Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T18:11:16.891Z Has data issue: false hasContentIssue false

Developmental psychopathology in an era of molecular genetics and neuroimaging: A developmental neurogenetics approach

Published online by Cambridge University Press:  06 May 2015

Luke W. Hyde*
Affiliation:
University of Michigan
*
Address correspondence and reprint requests to: Luke W. Hyde, Department of Psychology, University of Michigan, 2251 East Hall, 530 Church Street, Ann Arbor, MI 48109; E-mail: [email protected].

Abstract

The emerging field of neurogenetics seeks to model the complex pathways from gene to brain to behavior. This field has focused on imaging genetics techniques that examine how variability in common genetic polymorphisms predict differences in brain structure and function. These studies are informed by other complimentary techniques (e.g., animal models and multimodal imaging) and have recently begun to incorporate the environment through examination of Imaging Gene × Environment interactions. Though neurogenetics has the potential to inform our understanding of the development of psychopathology, there has been little integration between principles of neurogenetics and developmental psychopathology. The paper describes a neurogenetics and Imaging Gene × Environment approach and how these approaches have been usefully applied to the study of psychopathology. Six tenets of developmental psychopathology (the structure of phenotypes, the importance of exploring mechanisms, the conditional nature of risk, the complexity of multilevel pathways, the role of development, and the importance of who is studied) are identified, and how these principles can further neurogenetics applications to understanding the development of psychopathology is discussed. A major issue of this piece is how neurogenetics and current imaging and molecular genetics approaches can be incorporated into developmental psychopathology perspectives with a goal of providing models for better understanding pathways from among genes, environments, the brain, and behavior.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramson, L. Y., Seligman, M. E., & Teasdale, J. D. (1978). Learned helplessness in humans: Critique and reformulation. Journal of Abnormal Psychology, 87, 4974.CrossRefGoogle ScholarPubMed
Achenbach, T. M. (1966). The classification of children's psychiatric symptoms: A factor-analytic study. Psychological Monographs: General and Applied, 80, 137.CrossRefGoogle ScholarPubMed
Ahs, F., Davis, C. F., Gorka, A. X., & Hariri, A. R. (2013). Feature-based representations of emotional facial expressions in the human amygdala. Social, Cognitive, and Affective Neuroscience. Advance online publication. doi:10.1093/scan/nst1112Google ScholarPubMed
Andreasen, N. C. (2000). Schizophrenia: The fundamental questions. Brain Research Reviews, 31, 106112.CrossRefGoogle ScholarPubMed
Banaschewski, T. (2012). Editorial: Can we dissect the interplay of genes and environment across development? Journal of Child Psychology and Psychiatry, 53, 217218.CrossRefGoogle ScholarPubMed
Banaschewski, T., Hollis, C., Oosterlaan, J., Roeyers, H., Rubia, K., Willcutt, E., et al. (2005). Towards an understanding of unique and shared pathways in the psychopathophysiology of ADHD. Developmental Science, 8, 132140.CrossRefGoogle ScholarPubMed
Battaglia, M., Zanoni, A., Taddei, M., Giorda, R., Bertoletti, E., Lampis, V., et al. (2012). Cerebral responses to emotional expressions and the development of social anxiety disorder: A preliminary longitudinal study. Depression and Anxiety, 29, 5461.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., & McNulty, T. (2013). Comorbidities and continuities as oontogenic processes: Toward a developmental spectrum model of externalizing psychopathology. Development and Psychopathology, 25, 15051528.CrossRefGoogle Scholar
Beck, A. T. (1976). Cognitive therapy and the emotional disorders. Oxford: International Universities Press.Google Scholar
Bell, R. (1968). A reinterpretation of the direction of effects in studies of socialization. Psychological Review, 75, 8195.CrossRefGoogle ScholarPubMed
Belsky, J. (1997). Variation in susceptibility to environmental influence: An evolutionary argument. Psychological Inquiry, 8, 182186.CrossRefGoogle Scholar
Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., & Williams, R. (2009). Vulnerability genes or plasticity genes? Molecular Psychiatry, 14, 746754.CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.CrossRefGoogle ScholarPubMed
Bentley, M. J., Lin, H., Fernandez, T. V., Lee, M., Yrigollen, C. M., Pakstis, A. J., et al. (2013). Gene variants associated with antisocial behaviour: A latent variable approach. Journal of Child Psychology and Psychiatry, 54, 10741085.CrossRefGoogle ScholarPubMed
Bigos, K. L., Pollock, B. G., Aizenstein, H. J., Fisher, P. M., Bies, R. R., & Hariri, A. R. (2008). Acute 5-HT reuptake blockade potentiates human amygdala reactivity. Neuropsychopharmacology, 33, 32213225.CrossRefGoogle ScholarPubMed
Bilder, R., Howe, A., & Sabb, F. (2013). Multilevel models from biology to psychology: Mission impossible? Journal of Abnormal Psychology, 122, 917927.CrossRefGoogle ScholarPubMed
Blair, R. J. R. (2013). The neurobiology of psychopathic traits in youths. Nature Reviews Neuroscience, 14, 786799.CrossRefGoogle ScholarPubMed
Bogdan, R., Agrawal, A., Gaffrey, M. S., Tillman, R., & Luby, J. L. (2013). Serotonin transporter-linked polymorphic region (5-HTTLPR) genotype and stressful life events interact to predict preschool onset depression: A replication and developmental extension. Journal of Child Psychology and Psychiatry. Advance online publication.Google ScholarPubMed
Bogdan, R., Hyde, L., & Hariri, A. (2012). A neurogenetics approach to understanding individual differences in brain, behavior, and risk for psychopathology. Molecular Psychiatry, 18, 288299.CrossRefGoogle ScholarPubMed
Bogdan, R., Williamson, D. E., & Hariri, A. R. (2012). Mineralocorticoid receptor iso/val (rs5522) genotype moderates the association between previous childhood emotional neglect and amygdala reactivity. American Journal of Psychiatry, 169, 515522.CrossRefGoogle ScholarPubMed
Brammer, W. A., & Lee, S. S. (2013). Prosociality and negative emotionality mediate the association of serotonin transporter genotype with childhood ADHD and ODD. Journal of Clinical Child and Adolescent Psychology, 42, 809819.CrossRefGoogle ScholarPubMed
Brody, G. H., Beach, S. R. H., Philibert, R. A., Chen, Y., & Murry, V. M. B. (2009). Prevention effects moderate the association of 5-HTTLPR and youth risk behavior initiation: Gene x environment hypotheses tested via a randomized prevention design. Child Development, 80, 645661.CrossRefGoogle Scholar
Broidy, L. M., Tremblay, R. E., Brame, B., Fergusson, D., Horwood, J. L., Laird, R., et al. (2003). Developmental trajectories of childhood disruptive behaviors and adolescent delinquency: A six-site, cross-national study. Developmental Psychology, 39, 222245.CrossRefGoogle ScholarPubMed
