Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T06:58:16.465Z Has data issue: false hasContentIssue false

Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia

Published online by Cambridge University Press:  07 October 2008

Katherine H. Karlsgodt*
Affiliation:
University of Southern California, Los Angeles
Daqiang Sun
Affiliation:
University of Southern California, Los Angeles
Amy M. Jimenez
Affiliation:
University of Southern California, Los Angeles
Evan S. Lutkenhoff
Affiliation:
University of Southern California, Los Angeles
Rachael Willhite
Affiliation:
University of Southern California, Los Angeles
Theo G. M. van Erp
Affiliation:
University of Southern California, Los Angeles
Tyrone D. Cannon
Affiliation:
University of Southern California, Los Angeles
*
Address correspondence and reprint requests to: Katherine Karlsgodt, Department of Psychology, 1285 Franz Hall Box 951563, University of California, Los Angeles, Los Angeles, CA 90095-1563; E-mail: [email protected].

Abstract

Schizophrenia has been thought of as a disorder of reduced functional and structural connectivity. Recent advances in neuroimaging techniques such as functional magnetic resonance imaging, structural magnetic resonance imaging, diffusion tensor imaging, and small animal imaging have advanced our ability to investigate this hypothesis. Moreover, the power of longitudinal designs possible with these noninvasive techniques enable the study of not just how connectivity is disrupted in schizophrenia, but when this disruption emerges during development. This article reviews genetic and neurodevelopmental influences on structural and functional connectivity in human populations with or at risk for schizophrenia and in animal models of the disorder. We conclude that the weight of evidence across these diverse lines of inquiry points to a developmental disruption of neural connectivity in schizophrenia and that this disrupted connectivity likely involves susceptibility genes that affect processes involved in establishing intra- and interregional connectivity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addington, A. M., Gornick, M. C., Shaw, P., Seal, J., Gogtay, N., Greenstein, D., et al. (2007). Neuregulin 1 (8p12) and childhood-onset schizophrenia: Susceptibility haplotypes for diagnosis and brain developmental trajectories. Molecular Psychiatry, 12, 195205.CrossRefGoogle ScholarPubMed
Agartz, I., Andersson, J. L. R., & Skare, S. (2001). Abnormal brain white matter in schizophrenia: A diffusion tensor imaging study. NeuroReport, 12, 22512254.CrossRefGoogle ScholarPubMed
Agartz, I., Sedvall, G. C., Terenius, L., Kulle, B., Frigessi, A., Hall, H., et al. (2006). BDNF gene variants and brain morphology in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141, 513523.CrossRefGoogle Scholar
Aggleton, J. P. (1993). The contribution of the amygdala to normal and abnormal emotional states. Trends in Neuroscience, 16, 328333.CrossRefGoogle ScholarPubMed
Aghevli, M. A., Blanchard, J. J., & Horan, W. P. (2003). The expression and experience of emotion in schizophrenia: A study of social interactions. Psychiatry Research, 119, 261270.CrossRefGoogle ScholarPubMed
Akbarian, S., Kim, J. J., Potkin, S. G., Hetrick, W. P., Bunney, W. E., & Jones, E. G. (1996). Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Archives of General Psychiatry, 53, 425436.CrossRefGoogle ScholarPubMed
Andreasen, N. C., Flashman, L., Flaum, M., Arndt, S., Swayze, V. 2nd, O'Leary, D. S., et al. (1994). Regional brain abnormalities in schizophrenia measured with magnetic resonance imaging. Journal of the American Medical Association, 272, 17631769.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC: Author.Google Scholar
