucci, M. (2005). Evolution of phenotypic plasticity: Where are we going now? Trends in Ecology and Evolution, 20, 481486.CrossRefGoogle ScholarPubMed
Plomin, R., & Daniels, D. (1987). Why are children in the same family so different from each other? Behavioral and Brain Sciences, 10, 116.CrossRefGoogle Scholar
Pluess, M., & Belsky, J. (2009). Differential susceptibility to rearing experience: The case of childcare. Journal of Child Psychology and Psychiatry, 50, 396404.CrossRefGoogle ScholarPubMed
Pluess, M., & Belsky, J. (2010). Differential susceptibility to parenting and quality child care. Developmental Psychology, 46, 379390.CrossRefGoogle ScholarPubMed
Pluess, M., & Belsky, J. (2011). Prenatal programming of postnatal plasticity? Development and Psychopathology, 23, 2938.CrossRefGoogle ScholarPubMed
Pollak, S. D. (2008). Mechanisms linking early experience and the emergence of emotions. Current Directions in Psychological Science, 17, 370375.CrossRefGoogle ScholarPubMed
Quas, J. A., Bauer, A., & Boyce, W. T. (2004). Physiological reactivity, social support, and memory in early childhood. Child Development, 75, 797814.CrossRefGoogle ScholarPubMed
Ravelli, A. C. J., van der Meulen, J. H. P., Michels, R. P. J., Osmond, C., Barker, D. J. P., Hales, C. N., et al. (1998). Glucose tolerance in adults after prenatal exposure to famine. Lancet, 351, 173177.CrossRefGoogle ScholarPubMed
Ravelli, A. C. J., van der Meulen, J. H. P, Osmond, C., Barker, D. J. P., & Bleker, O. P. (1999). Obesity at the age of 50 years in men and women exposed to famine prenatally. American Journal of Clinical Nutrition, 70, 811816.CrossRefGoogle Scholar
Reiss, D., Neiderhiser, J., Hetherington, E. M., & Plomin, R. (2000). The relationship code: Deciphering genetic and social patterns in adolescent development. Cambridge, MA: Harvard University Press.Google Scholar
Risch, N., Herrell, R., Lehner, T., Liang, K., Eaves, L., Hoh, J., et al. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression. Journal of the American Medical Association, 301, 24622471.CrossRefGoogle ScholarPubMed
Rothbart, M. K., & Bates, J. E. (2006). Temperament. In Eisenberg, N., Damon, W., & Lerner, R. M. (Eds.), Handbook of child psychology: Vol. 3. Social, emotional, and personality development (6th ed., pp. 99166). Hoboken, NJ: Wiley.Google Scholar
Rowe, D. C. (2000). Environmental and genetic influences on pubertal development: Evolutionary life history traits? In Rodgers, J. L., Rowe, D. C., & Miller, W. B. (Eds.), Genetic influences on human fertility and sexuality: Recent empirical and theoretical findings (pp. 147168). Boston: Kluwer.CrossRefGoogle Scholar
Rowe, D. C., Vazsonyi, A. T., & Figueredo, A. J. (1997). Mating-effort in adolescence: A conditional or alternative strategy. Personality and Individual Differences, 23, 105115.CrossRefGoogle Scholar
Rutter, M., Andersen-Wood, L., Beckett, C., Bredenkamp, D., Castle, J., Dunn, J., et al. (1998). Developmental catch-up, and deficit, following adoption after severe global early privation. Journal of Child Psychology and Psychiatry, 39, 465476.Google ScholarPubMed
Rutter, M., Thapar, A., & Pickles, A. (2009). Gene–environment interactions: Biologically valid pathway or artifact? Archives of General Psychiatry, 66, 12871289.CrossRefGoogle ScholarPubMed
Sadeh, A., Guterman, H., Gersani, M., & Ovadia, O. (2009). Plastic bet-hedging in an amphicarpic annual: An integrated strategy under variable conditions. Evolutionary Ecology, 23, 373388.CrossRefGoogle Scholar
Sameroff, A. J. (1983). Developmental systems: Contexts and evolution. In Mussen, P. (Ed.), Handbook of child psychology (Vol. 1, pp. 237294). New York: Wiley.Google Scholar
Scheper-Hughes, N. (1992). Death without weeping: The violence of everyday life in Brazil. Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Sheese, B. E., Voelker, P. M., Rothbart, M. K., & Posner, M. I. (2007). Parenting quality interacts with genetic variation in dopamine receptor D4 to influence temperament in early childhood. Development and Psychopathology, 19, 10391046.CrossRefGoogle ScholarPubMed
Shimamura, A. P. (2000). The role of the prefrontal cortex in dynamic filtering. Psychobiology, 28, 207218.CrossRefGoogle Scholar
Shonkoff, J. P., Boyce, W. T., & McEwen, B. S. (2009). Neuroscience, molecular biology, and the childhood roots of health disparities: Building a new framework for health promotion and disease prevention. Journal of the American Medical Association, 301, 22522259.CrossRefGoogle ScholarPubMed