Bronfenbrenner, U., & Ceci, S. J. (1994). Nature–nurture reconceptualized in developmental perspective: A bioecological model. Psychological Review, 101, 568586.CrossRefGoogle ScholarPubMed
Bryant, R., Felmingham, K., Kemp, A., Das, P., Hughes, G., Peduto, A., et al. (2008). Amygdala and ventral anterior cingulate activation predicts treatment response to cognitive behaviour therapy for post-traumatic stress disorder. Psychological Medicine, 38, 555562.CrossRefGoogle ScholarPubMed
Buckholtz, J., Sust, S., Tan, H., Mattay, V., Straub, R., Meyer-Lindenberg, A., et al. (2007). fMRI evidence for functional epistasis between COMT and RGS4. Molecular Psychiatry, 12, 893895.CrossRefGoogle ScholarPubMed
Buckholtz, J. W., & Meyer-Lindenberg, A. (2012). Psychopathology and the human connectome: Toward a transdiagnostic model of risk for mental illness. Neuron, 74, 9901004.CrossRefGoogle Scholar
Buckholtz, J. W., Treadway, M. T., Cowan, R. L., Woodward, N. D., Li, R., Ansari, M., et al. (2010). Dopaminergic network differences in human impulsivity. Science, 329, 532.CrossRefGoogle ScholarPubMed
Byrd, A. L., & Manuck, S. B. (2014). MAOA, childhood maltreatment, and antisocial behavior: Meta-analysis of a gene-environment interaction. Biological Psychiatry, 1, 917.CrossRefGoogle Scholar
Canli, T., Qiu, M., Omura, K., Congdon, E., Haas, B. W., Amin, Z., et al. (2006). Neural correlates of epigenesis. Proceedings of the National Academy of Sciences, 103, 1603316038.CrossRefGoogle ScholarPubMed
Cardon, L. R., & Palmer, L. J. (2003). Population stratification and spurious allelic association. Lancet, 361, 598604.CrossRefGoogle ScholarPubMed
Caron, C., & Rutter, M. (1991). Comorbidity in child psychopathology: Concepts, issues and research strategies. Journal of Child Psychology and Psychiatry, 32, 10631080.CrossRefGoogle ScholarPubMed
Carroll, J. B. (1993). Human cognitive abilities. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Carter, C. S., Barch, D. M., Buchanan, R. W., Bullmore, E., Krystal, J. H., Cohen, J., et al. (2008). Identifying cognitive mechanisms targeted for treatment development in schizophrenia: An overview of the first meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia Initiative. Biological Psychiatry, 64, 410.CrossRefGoogle ScholarPubMed
Casey, B., & Jones, R. M. (2010). Neurobiology of the adolescent brain and behavior: Implications for substance use disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 11891201.Google ScholarPubMed
Casey, B. J., Glatt, C. E., Tottenham, N., Soliman, F., Bath, K., Amso, D., et al. (2009). Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development. Neuroscience, 164, 108120.CrossRefGoogle Scholar
Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry, 167, 509527.CrossRefGoogle Scholar
Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., et al. (2013). The p factor one general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science. Advance online publication.Google Scholar
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.CrossRefGoogle ScholarPubMed
Caspi, A., & Moffitt, T. E. (2006). Gene-environment interactions in psychiatry: Joining forces with neuroscience. Nature Reviews Neuroscience, 7, 583590.CrossRefGoogle ScholarPubMed
Caspi, A., Moffitt, T. E., Cannon, M., McClay, J., Murray, R., Harrington, H. L., et al. (2005). Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: Longitudinal evidence of a gene X environment interaction. Biological Psychiatry, 57, 11171127.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Castellanos, F. X., & Yoncheva, Y. (2014). Commentary: The best and worst of times––The prospects for magnetic resonance imaging (MRI) of developmental psychopathologies––A commentary on Horga et al. (2014). Journal of Child Psychology and Psychiatry, 55, 681684.CrossRefGoogle ScholarPubMed
Chiao, J. Y., & Cheon, B. K. (2010). The weirdest brains in the world. Behavioral and Brain Sciences, 33, 8890.CrossRefGoogle ScholarPubMed
Choe, D. E., Shaw, D. S., Hyde, L. W., & Forbes, E. E. (in press). Interactions between MAOA and punitive discipline in African American and Caucasian men's antisocial behavior. Clinical Psychological Science.Google Scholar
Cicchetti, D. (1984). The emergence of developmental psychopathology. Child Development, 55, 17.CrossRefGoogle ScholarPubMed
Cicchetti, D. (1993). Developmental psychopathology: Reactions, reflections, projections. Developmental Review, 13, 471502.CrossRefGoogle Scholar
Cicchetti, D., & Blender, J. A. (2006). A multiple-levels-of-analysis perspective on resilience. Annals of the New York Academy of Sciences, 1094, 248258.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Curtis, W. J. (2007). Multilevel perspectives on pathways to resilient functioning. Development and Psychopathology, 19, 627629.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8, 587600.CrossRefGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (2012). Gene x environment interaction and resilience: Effects of child maltreatment and serotonin, corticotropin releasing hormone, dopamine, and oxytocin genes. Development and Psychopathology, 24, 411427.CrossRefGoogle Scholar
Cicchetti, D., Rogosch, F. A., & Oshri, A. (2011). Interactive effects of CRHR1, 5-HTTLPR, and child maltreatment on diurnal cortisol regulation and internalizing symptomatology. Development and Psychopathology, 23, 1125.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Toth, S. L. (2009). The past achievements and future promises of developmental psychopathology: The coming of age of a discipline. Journal of Child Psychology and Psychiatry, 50, 1625.CrossRefGoogle ScholarPubMed
Clark, L. A., Watson, D., & Reynolds, S. (1995). Diagnosis and classification of psychopathology: Challenges to the current system and future directions. Annual Review of Psychology, 46, 121153.CrossRefGoogle Scholar
Collins, W. A., Maccoby, E. E., Steinberg, L., Hetherington, E. M., & Bornstein, M. H. (2000). Contemporary research on parenting: The case for nature and nurture. American Psychologist, 55, 218232.CrossRefGoogle ScholarPubMed
Conduct Problems Prevention Research Group. (2002). Evaluation of the first 3 years of the Fast Track prevention trial with children at high risk for adolescent conduct problems. Journal of Abnormal Child Psychology, 30, 1935.CrossRefGoogle Scholar
Costa, P. T. Jr., & McCrae, R. R. (1995). Domains and facets: Hierarchical personality assessment using the revised NEO personality inventory. Journal of Personality Assessment, 64, 2150.CrossRefGoogle ScholarPubMed
Costello, E. J., Compton, S. N., Keeler, G., & Angold, A. (2003). Relationships between poverty and psychopathology. Journal of the American Medical Association, 290, 20232029.CrossRefGoogle ScholarPubMed
Cousijn, H., Rijpkema, M., Qin, S., van Marle, H. J., Franke, B., Hermans, E. J., et al. (2010). Acute stress modulates genotype effects on amygdala processing in humans. Proceedings of the National Academy of Sciences, 107, 98679872.CrossRefGoogle ScholarPubMed
Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social-affective engagement and goal flexibility. Nature Reviews Neuroscience, 13, 636650.CrossRefGoogle ScholarPubMed