Ardekani, B. A., Nierenberg, J., Hoptman, M. J., Javitt, D. C., & Lim, K. O. (2003). MRI study of white matter diffusion anisotropy in schizophrenia. NeuroReport, 14, 20252029.CrossRefGoogle ScholarPubMed
Arnold, S. E., & Rioux, L. (2001). Challenges, status, and opportunities for studying developmental neuropathology in adult schizophrenia. Schizophrenia Bulletin, 27, 395416.CrossRefGoogle ScholarPubMed
Arnold, S. E., Talbot, K., & Hahn, C. G. (2005). Neurodevelopment, neuroplasticity, and new genes for schizophrenia. Progress in Brain Research, 147, 319345.CrossRefGoogle ScholarPubMed
Arseneault, L., Cannon, M., Witton, J., & Murray, R. M. (2004). Causal association between cannabis and psychosis: Examination of the evidence. British Journal of Psychiatry, 184, 110117.CrossRefGoogle ScholarPubMed
Ashtari, M., Cervellione, K. L., Hasan, K. M., Wu, J., McIlree, C., Kester, H., et al. (2007). White matter development during late adolescence in healthy males: A cross-sectional diffusion tensor imaging study. NeuroImage, 35, 501510.CrossRefGoogle Scholar
Austin, C. P., Ky, B., Ma, L., Morris, J. A., & Shughrue, P. J. (2004). Expression of Disrupted-In-Schizophrenia-1, a schizophrenia-associated gene, is prominent in the mouse hippocampus throughout brain development. Neuroscience, 124, 310.CrossRefGoogle ScholarPubMed
Bachman, P., & Cannon, T. D. (2005). Cognitive and neuroscience aspects of thought disorder. In The Cambridge handbook of thinking and reasoning. New York: Cambridge University Press.Google Scholar
Bakker, S. C., Hoogendoorn, M. L., Hendriks, J., Verzijlbergen, K., Caron, S., Verduijn, W., et al. (2007). The PIP5K2A and RGS4 genes are differentially associated with deficit and non-deficit schizophrenia. Genes, Brain and Behavior, 6, 113119.CrossRefGoogle ScholarPubMed
Bartzokis, G., Beckson, M., Lu, P. H., Nuechterlein, K. H., Edwards, N., & Mintz, J. (2001). Age-related changes in frontal and temporal lobe volumes in men: A magnetic resonance imaging study. Archives of General Psychiatry, 58, 461465.CrossRefGoogle Scholar
Bartzokis, G., Nuechterlein, K. H., Lu, P. H., Gitlin, M., Rogers, S., & Mintz, J. (2003). Dysregulated brain development in adult men with schizophrenia: A magnetic resonance imaging study. Biological Psychiatry, 53, 412421.CrossRefGoogle ScholarPubMed
Bearden, C. E., Rosso, I. M., Hollister, J. M., Sanchez, L. E., Hadley, T., & Cannon, T. D. (2000). A prospective cohort study of childhood behavioral deviance and language abnormalities as predictors of adult schizophrenia. Schizophrenia Bulletin, 26, 395410.CrossRefGoogle ScholarPubMed
Beaulieu, C., & Allen, P. S. (1994). Determinants of anisotropic water diffusion in nerves. Magnetic Resonance in Medicine, 31, 394400.CrossRefGoogle ScholarPubMed
Begre, S., Federspiel, A., Kiefer, C., Schroth, G., Dierks, T., & Strik, W. K. (2003). Reduced hippocampal anisotropy related to anteriorization of alpha EEG in schizophrenia. NeuroReport, 14, 739742.CrossRefGoogle ScholarPubMed
Benes, F. M. (1989). Myelination of cortical–hippocampal relays during late adolescence. Schizophrenia Bulletin, 15, 585593.CrossRefGoogle ScholarPubMed
Benson, M. A., Newey, S. E., Martin-Rendon, E., Hawkes, R., & Blake, D. J. (2001). Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. Journal of Biological Chemistry, 276, 2423224241.CrossRefGoogle ScholarPubMed