Stelmack, R. M., & Geen, R. G. (1992). The psychophysiology of extraversion. In Gale, A. & Eysenck, M. W. (Eds.), Handbook of individual differences: Biological perspectives (pp. 227254). Chichester: Wiley.Google Scholar
Strelau, J. (1983). Temperament personality activity. New York: Academic Press.Google Scholar
Tabery, J. (2009). From a genetic predisposition to an interactive predisposition: Rethinking the ethical implications of screening for gene–environment interactions. Journal of Medicine and Philosophy, 34, 2748.CrossRefGoogle Scholar
Taylor, S. E., Way, B. M., Welch, W. T., Hilmert, C. J., Lehman, B. J., & Eisenberger, N. I. (2006). Early family environment, current adversity, the serotonin transporter polymorphism, and depressive symptomatology. Biological Psychiatry, 60, 671676.CrossRefGoogle ScholarPubMed
Turkheimer, E., & Waldron, M. (2000). Nonshared environment: A theoretical, methodological, and quantitative review. Psychological Bulletin, 126, 78108.CrossRefGoogle ScholarPubMed
Uher, R., & McGuffin, P. (2008). The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: Review and methodological analysis. Molecular Psychiatry, 13, 131146.CrossRefGoogle ScholarPubMed
Uher, R., & McGuffin, P. (2010). The moderation by the serotonin transporter gene of environmental adversity in the etiology of depression: 2009 update. Molecular Psychiatry, 15, 1822.CrossRefGoogle ScholarPubMed
UN Convention on the Rights of the Child. (1989). UN General Assembly Document A/RES/44/25. New York: Author.Google Scholar
Van Buskirk, J., & Relyea, R. A. (1998). Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biological Journal of the Linnean Society, 65, 301328.CrossRefGoogle Scholar
Van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., & Mesman, J. (2008). Dopamine system genes associated with parenting in the context of daily hassles. Genes, Brain and Behavior, 7, 403410.CrossRefGoogle ScholarPubMed
Van IJzendoorn, M. H., Caspers, K., Bakermans-Kranenburg, M. J., Beach, S. R. H., & Philibert, R. (2010). Methylation matters: Interaction between methylation density and 5HTT genotype predicts unresolved loss or trauma. Biological Psychiatry.CrossRefGoogle ScholarPubMed
Van IJzendoorn, M. H., Luijk, M. P. C. M., & Juffer, F. (2008). IQ of children growing up in children's homes: A meta-analysis on IQ delays in orphanages. Merrill–Palmer Quarterly, 54, 341366.CrossRefGoogle Scholar
Van Zeijl, J., Mesman, J., Stolk, M. N., Alink, L. R., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., et al. (2007). Differential susceptibility to discipline: The moderating effect of child temperament on the association between maternal discipline and early childhood externalizing problems. Journal of Family Psychology, 21, 626636.CrossRefGoogle ScholarPubMed
Wachs, T., & Gandour, M. (1983). Temperament, environment and six-month cognitive–intellectual development: A test of the organismic-specificity hypothesis. International Journal of Behavioral Development, 6, 135152.CrossRefGoogle Scholar
Wachs, T. D., & Plomin, R. (1991). Conceptualization and measurement of organism-environment interaction synopsis. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.CrossRefGoogle ScholarPubMed
West-Eberhard, M. J. (2003). Developmental plasticity and evolution. New York: Oxford University Press.CrossRefGoogle Scholar
Widom, C. S., & Brzustowicz, L. M. (2006). MAOA and the “cycle of violence”: Childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biological Psychiatry, 60, 684689.CrossRefGoogle ScholarPubMed
Williams, R. B., Marchuk, D. A., Gadde, K. M., Barefoot, J. C., Grichnik, K., Helms, M. J., et al. (2003). Serotonin-related gene polymorphisms and central nervous system serotonin function. Neuropsychopharmacology, 28, 533541.CrossRefGoogle ScholarPubMed
Wilson, D. S., & Yoshimura, J. (1994). On the coexistence of specialists and generalists. American Naturalist, 144, 692707.CrossRefGoogle Scholar
Wolf, M., van Doorn, G. S., & Weissing, F. J. (2008). Evolutionary emergence of responsive and unresponsive personalities. Proceedings of the National Academy of Sciences of the United States of America, 105, 1582515830.CrossRefGoogle ScholarPubMed
Zuckerman, M. (1999). Vulnerability to psychopathology: A biosocial model. Washington, DC: American Psychological Association.CrossRefGoogle Scholar