Cummings, E. M., Davies, P. T., & Campbell, S. B. (2000). Developmental psychopathology and family process: Theory, research, and clinical implications. New York: Guilford Press.Google Scholar
Curtis, W., & Cicchetti, D. (2003). Moving research on resilience into the 21st century: Theoretical and methodological considerations in examining the biological contributors to resilience. Development and Psychopathology, 15, 773810.CrossRefGoogle ScholarPubMed
Dabbs, J. M., & Morris, R. (1990). Testosterone, social class, and antisocial behavior in a sample of 4,462 men. Psychological Science, 1, 209211.CrossRefGoogle Scholar
Dadds, M. R., Allen, J. L., McGregor, K., Woolgar, M., Viding, E., & Scott, S. (2013). Callous–unemotional traits in children and mechanisms of impaired eye contact during expressions of love: A treatment target? Journal of Child Psychology and Psychiatry. Advance online publication. doi:10.1111/jcpp.12155Google Scholar
De Brito, S. A., Mechelli, A., Wilke, M., Laurens, K. R., Jones, A. P., Barker, G. J., et al. (2009). Size matters: Increased grey matter in boys with conduct problems and callous-unemotional traits. Brain, 132, 843852.CrossRefGoogle ScholarPubMed
De Raedt, R., Leyman, L., Baeken, C., Van Schuerbeek, P., Luypaert, R., Vanderhasselt, M. A., et al. (2010). Neurocognitive effects of HF-rTMS over the dorsolateral prefrontal cortex on the attentional processing of emotional information in healthy women: An event-related fMRI study. Biological Psychology, 85, 487495.CrossRefGoogle ScholarPubMed
Dick, D. M., Aliev, F., Latendresse, S., Porjesz, B., Schuckit, M., Rangaswamy, M., et al. (2013). How phenotype and developmental stage affect the genes we find: GABRA2 and impulsivity. Twin Research and Human Genetics, 16, 661669.CrossRefGoogle Scholar
Dickens, W. T., & Flynn, J. R. (2001). Heritability estimates versus large environmental effects: The IQ paradox resolved. Psychological Review, 108, 346369.CrossRefGoogle ScholarPubMed
Dillon, D. G., Rosso, I. M., Pechtel, P., Killgore, W. D., Rauch, S. L., & Pizzagalli, D. A. (2013). Peril and pleasure: An RDoC-inspried examination of threat responses and reward processing in anxiety and depressoin. Depression and Anxiety. Advance online publication.Google Scholar
Dishion, T. J., & Kavanagh, K. (2003). Intervening in adolescent problem behavior: A family-centered approach. New York: Guilford Press.Google Scholar
Dishion, T. J., Patterson, G. R., Stoolmiller, M., & Skinner, M. L. (1991). Family, school, and behavioral antecedents to early adolescent involvement with antisocial peers. Developmental Psychology, 27, 172180.CrossRefGoogle Scholar
Dishion, T. J., Shaw, D. S., Connell, A., Gardner, F., Weaver, C., & Wilson, M. (2008). The Family Check-Up with high-risk indigent families: Preventing problem behavior by increasing parents' positive behavior support in early childhood. Child Development, 79, 13951414.CrossRefGoogle ScholarPubMed
Dishion, T. J., Spracklen, K. M., Andrews, D. W., & Patterson, G. R. (1996). Deviancy training in male adolescent friendships. Behavior Therapy, 27, 373390.CrossRefGoogle Scholar
Dodge, K. A. (1993). Social-cognitive mechanisms in the development of conduct disorder and depression. Annual Review of Psychology, 44, 559584.CrossRefGoogle ScholarPubMed
Dodge, K. A., Malone, P. S., Lansford, J. E., Miller, S., Pettit, G. S., & Bates, J. E. (2009). A dynamic cascade model of the development of substance-use onset. Monographs of the Society for Research in Child Development, 74, 1134.Google ScholarPubMed
Drabant, E. M., Ramel, W., Edge, M. D., Hyde, L. W., Kuo, J. R., Goldin, P. R., et al. (2012). Neural mechanisms underlying 5-HTTLPR-related sensitivity to acute stress. American Journal of Psychiatry, 169, 397405.CrossRefGoogle ScholarPubMed
Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., et al. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9, 18.CrossRefGoogle ScholarPubMed
Ellis, B. J., & Boyce, W. T. (2011). Differential susceptibility to the environment: Toward an understanding of sensitivity to developmental experiences and context. Development and Psychopathology, 23, 15.CrossRefGoogle Scholar
Fakra, E., Hyde, L. W., Gorka, A., Fisher, P. M., Munoz, K. E., Kimak, M., et al. (2009). Effects of HTR1A C(-1019)G on amygdala reactivity and trait anxiety. Archives of General Psychiatry, 66, 3340.CrossRefGoogle ScholarPubMed
Falk, E. B., Hyde, L. W., Mitchell, C., Faul, J., Gonzalez, R., Heitzeg, M. M., et al. (2013). Neuroscience meets population science: What is a representative brain? Proceedings of the National Academy of Sciences, 110, 1761517622.CrossRefGoogle ScholarPubMed
Fannin, N., & Dabbs, J. M. (2003). Testosterone and the work of firefighters: Fighting fires and delivering medical care. Journal of Research in Personality, 37, 107115.CrossRefGoogle Scholar
Feder, A., Nestler, E. J., & Charney, D. S. (2009). Psychobiology and molecular genetics of resilience. Nature Reviews Neuroscience, 10, 446457.CrossRefGoogle ScholarPubMed
Fisher, P., & Hariri, A. (2012). Linking variability in brain chemistry and circuit function through multimodal human neuroimaging. Genes, Brain and Behavior, 11, 633642.CrossRefGoogle ScholarPubMed
Fisher, P. M., & Hariri, A. R. (2013). Identifying serotonergic mechanisms underlying the corticolimbic response to threat in humans. Philosophical Transactions of the Royal Society B: Biological Sciences. Advance online publication. doi:10.1098/rstb.2012.0192CrossRefGoogle ScholarPubMed
Fisher, P. M., Holst, K. K., McMahon, B., Haahr, M. E., Madsen, K., Gillings, N., et al. (2012). 5-HTTLPR status predictive of neocortical 5-HT4 binding assessed with [11C] SB207145 PET in humans. NeuroImage, 62, 130136.CrossRefGoogle ScholarPubMed
Fisher, P. M., Meltzer, C. C., Ziolko, S. K., Price, J. C., & Hariri, A. R. (2006). Capacity for 5-HT1A-mediated autoregulation predicts amygdala reactivity. Nature Neuroscience, 9, 13621363.CrossRefGoogle ScholarPubMed
Frick, P. J., Ray, J. V., Thornton, L. C., & Kahn, R. E. (2014). Can callous-unemotional traits enhance the understanding, diagnosis, and treatment of serious conduct problems in children and adolescents? A comprehensive review. Psychological Bulletin, 140, 157.CrossRefGoogle ScholarPubMed
Funderburk, S. C., Michalski, L. J., Carey, C. E., Gorka, A. X., Drabant, E. M., Bogdan, R., et al. (2013). Ventral striatum reactivity and coping strategies indirectly link a PDYN haplotype to alcohol use. Paper presented at the 21st International Society of Psychiatric Genetics Meeting, Boston.Google Scholar
Furman, D. J., Hamilton, J. P., Joormann, J., & Gotlib, I. H. (2011). Altered timing of amygdala activation during sad mood elaboration as a function of 5-HTTLPR. Social, Cognitive, and Affective Neuroscience, 6, 270276.CrossRefGoogle ScholarPubMed
Furmark, T., Appel, L., Henningsson, S., Åhs, F., Faria, V., Linnman, C., et al. (2008). A link between serotonin-related gene polymorphisms, amygdala activity, and placebo-induced relief from social anxiety. Journal of Neuroscience, 28, 1306613074.CrossRefGoogle ScholarPubMed