Benzel, I., Bansal, A., Browning, B. L., Galwey, N. W., Maycox, P. R., McGinnis, R., et al. (2007). Interactions among genes in the ErbB-Neuregulin signalling network are associated with increased susceptibility to schizophrenia. Behavioral and Brain Functions, 3, 31.CrossRefGoogle ScholarPubMed
Berenbaum, H., & Oltmanns, T. F. (1992). Emotional experience and expression in schizophrenia and depression. Journal of Abnormal Psychology, 101, 3744.CrossRefGoogle ScholarPubMed
Bertolino, A., Di Giorgio, A., Blasi, G., Sambataro, F., Caforio, G., Sinibaldi, L., et al. (2008). Epistasis between dopamine regulating genes identifies a nonlinear response of the human hippocampus during memory tasks. Biological Psychiatry, 64, 226234.CrossRefGoogle ScholarPubMed
Bertolino, A., Rubino, V., Sambataro, F., Blasi, G., Latorre, V., Fazio, L., et al. (2006). Prefrontal-hippocampal coupling during memory processing is modulated by COMT val158met genotype. Biological Psychiatry, 60, 12501258.CrossRefGoogle ScholarPubMed
Blake, D. J., Hawkes, R., Benson, M. A., & Beesley, P. W. (1999). Different dystrophin-like complexes are expressed in neurons and glia. Journal of Cell Biology, 147, 645658.CrossRefGoogle ScholarPubMed
Bleuler, E. (1950). Dementia praecox or the group of schizophrenias. New York: International Universities Press.Google Scholar
Blows, W. T. (2003). Child brain development. Nursing Times, 99, 2831.Google ScholarPubMed
Borgwardt, S. J., McGuire, P. K., Aston, J., Berger, G., Dazzan, P., Gschwandtner, U., et al. (2007). Structural brain abnormalities in individuals with an at-risk mental state who later develop psychosis. British Journal of Psychiatry, 51, s69s75.CrossRefGoogle ScholarPubMed
Bourgeois, J. P., Goldman-Rakic, P. S., & Rakic, P. (1994). Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cerebral Cortex, 4, 7896.CrossRefGoogle ScholarPubMed
Brandon, N. J., Handford, E. J., Schurov, I., Rain, J. C., Pelling, M., Duran-Jimeniz, B., et al. (2004). Disrupted in Schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: Implications for schizophrenia and other major neurological disorders. Molecular and Cellular Neurosciences, 25, 4255.CrossRefGoogle Scholar
Breier, A., Buchanan, R. W., Elkashef, A., Munson, R. C., Kirkpatrick, B., & Gellad, F. (1992). Brain morphology and schizophrenia. A magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Archives of General Psychiatry, 49, 921926.CrossRefGoogle ScholarPubMed
Brown, A. S., Hooton, J., Schaefer, C. A., Zhang, H., Petkova, E., Babulas, V., et al. (2004). Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. American Journal of Psychiatry, 161, 889895.CrossRefGoogle ScholarPubMed
Brune, M. (2005). Emotion recognition, “theory of mind,” and social behavior in schizophrenia. Psychiatry Research, 133, 135147.CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Tang, C. Y., Peled, S., Gudbjartsson, H., Lu, D., Hazlett, E. A., et al. (1998). MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. NeuroReport, 9, 425430.CrossRefGoogle ScholarPubMed
Buckholtz, J. W., Sust, S., Tan, H. Y., Mattay, V. S., Straub, R. E., Meyer-Lindenberg, A., et al. (2007). fMRI evidence for functional epistasis between COMT and RGS4. Molecular Psychiatry, 12, 893895, 885.CrossRefGoogle ScholarPubMed
Buckner, J. C., Mezzacappa, E., & Beardslee, W. R. (2003). Characteristics of resilient youths living in poverty: The role of self-regulatory processes. Development and Psychopathology, 15, 139162.CrossRefGoogle ScholarPubMed
Bueller, J. A., Aftab, M., Sen, S., Gomez-Hassan, D., Burmeister, M., & Zubieta, J. K. (2006). BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biological Psychiatry, 59, 812815.CrossRefGoogle ScholarPubMed