Ganzel, B. L., Kim, P., Gilmore, H., Tottenham, N., & Temple, E. (2013). Stress and the healthy adolescent brain: Evidence for the neural embedding of life events. Development and Psychopathology, 25, 879889.CrossRefGoogle ScholarPubMed
Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., et al. (2013). A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. Journal of Neuroscience, 33, 45844593.CrossRefGoogle ScholarPubMed
Gerritsen, L., Tendolkar, I., Franke, B., Vasquez, A., Kooijman, S., Buitelaar, J., et al. (2011). BDNF Val66Met genotype modulates the effect of childhood adversity on subgenual anterior cingulate cortex volume in healthy subjects. Molecular Psychiatry. Advance online publication. doi:10.1038/mp.2011.51Google ScholarPubMed
Gianaros, P. J., Horenstein, J. A., Hariri, A. R., Sheu, L. K., Manuck, S. B., Matthews, K. A., et al. (2008). Potential neural embedding of parental social standing. Social, Cognitive, and Affective Neuroscience, 3, 9196.CrossRefGoogle ScholarPubMed
Gianaros, P. J., Manuck, S. B., Sheu, L. K., Kuan, D. C. H., Votruba-Drzal, E., Craig, A. E., et al. (2011). Parental education predicts corticostriatal functionality in adulthood. Cerebral Cortex, 21, 896910.CrossRefGoogle ScholarPubMed
Giedd, J. N. (2008). The teen brain: Insights from neuroimaging. Journal of Adolescent Health, 42, 335343.CrossRefGoogle ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861863.CrossRefGoogle ScholarPubMed
Glaser, Y. G., Zubieta, J.-K., Hsu, D. T., Villafuerte, S., Mickey, B. J., Trucco, E. M., et al. (2014). Indirect effect of corticotropin-releasing hormone receptor 1 gene variation on negative emotionality and alcohol use via right ventrolateral prefrontal cortex. Journal of Neuroscience, 34, 40994107.CrossRefGoogle ScholarPubMed
Glenn, A. L. (2011). The other allele: Exploring the long allele of the serotonin transporter gene as a potential risk factor for psychopathy: A review of the parallels in findings. Neuroscience & Biobehavioral Reviews, 35, 612620.CrossRefGoogle Scholar
Gorgolewski, K. J., Margulies, D. S., & Milham, M. P. (2013). Making data sharing count: A publication-based solution. Frontiers in Neuroscience. Advance online publication.CrossRefGoogle Scholar
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636645.CrossRefGoogle ScholarPubMed
Gruenewald, T. L., Seeman, T. E., Ryff, C. D., Karlamangla, A. S., & Singer, B. H. (2006). Combinations of biomarkers predictive of later life mortality. Proceedings of the National Academy of Sciences, 103, 1415814163.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Quevedo, K. M. (2007). Early care experiences and HPA axis regulation in children: A mechanism for later trauma vulnerability. Progress in Brain Research, 167, 137149.CrossRefGoogle Scholar
Hankin, B., Nederhof, E., Oppenheimer, C., Jenness, J., Young, J., Abela, J., et al. (2011). Differential susceptibility in youth: evidence that 5-HTTLPR x Positive Parenting is associated with positive affect “for better and worse.” Translational Psychiatry, 1. doi:10.1038/tp.2011.1044CrossRefGoogle Scholar
Hankin, B. L. (2012). Future directions in vulnerability to depression among youth: Integrating risk factors and processes across multiple levels of analysis. Journal of Clinical Child and Adolescent Psychology, 41, 695718.CrossRefGoogle ScholarPubMed
Hare, T. A., Tottenham, N., Galvan, A., Voss, H. U., Glover, G. H., & Casey, B. (2008). Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-no-go task. Biological Psychiatry, 63, 927934.CrossRefGoogle Scholar
Hariri, A. R. (2009). The neurobiology of individual differences in complex behavioral traits. Annual Review of Neuroscience, 32, 225247.CrossRefGoogle ScholarPubMed
Hariri, A. R., Drabant, E. M., & Weinberger, D. R. (2006). Imaging genetics: Perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biological Psychiatry, 59, 888897.CrossRefGoogle ScholarPubMed
Hariri, A. R., Gorka, A., Hyde, L. W., Kimak, M., Halder, I., Ducci, F., et al. (2009). Divergent effects of genetic variation in endocannabinoid signaling on human threat- and reward-related brain function. Biological Psychiatry, 66, 916.CrossRefGoogle ScholarPubMed
Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297, 400.CrossRefGoogle ScholarPubMed
Harris, J. R. (1998). The nurture assumption: Why children turn out the way they do. New York: Free Press.Google Scholar
Hasler, G., & Northoff, G. (2011). Discovering imaging endophenotypes for major depression. Molecular Psychiatry, 1, 116.Google Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world. Behavioral and Brain Sciences, 33, 6183.CrossRefGoogle ScholarPubMed
Hizer, S. E., Wright, T. M., & Garcia, D. K. (2004). Genetic markers applied in regression tree prediction models. Animal Genetics, 35, 5052.CrossRefGoogle ScholarPubMed
Holmes, A. (2008). Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neuroscience & Biobehavioral Reviews, 32, 12931314.CrossRefGoogle ScholarPubMed
Holmes, A. J., Lee, P. H., Hollinshead, M. O., Bakst, L., Roffman, J. L., Smoller, J. W., et al. (2012). Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. Journal of Neuroscience, 32, 1808718100.CrossRefGoogle ScholarPubMed
Holtzheimer, P. E., & Mayberg, H. S. (2011). Deep brain stimulation for psychiatric disorders. Annual Review of Neuroscience, 34, 289307.CrossRefGoogle ScholarPubMed
Homberg, J. R., & Lesch, K.-P. (2011). Looking on the bright side of serotonin transporter gene variation. Biological Psychiatry, 69, 513519.CrossRefGoogle ScholarPubMed
Honey, G., & Bullmore, E. (2004). Human pharmacological MRI. Trends in Pharmacological Sciences, 25, 366374.CrossRefGoogle ScholarPubMed
Horga, G., Kaur, T., & Peterson, B. S. (2014). Annual Research Review: Current limitations and future directions in MRI studies of child- and adult-onset developmental psychopathologies. Journal of Child Psychology and Psychiatry. Advance online publication.CrossRefGoogle ScholarPubMed
Huesmann, L. R. (1998). The role of social information processing and cognitive schema in the acquisition and maintenance of habitual aggressive behavior. In Green, R. G. & Donnerstein, E. (Eds.), Human aggression: Theories, research and implications for social policy. San Diego, CA: Academic Press.Google Scholar
Hyde, L. W., Bogdan, R., & Hariri, A. R. (2011). Understanding risk for psychopathology through imaging gene-environment interactions. Trends in Cognitive Sciences, 15, 417427.CrossRefGoogle ScholarPubMed
Hyde, L. W., Byrd, A. L., Votruba-Drzal, E., Hariri, A. R., & Manuck, S. B. (2014). Antisocial behavior and amygdala reactivity: Divergent correlates of antisocial personality and psychopathy traits in a community sample. Journal of Abnormal Psychology, 123, 214224.CrossRefGoogle Scholar
Hyde, L. W., Manuck, S. B., & Hariri, A. R. (2011). Social support moderates the link between amygdala reactivity and trait anxiety. Neuropsychologia, 49, 651656.CrossRefGoogle ScholarPubMed
Hyde, L. W., Shaw, D. S., & Hariri, A. R. (2013). Neuroscience, developmental psychopathology and youth antisocial behavior: Review, integration, and directions for research. Developmental Review, 33, 168223.CrossRefGoogle ScholarPubMed
Hyde, L. W., Shaw, D. S., & Moilanen, K. L. (2010). Developmental precursors of moral disengagement and the role of moral disengagement in the development of antisocial behavior. Journal of Abnormal Child Psychology, 38, 197209.CrossRefGoogle ScholarPubMed
Hyde, L. W., Swartz, J. R., Waller, R., & Hariri, A. R. (2015). Neurogenetics approaches to mapping pathways in developmental psychopathology. In Cicchetti, D. (Ed.), Developmental psychopathology (3rd ed., Vol. 22). Hoboken, NJ: Wiley.Google ScholarPubMed
Hyde, L. W., Waller, R., & Burt, S. A. (2014). Commentary: Improving treatment for youth with callous-unemotional traits through the intersection of basic and applied science—Reflections on Dadds et al. (2014). Journal of Child Psychology and Psychiatry, 55, 781783. doi:10.1111/jcpp.12274CrossRefGoogle ScholarPubMed
Hyman, S. E., Malenka, R. C., & Nestler, E. J. (2006). Neural mechanisms of addiction: The role of reward-related learning and memory. Annual Review of Neuroscience, 29, 565598.CrossRefGoogle ScholarPubMed
Insel, T. R., Cuthbert, B. N., Garvey, M. A., Heinssen, R. K., Pine, D. S., Quinn, K. J., et al. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167, 748751.CrossRefGoogle Scholar
Jaffee, S. R. (2011). Genotype-environment correlations: Definitions, methods of measurement, and implications for research on adolescent psychopathology. In Kendler, K. S., Jaffee, S. R., & Romer, D. (Eds.), The dynamic genome and mental health (pp. 79102). New York: Oxford University Press.Google Scholar
Jaffee, S. R., Caspi, A., Moffitt, T. E., Dodge, K. A., Rutter, M., Taylor, A., et al. (2005). Nature × Nurture: Genetic vulnerabilities interact with physical maltreatment to promote conduct problems. Development and Psychopathology, 17, 6784.CrossRefGoogle ScholarPubMed
Jaffee, S. R., & Price, T. S. (2007). Gene-environment correlations: A review of the evidence and implications for prevention of mental illness. Molecular Psychiatry, 12, 432442.CrossRefGoogle ScholarPubMed
Jedema, H. P., Gianaros, P. J., Greer, P. J., Kerr, D. D., Liu, S., Higley, J. D., et al. (2010). Cognitive impact of genetic variation of the serotonin transporter in primates is associated with differences in brain morphology rather than serotonin neurotransmission. Molecular Psychiatry, 15, 512522.CrossRefGoogle ScholarPubMed
Johnstone, T., Somerville, L. H., Alexander, A. L., Oakes, T. R., Davidson, R. J., Kalin, N. H., et al. (2005). Stability of amygdala BOLD response to fearful faces over multiple scan sessions. NeuroImage, 25, 11121123.CrossRefGoogle ScholarPubMed
Jonas, K. G., & Markon, K. E. (in press). A meta-analytic evaluation of the endophenotype hypothesis: Effects of measurement paradigm in the psychiatric genetics of impulsivity. Journal of Abnormal Psychology.Google Scholar
Jones, A. P., Laurens, K. R., Herba, C. M., Gareth, J. B., & Viding, E. (2009). Amygdala hypoactivity to fearful faces in boys with conduct problems and callous-unemotional traits. American Journal of Psychiatry, 166, 95102.CrossRefGoogle ScholarPubMed
Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Archives of General Psychiatry, 68, 444454.CrossRefGoogle ScholarPubMed
Kaufman, J., Yang, B. Z., Douglas-Palumberi, H., Houshyar, S., Lipschitz, D., Krystal, J. H., et al. (2004). Social supports and serotonin transporter gene moderate depression in maltreated children. Proceedings of the National Academy of Sciences, 101, 1731617321.CrossRefGoogle ScholarPubMed
Kauffman, S. (1996). At home in the universe: The search for the laws of self-organization and complexity. New York: Oxford University Press.Google Scholar
Kempton, M. J., Salvador, Z., Munafo, M. R., Geddes, J. R., Simmons, A., Frangou, S., et al. (2011). Structural neuroimaging studies in major depressive disorder: Meta-analysis and comparison with bipolar disorder. Archives of General Psychiatry, 68, 675690.CrossRefGoogle ScholarPubMed
Kendler, K. S., Thornton, L. M., & Gardner, C. O. (2000). Stressful life events and previous episodes in the etiology of major depression in women: An evaluation of the “kindling” hypothesis. American Journal of Psychiatry, 157, 12431251.CrossRefGoogle ScholarPubMed
Kilpatrick, D. G., Koenen, K. C., Ruggiero, K. J., Acierno, R., Galea, S., Resnick, H. S., et al. (2007). The serotonin transporter genotype and social support and moderation of posttraumatic stress disorder and depression in hurricane-exposed adults. American Journal of Psychiatry, 164, 16931699.CrossRefGoogle ScholarPubMed
King, A. P., & Liberzon, I. (2009). Assessing the neuroendocrine stress response in the functional neuroimaging context. NeuroImage, 47, 11161124.CrossRefGoogle ScholarPubMed
Kohli, M. A., Lucae, S., Saemann, P. G., Schmidt, M. V., Demirkan, A., Hek, K., et al. (2011). The neuronal transporter gene SLC6A15 confers risk to major depression. Neuron, 70, 252265.CrossRefGoogle ScholarPubMed
Krueger, R. F., & Markon, K. E. (2006). Reinterpreting comorbidity: A model-based approach to understanding and classifying psychopathology. Annual Review of Clinical Psychology, 2, 111133.CrossRefGoogle ScholarPubMed
Krueger, R. F., & Markon, K. E. (2011). A dimensional-spectrum model of psychopathology: Progress and opportunities. Archives of General Psychiatry, 68, 10.CrossRefGoogle ScholarPubMed
Krueger, R. F., Markon, K. E., Patrick, C. J., Benning, S. D., & Kramer, M. D. (2007). Linking antisocial behavior, substance use, and personality: An integrative quantitative model of the adult externalizing spectrum. Journal of Abnormal Psychology, 116, 645666.CrossRefGoogle ScholarPubMed
Lahey, B. B. (2009). Public health significance of neuroticism. American Psychologist, 64, 241256.CrossRefGoogle ScholarPubMed
Lahey, B. B., Applegate, B., Hakes, J. K., Zald, D. H., Hariri, A. R., & Rathouz, P. J. (2012). Is there a general factor of prevalent psychopathology during adulthood? Journal of Abnormal Psychology, 121, 971977.CrossRefGoogle Scholar
Lahey, B. B., Van Hulle, C. A., Singh, A. L., Waldman, I. D., & Rathouz, P. J. (2011). Higher-order genetic and environmental structure of prevalent forms of child and adolescent psychopathology. Archives of General Psychiatry, 68, 181189.CrossRefGoogle ScholarPubMed
Lahey, B. B., Waldman, I. D., & McBurnett, K. (1999). Annotation: The development of antisocial behavior: An integrative causal model. Journal of Child Psychology and Psychiatry and Allied Disciplines, 40, 669682.CrossRefGoogle ScholarPubMed
Lemonde, S., Turecki, G., Bakish, D., Du, L., Hrdina, P. D., Bown, C. D., et al. (2003). Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. Journal of Neuroscience, 23, 8788.CrossRefGoogle Scholar
Lenroot, R. K., & Giedd, J. N. (2011). Annual research review: Developmental considerations of gene by environment interactions. Journal of Child Psychology and Psychiatry, 52, 429441.CrossRefGoogle ScholarPubMed
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 15271531.CrossRefGoogle ScholarPubMed
Loeber, R., & Stouthamer-Loeber, M. (1998). Development of juvenile aggression and violence: Some common misconceptions and controversies. American Psychologist, 53, 242259.CrossRefGoogle ScholarPubMed