Buka, S. L., Cannon, T. D., Torrey, E. F., & Yolken, R. H. (2008). Maternal exposure to herpes simplex virus and risk of psychosis among adult offspring. Biological Psychiatry, 63, 809815.CrossRefGoogle ScholarPubMed
Buka, S. L., Tsuang, M. T., & Lipsitt, L. P. (1993). Pregnancy/delivery complications and psychiatric diagnosis. A prospective study. Archives of General Psychiatry, 50, 151156.CrossRefGoogle ScholarPubMed
Bullmore, E. T., Frangou, S., & Murray, R. M. (1997). The dysplastic net hypothesis: An integration of developmental and dysconnectivity theories of schizophrenia. Schizophrenia Research, 28, 143156.CrossRefGoogle ScholarPubMed
Burdick, K. E., Goldberg, T. E., Funke, B., Bates, J. A., Lencz, T., Kucherlapati, R., et al. (2007). DTNBP1 genotype influences cognitive decline in schizophrenia. Schizophrenia Research, 89, 169172.CrossRefGoogle ScholarPubMed
Burgdorf, J., & Panksepp, J. (2006). The neurobiology of positive emotions. Neuroscience and Biobehavioral Reviews, 30, 173187.CrossRefGoogle ScholarPubMed
Burns, J., Job, D., Bastin, M. E., Whalley, H., Macgillivray, T., Johnstone, E. C., et al. (2003). Structural disconnectivity in schizophrenia: A diffusion tensor magnetic resonance imaging study. British Journal of Psychiatry, 182, 439443.CrossRefGoogle ScholarPubMed
Byne, W., Buchsbaum, M. S., Mattiace, L. A., Hazlett, E. A., Kemether, E., Elhakem, S. L., et al. (2002). Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. American Journal of Psychiatry, 159, 5965.CrossRefGoogle ScholarPubMed
Caldu, X., Vendrell, P., Bartres-Faz, D., Clemente, I., Bargallo, N., Jurado, M. A., et al. (2007). Impact of the COMT Val108/158 Met and DAT genotypes on prefrontal function in healthy subjects. NeuroImage, 37, 14371444.CrossRefGoogle ScholarPubMed
Callicott, J. H., Straub, R. E., Pezawas, L., Egan, M. F., Mattay, V. S., Hariri, A. R., et al. (2005). Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 102, 86278632.CrossRefGoogle ScholarPubMed
Camargo, L. M., Collura, V., Rain, J. C., Mizuguchi, K., Hermjakob, H., Kerrien, S., et al. (2007). Disrupted in Schizophrenia 1 Interactome: Evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Molecular Psychiatry, 12, 7486.CrossRefGoogle Scholar
Campos, J. J., Frankel, C. B., & Camras, L. (2004). On the nature of emotion regulation. Child Development, 75, 377394.CrossRefGoogle ScholarPubMed
Cannon, M., Caspi, A., Moffitt, T. E., Harrington, H., Taylor, A., Murray, R. M., et al. (2002). Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: Results from a longitudinal birth cohort. Archives of General Psychiatry, 59, 449456.CrossRefGoogle ScholarPubMed
Cannon, T. D., Hennah, W., van Erp, T. G., Thompson, P. M., Lonnqvist, J., Huttunen, M., et al. (2005). Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Archives of General Psychiatry, 62, 12051213.CrossRefGoogle ScholarPubMed
Cannon, T. D., Rosso, I. M., Hollister, J. M., Bearden, C. E., Sanchez, L. E., & Hadley, T. (2000). A prospective cohort study of genetic and perinatal influences in the etiology of schizophrenia. Schizophrenia Bulletin, 26, 351366.CrossRefGoogle ScholarPubMed
Cannon, T. D., Thompson, P. M., van Erp, T. G., Toga, A. W., Poutanen, V. P., Huttunen, M., et al. (2002). Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 99, 32283233.CrossRefGoogle ScholarPubMed
Cannon, T. D., van Erp, T. G., Bearden, C. E., Loewy, R., Thompson, P., Toga, A. W., et al. (2003). Early and late neurodevelopmental influences in the prodrome to schizophrenia: Contributions of genes, environment, and their interactions. Schizophrenia Bulletin, 29, 653669.CrossRefGoogle ScholarPubMed