Long, H., Liu, B., Hou, B., Wang, C., Li, J., Qin, W., et al. (2013). The long rather than the short allele of 5-HTTLPR predisposes Han Chinese to anxiety and reduced connectivity between prefrontal cortex and amygdala. Neuroscience Bulletin, 29, 415.CrossRefGoogle Scholar
Luby, J., Belden, A., Botteron, K., Marrus, N., Harms, M. P., Babb, C., et al. (2013). The effects of poverty on childhood brain development: The mediating effect of caregiving and stressful life events. JAMA Pediatrics, 167, 11351142.CrossRefGoogle ScholarPubMed
Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., et al. (2001). Maturation of widely distributed brain function subserves cognitive development. NeuroImage, 13, 786793.CrossRefGoogle ScholarPubMed
Lykken, D. T. (1957). A study of anxiety in the sociopathic personality. Journal of Abnormal and Social Psychology, 55, 610.CrossRefGoogle ScholarPubMed
Maher, B. (2008). Personal genomes: The case of the missing heritability. Nature, 456, 1821.CrossRefGoogle ScholarPubMed
Manuck, S. B. (2013). Gene-environment interaction: Once and future prospect. Annual Review of Psychology, 65, 4170.CrossRefGoogle Scholar
Marsh, A. A., & Blair, R. J. R. (2008). Deficits in facial affect recognition among antisocial populations: A meta-analysis. Neuroscience & Biobehavioral Reviews, 32, 454465.CrossRefGoogle ScholarPubMed
Marsh, A. A., Finger, E. C., Mitchell, D. G. V., Reid, M. E., Sims, C., Kosson, D. S., et al. (2008). Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders. American Journal of Psychiatry, 165, 712720.CrossRefGoogle ScholarPubMed
Marshall, P. (2013). Coping with complexity: Developmental systems and multilevel analyses in developmental psychopathology. Development and Psychopathology, 25, 13111324.CrossRefGoogle ScholarPubMed
Masten, A. S. (2001). Ordinary magic: Resilience processes in development. American Psychologist, 56, 227238.CrossRefGoogle ScholarPubMed
Masten, A. S., & Cicchetti, D. (2010). Developmental cascades. Development and Psychopathology, 22, 491495.CrossRefGoogle ScholarPubMed
McCrory, E. J., De Brito, S. A., Kelly, P. A., Bird, G., Sebastian, C. L., Mechelli, A., et al. (2013). Amygdala activation in maltreated children during pre-attentive emotional processing. British Journal of Psychiatry. Advance online publication. doi10.1192/bjp.bp.1112.116624.CrossRefGoogle ScholarPubMed
Meaney, M. J. (2010). Epigenetics and the biological definition of gene x environment interactions. Child Development, 81, 4179.CrossRefGoogle ScholarPubMed
Mennes, M., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2013). Making data sharing work: The FCP/INDI experience. NeuroImage, 82, 683691.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A. (2011). Neurogenetic mechanisms of gene-environment interactions. In Dodge, K. A. & Rutter, M. (Eds.), Gene-environment interactions in developmental psychopathology (pp. 7187). New York: Guilford Press.Google Scholar
Meyer-Lindenberg, A., & Weinberger, D. R. (2006). Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience, 7, 818827.CrossRefGoogle ScholarPubMed
Milham, M. P. (2012). Open neuroscience solutions for the connectome-wide association era. Neuron, 73, 214218.CrossRefGoogle ScholarPubMed
Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100, 674701.CrossRefGoogle ScholarPubMed
Moffitt, T. E., Caspi, A., Dickson, N., Silva, P., & Stanton, W. (1996). Childhood-onset versus adolescent-onset antisocial conduct problems in males: Natural history from ages 3 to 18 years. Development and Psychopathology, 8, 399424.CrossRefGoogle Scholar
Moffitt, T. E., Caspi, A., Harrington, H., & Milne, B. J. (2002). Males on the life-course-persistent and adolescence-limited antisocial pathways: Follow-up at age 26 years. Development and Psychopathology, 14, 179207.CrossRefGoogle ScholarPubMed
Moffitt, T. E., Caspi, A., & Rutter, M. (2005). Strategy for investigating interactions between measured genes and measured environments. Archives of General Psychiatry, 62, 473481.CrossRefGoogle ScholarPubMed
Monk, C. S., Telzer, E. H., Mogg, K., Bradley, B. P., Mai, X., Louro, H. M., et al. (2008). Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Archives of General Psychiatry, 65, 568576.CrossRefGoogle ScholarPubMed
Morgan, J. K., Shaw, D. S., & Forbes, E. E. (2014). Maternal depression and warmth during childhood predict age 20 neural response to reward. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 108117.CrossRefGoogle ScholarPubMed
Munoz, K. E., Hyde, L. W., & Hariri, A. R. (2009). Imaging genetics. Journal of the American Academy of Child & Adolescent Psychiatry, 48, 356361.Google Scholar
Nagin, D. S., & Tremblay, R. E. (2001). Analyzing developmental trajectories of distinct but related behaviors: A group-based method. Psychological Methods, 6, 1834.CrossRefGoogle ScholarPubMed
Nikolova, Y. S., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. (2011). Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology. Advance online publication. doi:10.1038/npp.2011.82CrossRefGoogle ScholarPubMed
Ofrat, S., & Krueger, R. F. (2012). How research on the meta-structure of psychopathology aids in understanding biological correlates of mood and anxiety disorders. Biology of Mood & Anxiety Disorders, 2, 13.CrossRefGoogle ScholarPubMed
Ordaz, S. J., Foran, W., Velanova, K., & Luna, B. (2013). Longitudinal growth curves of brain function underlying inhibitory control through adolescence. Journal of Neuroscience, 33, 1810918124.CrossRefGoogle ScholarPubMed
Pardini, D., & Frick, P. J. (2013). Multiple developmental pathways to conduct disorder: Current conceptualizations and clinical implications. Journal of the Canadian Academy of Child & Adolescent Psychiatry, 22, 2025.Google ScholarPubMed
Passamonti, L., Fairchild, G., Goodyer, I. M., Hurford, G., Hagan, C. C., Rowe, J. B., et al. (2010). Neural abnormalities in early-onset and adolescence-onset conduct disorder. Archives of General Psychiatry, 67, 729738.CrossRefGoogle ScholarPubMed
Patrick, C. J., Hicks, B. M., Nichol, P. E., & Krueger, R. F. (2007). A bifactor approach to modeling the structure of the Psychopathy Checklist—Revised. Journal of Personality Disorders, 21, 118.CrossRefGoogle ScholarPubMed
Patrick, C. J., Venables, N. C., Yancey, J. R., Hicks, B. M., Nelson, L. D., & Kramer, M. D. (2013). A construct-network approach to bridging diagnostic and physiological domains: Application to assessment of externalizing psychopathology. Journal of Abnormal Psychology, 122, 902916.CrossRefGoogle ScholarPubMed
Patterson, G. R., DeBaryshe, B. D., & Ramsey, E. (1989). A developmental perspective on antisocial behavior. American Psychologist, 44, 329335.CrossRefGoogle ScholarPubMed
Patterson, G. R., Reid, J. B., & Dishion, T. J. (1992). Antisocial boys. Eugene, OR: Castalia.Google Scholar
Paus, T. (2010). Population neuroscience: Why and how. Human Brain Mapping, 31, 891903.CrossRefGoogle ScholarPubMed
Pedersen, N. L., Plomin, R., & McClearn, G. (1994). Is there G beyond g? Intelligence, 18, 133143.CrossRefGoogle Scholar
Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., et al. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: A genetic susceptibility mechanism for depression. Nature Neuroscience, 8, 828834.CrossRefGoogle ScholarPubMed
Pfeifer, J. H., & Allen, N. B. (2012). Arrested development? Reconsidering dual-systems models of brain function in adolescence and disorders. Trends in Cognitive Sciences, 16, 322329.CrossRefGoogle ScholarPubMed
Pinsonneault, J. K., Papp, A. C., & Sadée, W. (2006). Allelic mRNA expression of X-linked monoamine oxidase a (MAOA) in human brain: Dissection of epigenetic and genetic factors. Human Molecular Genetics, 15, 26362649.CrossRefGoogle ScholarPubMed
Pizzagalli, D. A. (2011). Frontocingulate dysfunction in depression: Toward biomarkers of treatment response. Neuropsychopharmacology, 36, 183206.CrossRefGoogle ScholarPubMed
Plomin, R. (2005). Finding genes in child psychology and psychiatry: When are we going to be there? Journal of Child Psychology and Psychiatry and Allied Disciplines, 46, 10301038.CrossRefGoogle Scholar
Plomin, R., Haworth, C., & Davis, O. (2009). Common disorders are quantitative traits. Nature Reviews Genetics, 10, 872878.CrossRefGoogle ScholarPubMed
Plomin, R., & Simpson, M. (2013). The future of genomics for developmentalists. Development and Psychopathology, 25, 12631278.CrossRefGoogle ScholarPubMed
Pluess, M., & Belsky, J. (2013). Vantage sensitivity: Individual differences in response to positive experiences. Psychological Bulletin, 139, 901916.CrossRefGoogle ScholarPubMed
Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185227.CrossRefGoogle ScholarPubMed
Price, J. L., & Drevets, W. C. (2010). Neurocircuitry of mood disorders. Neuropsychopharmacology, 35, 192216.CrossRefGoogle ScholarPubMed
Purcell, S. (2002). Variance components models for gene-environment interaction in twin analysis. Twin Research, 5, 554571.CrossRefGoogle ScholarPubMed
Reiss, D., & Leve, L. D. (2007). Genetic expression outside the skin: Clues to mechanisms of Genotype × Environment interaction. Development and Psychopathology, 19, 10051027.CrossRefGoogle Scholar
Risch, N., Herrell, R., Lehner, T., Liang, K. Y., Eaves, L., Hoh, J., et al. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression. Journal of the American Medical Association, 301, 2462.CrossRefGoogle ScholarPubMed
Rosenthal, D. (1963). A suggested conceptual framework. In Rosenthal, D. (Ed.), The Genain quadruplets: A case study of theoretical analysis of heredity and environment in schizophrenia (pp. 505511). New York: Basic Books.CrossRefGoogle Scholar
Roth, T. (2013). Epigenetic mechanisms in the development of behavior: Advances, challenges, and future promises of a new field. Development and Psychopathology, 25, 12791291.CrossRefGoogle ScholarPubMed
Rutter, M. (2006). Implications of resilience concepts for scientific understanding. Annals of the New York Academy of Sciences, 1094, 112.CrossRefGoogle ScholarPubMed
Rutter, M. (2013). Developmental psychopathology: A paradigm shift or just a relabeling? Development and Psychopathology, 25, 12011213.CrossRefGoogle ScholarPubMed
Rutter, M., & Dodge, K. A. (2011). Gene-environment interactions: The state of science. In Dodge, K. A. & Rutter, M. (Eds.), Gene-environment interaction in developmental psychopathology (pp. 87101). New York: Guilford Press.Google Scholar
Rutter, M. L. (1997). Nature-nurture integration: The example of antisocial behavior. American Psychologist, 52, 390398.CrossRefGoogle Scholar
Sadeh, N., Javdani, S., Jackson, J. J., Reynolds, E. K., Potenza, M. N., Gelernter, J., et al. (2010). Serotonin transporter gene associations with psychopathic traits in youth vary as a function of socioeconomic resources. Journal of Abnormal Psychology, 119, 604609.CrossRefGoogle ScholarPubMed
Sameroff, A. J. (1995). General systems theories and developmental psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Vol. 1. Theory and methods (pp. 659695). Oxford: Wiley.Google Scholar
Sameroff, A. J. (2010). A unified theory of development: A dialectic integration of nature and nurture. Child Development, 81, 622.CrossRefGoogle ScholarPubMed
Sameroff, A. J., Seifer, R., Zax, M., & Barocas, R. (1987). Early indicators of developmental risk: Rochester Longitudinal Study. Schizophrenia Bulletin, 13, 383394.CrossRefGoogle ScholarPubMed
Sanislow, C. A., Pine, D. S., Quinn, K. J., Kozak, M. J., Garvey, M. A., Heinssen, R. K., et al. (2010). Developing constructs for psychopathology research: Research domain criteria. Journal of Abnormal Psychology, 119, 631639.CrossRefGoogle ScholarPubMed
Schwarz, A. J., Gozzi, A., Reese, T., & Bifone, A. (2007). In vivo mapping of functional connectivity in neurotransmitter systems using pharmacological MRI. NeuroImage, 34, 16271636.CrossRefGoogle ScholarPubMed
Sebastian, C. L., McCrory, E. J. P., Cecil, C. A. M., Lockwood, P. L., De Brito, S. A., Fontaine, N. M. G., et al. (2012). Neural responses to affective and cognitive theory of mind in children with conduct problems and varying levels of callous-unemotional traits. Archives of General Psychiatry, 69, 814822.CrossRefGoogle ScholarPubMed
Shaw, D. S., Gilliom, M., Ingoldsby, E. M., & Nagin, D. S. (2003). Trajectories leading to school-age conduct problems. Developmental Psychology, 39, 189200.CrossRefGoogle ScholarPubMed
Shaw, D. S., & Gross, H. (2008). Early childhood and the development of delinquency: What we have learned from recent longitudinal research. In Lieberman, A. (Ed.), The long view of crime: A synthesis of longitudinal research (pp. 79127). New York: Springer.CrossRefGoogle Scholar
Shaw, D. S., Hyde, L. W., & Brennan, L. M. (2012). Predictors of boys' antisocial trajectories from toddlerhood through adolescence. Development and Psychopathology, 24, 871888.CrossRefGoogle Scholar
Shriver, M. D., & Kittles, R. A. (2004). Genetic ancestry and the search for personalized genetic histories. Nature Reviews Genetics, 5, 611618.CrossRefGoogle ScholarPubMed
Silventoinen, K. (2003). Determinants of variation in adult body height. Journal of Biosocial Science, 35, 263285.CrossRefGoogle ScholarPubMed
Simon, G. E., & Perlis, R. H. (2010). Personalized medicine for depression: Can we match patients with treatments? American Journal of Psychiatry, 167, 14451455.CrossRefGoogle ScholarPubMed
Sitnick, S. L., Shaw, D. S., & Hyde, L. W. (2013). Precursors of adolescent substance use from early childhood and early adolescence: Testing a developmental cascade model. Development and Psychopathology. Advance online publication. doi:10.1017/S0954579413000539Google ScholarPubMed
Sroufe, L. (2013). The promise of developmental psychopathology: Past and present. Development and Psychopathology, 25, 12151224.CrossRefGoogle ScholarPubMed
Sroufe, L. A., & Rutter, M. (1984). The domain of developmental psychopathology. Child Development, 55, 1729.CrossRefGoogle ScholarPubMed
Starkman, B. G., Sakharkar, A. J., & Pandey, S. C. (2011). Epigenetics—Beyond the genome in alcoholism. Alcohol Research: Current Reviews, 34, 293305.Google Scholar
Steinberg, L. (2007). Risk taking in adolescence. Current Directions in Psychological Science, 16, 5559.CrossRefGoogle Scholar