Cannon, T. D., van Erp, T. G., Rosso, I. M., Huttunen, M., Lonnqvist, J., Pirkola, T., et al. (2002). Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Archives of General Psychiatry, 59, 3541.CrossRefGoogle ScholarPubMed
Cannon, T. D., Yolken, R., Buka, S., & Torrey, E. F. (in press). Decreased neurotrophic response to birth hypoxia in the etiology of schizophrenia. Biological Psychiatry.Google Scholar
Cardno, A. G., & Gottesman, II. (2000). Twin studies of schizophrenia: From bow-and-arrow concordances to star wars Mx and functional genomics. American Journal of Medical Genetics, 97, 1217.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Carmichael, A. (1990). Physical development and biological influences. New York: Elsevier.Google Scholar
Casey, B. J., Giedd, J. N., & Thomas, K. M. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54, 241257.CrossRefGoogle ScholarPubMed
Caspi, A., Moffitt, T. E., Cannon, M., McClay, J., Murray, R., Harrington, H., et al. (2005). Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: Longitudinal evidence of a gene × environment interaction. Biological Psychiatry, 57, 11171127.CrossRefGoogle Scholar
Catani, M., Howard, R. J., Pajevic, S., & Jones, D. K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage, 17, 7794.CrossRefGoogle ScholarPubMed
Chafee, M. V., & Goldman-Rakic, P. S. (1998). Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. Journal of Neurophysiology, 79, 29192940.CrossRefGoogle ScholarPubMed
Chafee, M. V., & Goldman-Rakic, P. S. (2000). Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. Journal of Neurophysiology, 83, 15501566.CrossRefGoogle ScholarPubMed
Chowdari, K. V., Mirnics, K., Semwal, P., Wood, J., Lawrence, E., Bhatia, T., et al. (2002). Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Human Molecular Genetics, 11, 13731380.CrossRefGoogle ScholarPubMed
Christ, S. E., White, D. A., Brunstrom, J. E., & Abrams, R. A. (2003). Inhibitory control following perinatal brain injury. Neuropsychology, 17, 171178.CrossRefGoogle ScholarPubMed
Chumakov, I., Blumenfeld, M., Guerassimenko, O., Cavarec, L., Palicio, M., Abderrahim, H., et al. (2002). Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 99, 1367513680.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Blender, J. A. (2006). A multiple-levels-of-analysis perspective on resilience: Implications for the developing brain, neural plasticity, and preventive interventions. Annals of the New York Academy of Sciences, 1094, 248258.CrossRefGoogle ScholarPubMed
Clapcote, S. J., Lipina, T. V., Millar, J. K., Mackie, S., Christie, S., Ogawa, F., et al. (2007). Behavioral phenotypes of Disc1 missense mutations in mice. Neuron, 54, 387402.CrossRefGoogle ScholarPubMed
Clarke, M. C., Harley, M., & Cannon, M. (2006). The role of obstetric events in schizophrenia. Schizophrenia Bulletin, 32, 38.CrossRefGoogle ScholarPubMed
Colantuoni, C., Hyde, T. M., Mitkus, S., Joseph, A., Sartorius, L., Aguirre, C., et al. (in press). Age-related changes in the expression of schizophrenia susceptibility genes in the human prefrontal cortex. Brain Structure and Function.Google Scholar
Cornblatt, B. A., Auther, A. M., Niendam, T., Smith, C. W., Zinberg, J., Bearden, C. E., et al. (2007). Preliminary findings for two new measures of social and role functioning in the prodromal phase of schizophrenia. Schizophrenia Bulletin, 33, 688702.CrossRefGoogle ScholarPubMed