Swartz, J. R., Carrasco, M., Wiggins, J. L., Thomason, M. E., & Monk, C. S. (2014). Age-related changes in the structure and function of prefrontal cortex–amygdala circuitry in children and adolescents: A multi-modal imaging approach. NeuroImage, 86, 212220.CrossRefGoogle ScholarPubMed
Thompson, R. A., & Calkins, S. D. (1996). The double-edged sword: Emotional regulation for children at risk. Development and Psychopathology, 8, 163182.CrossRefGoogle Scholar
Thyreau, B., Schwartz, Y., Thirion, B., Frouin, V., Loth, E., Vollstädt-Klein, S., et al. (2012). Very large fMRI study using the IMAGEN database: Sensitivity-specificity and population effect modeling in relation to the underlying anatomy. NeuroImage, 61, 295303.CrossRefGoogle Scholar
Tottenham, N., Hare, T., Millner, A., Gilhooly, T., Zevin, J., & Casey, B. (2011). Elevated amygdala response to faces following early deprivation. Developmental Science, 14, 190204.CrossRefGoogle ScholarPubMed
Trentacosta, C. J., Hyde, L. W., Shaw, D. S., & Cheong, J. W. (2009). Adolescent dispositions for antisocial behavior in context: The roles of neighborhood dangerousness and parental knowledge. Journal of Abnormal Psychology, 118, 564575.CrossRefGoogle ScholarPubMed
Tsuang, M. T., Lyons, M. J., & Faraone, S. V. (1990). Heterogeneity of schizophrenia: Conceptual models and analytic strategies. British Journal of Psychiatry, 156, 1726.CrossRefGoogle ScholarPubMed
Turkheimer, E. (1998). Heritability and biological explanation. Psychological Review, 105, 782791.CrossRefGoogle ScholarPubMed
Turkheimer, E., Haley, A., Waldron, M., D'Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14, 623628.CrossRefGoogle ScholarPubMed
Tuvblad, C., Grann, M., & Lichtenstein, P. (2006). Heritability for adolescent antisocial behavior differs with socioeconomic status: Gene-environment interaction. Journal of Child Psychology and Psychiatry, 47, 734743.CrossRefGoogle ScholarPubMed
Uhr, M., Tontsch, A., Namendorf, C., Ripke, S., Lucae, S., Ising, M., et al. (2008). Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron, 57, 203209.CrossRefGoogle ScholarPubMed
Ursini, G., Bollati, V., Fazio, L., Porcelli, A., Iacovelli, L., Catalani, A., et al. (2011). Stress-related methylation of the catechol-O-methyltransferase Val158 allele predicts human prefrontal cognition and activity. Journal of Neuroscience, 31, 66926698.CrossRefGoogle ScholarPubMed
Vandell, D. L. (2000). Parents, peer groups, and other socializing influences. Developmental Psychology, 36, 699710.CrossRefGoogle ScholarPubMed
Viding, E., Fontaine, N. M. G., & McCrory, E. J. (2012). Antisocial behaviour in children with and without callous-unemotional traits. Journal of the Royal Society of Medicine, 105, 195200.CrossRefGoogle ScholarPubMed
Viding, E., Jones, A. P., Paul, J. F., Moffitt, T. E., & Plomin, R. (2008). Heritability of antisocial behaviour at 9: Do callous unemotional traits matter? Developmental Science, 11, 1722.CrossRefGoogle ScholarPubMed
Viding, E., Sebastian, C. L., Dadds, M. R., Lockwood, P. L., Cecil, C. A. M., De Brito, S. A., et al. (2012). Amygdala response to preattentive masked fear in children with conduct problems: The role of callous-unemotional traits. American Journal of Psychiatry, 169, 11091116.CrossRefGoogle ScholarPubMed
Viding, E., Williamson, D. E., & Hariri, A. R. (2006). Developmental imaging genetics: Challenges and promises for translational research. Development and Psychopathology, 18, 877892.CrossRefGoogle ScholarPubMed
Vrieze, S. I., Iacono, W. G., & McGue, M. (2012). Confluence of genes, environment, development, and behavior in a post Genome-Wide Association Study world. Development and Psychopathology, 24, 11951214.CrossRefGoogle Scholar
Webster-Stratton, C., & Reid, M. J. (2003). The incredible years parents, teachers and children training series: A multifaceted treatment approach for young children with conduct problems. In Kazdin, A. E. & Weisz, J. R. (Eds.), Evidence-based psychotherapies for children and adolescents (pp. 224240). New York: Guilford Press.Google Scholar
Wenten, M., Gauderman, W. J., Berhane, K., Lin, P. C., Peters, J., & Gilliland, F. D. (2009). Functional variants in the catalase and myeloperoxidase genes, ambient air pollution, and respiratory-related school absences: An example of epistasis in gene-environment interactions. American Journal of Epidemiology, 170, 14941501.CrossRefGoogle ScholarPubMed
Whelan, R., Conrod, P. J., Poline, J.-B., Lourdusamy, A., Banaschewski, T., Barker, G. J., et al. (2012). Adolescent impulsivity phenotypes characterized by distinct brain networks. Nature Neuroscience, 15, 920925.CrossRefGoogle ScholarPubMed
White, M., Bogdan, R., Fisher, P., Munoz, K., Williamson, D., & Hariri, A. (2012). FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity. Genes, Brain and Behavior, 11, 869878.CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., McCarley, R. W., et al. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences, 106, 12791284.CrossRefGoogle ScholarPubMed
Widiger, T. A., & Lynam, D. R. (1998). Psychopathy and the Five-Factor model of personality. In Millon, T. (Ed.), Psychopathy: Antisocial, violence and criminal behavior (pp. 171187). New York: Guilford Press.Google Scholar
Wiggins, J., & Monk, C. (2013). A translational neuroscience framework for the development of socioemotional functioning in health and psychopathology. Development and Psychopathology, 25, 12931309.CrossRefGoogle ScholarPubMed
Wiggins, J. L., Bedoyan, J. K., Carrasco, M., Swartz, J. R., Martin, D. M., & Monk, C. S. (2014). Age-related effect of serotonin transporter genotype on amygdala and prefrontal cortex function in adolescence. Human Brain Mapping, 35, 646658.CrossRefGoogle ScholarPubMed
Wiggins, J. L., Bedoyan, J. K., Peltier, S. J., Ashinoff, S., Carrasco, M., Weng, S.-J., et al. (2012). The impact of serotonin transporter (5-HTTLPR) genotype on the development of resting-state functional connectivity in children and adolescents: A preliminary report. NeuroImage, 59, 27602770.CrossRefGoogle ScholarPubMed
Willard, H. F., & Ginsburg, G. S. (2009). Essentials of genomic and personalized medicine. San Diego CA: Academic Press.Google Scholar
Willeit, M., & Praschak-Rieder, N. (2010). Imaging the effects of genetic polymorphisms on radioligand binding in the living human brain: A review on genetic neuroreceptor imaging of monoaminergic systems in psychiatry. NeuroImage, 53, 878892.CrossRefGoogle Scholar
Yu, Q., Teixeira, C., Mahadevia, D., Huang, Y., Balsam, D., Mann, J., et al. (2014). Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Molecular Psychiatry, 19, 688698.CrossRefGoogle ScholarPubMed
Zhang, T. Y., & Meaney, M. J. (2010). Epigenetics and the environmental regulation of the genome and its function. Annual Review of Psychology, 61, 439466.CrossRefGoogle ScholarPubMed
Zucker, R. A., Heitzeg, M. M., & Nigg, J. T. (2011). Parsing the undercontrol-disinhibition pathway to substance use disorders: A multilevel developmental problem. Child Development Perspectives, 5, 248255.CrossRefGoogle ScholarPubMed