Crespo-Facorro, B., Roiz-Santianez, R., Pelayo-Teran, J. M., Perez-Iglesias, R., Carrasco-Marin, E., Mata, I., et al. (2007). Low-activity allele of catechol-O-methyltransferase (COMT) is associated with increased lateral ventricles in patients with first episode non-affective psychosis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31, 15141518.CrossRefGoogle ScholarPubMed
Dalman, C., Thomas, H. V., David, A. S., Gentz, J., Lewis, G., & Allebeck, P. (2001). Signs of asphyxia at birth and risk of schizophrenia. Population-based case–control study. British Journal of Psychiatry, 179, 403408.CrossRefGoogle ScholarPubMed
Davis, K. L., Kahn, R. S., Ko, G., & Davidson, M. (1991). Dopamine in schizophrenia: A review and reconceptualization. American Journal of Psychiatry, 148, 14741486.Google ScholarPubMed
DeLisi, L. E., Sakuma, M., Maurizio, A. M., Relja, M., & Hoff, A. L. (2004). Cerebral ventricular change over the first 10 years after the onset of schizophrenia. Psychiatry Research, 130, 5770.CrossRefGoogle ScholarPubMed
DeRosse, P., Funke, B., Burdick, K. E., Lencz, T., Ekholm, J. M., Kane, J. M., et al. (2006). Dysbindin genotype and negative symptoms in schizophrenia. American Journal of Psychiatry, 163, 532534.CrossRefGoogle ScholarPubMed
Donohoe, G., Morris, D. W., Clarke, S., McGhee, K. A., Schwaiger, S., Nangle, J. M., et al. (2007). Variance in neurocognitive performance is associated with dysbindin-1 in schizophrenia: A preliminary study. Neuropsychologia, 45, 454458.CrossRefGoogle ScholarPubMed
Durston, S., Hulshoff Pol, H. E., Casey, B. J., Giedd, J. N., Buitelaar, J. K., & van Engeland, H. (2001). Anatomical MRI of the developing human brain: What have we learned? Journal of the American Academy of Child & Adolescent Psychiatry, 40, 10121020.CrossRefGoogle ScholarPubMed
Edwards, J., Pattison, P. E., Jackson, H. J., & Wales, R. J. (2001). Facial affect and affective prosody recognition in first-episode schizophrenia. Schizophrenia Research, 48, 235253.CrossRefGoogle ScholarPubMed
Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., et al. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 69176922.CrossRefGoogle ScholarPubMed
Ekelund, J., Hovatta, I., Parker, A., Paunio, T., Varilo, T., Martin, R., et al. (2001). Chromosome 1 loci in Finnish schizophrenia families. Human Molecular Genetics, 10, 16111617.CrossRefGoogle ScholarPubMed
Ettinger, U., Kumari, V., Collier, D. A., Powell, J., Luzi, S., Michel, T. M., et al. (in press). Catechol-O-methyltransferase (COMT) Val(158)Met genotype is associated with BOLD response as a function of task characteristic. Neuropsychopharmacology.Google Scholar
Fallgatter, A. J., Herrmann, M. J., Hohoff, C., Ehlis, A. C., Jarczok, T. A., Freitag, C. M., et al. (2006). DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in healthy individuals. Neuropsychopharmacology, 31, 20022010.CrossRefGoogle ScholarPubMed
Fanous, A. H., van den Oord, E. J., Riley, B. P., Aggen, S. H., Neale, M. C., O'Neill, F. A., et al. (2005). Relationship between a high-risk haplotype in the DTNBP1 (dysbindin) gene and clinical features of schizophrenia. American Journal of Psychiatry, 162, 18241832.CrossRefGoogle ScholarPubMed
Federspiel, A., Begre, S., Kiefer, C., Schroth, G., Strik, W. K., & Dierks, T. (2006). Alterations of white matter connectivity in first episode schizophrenia. Neurobiology of Disease, 22, 702709.CrossRefGoogle ScholarPubMed
Feinberg, I. (1982). Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 17, 319334.CrossRefGoogle ScholarPubMed
Fenton, W. S., & McGlashan, T. H. (1991). Natural history of schizophrenia subtypes. II. Positive and negative symptoms and long-term course. Archives of General Psychiatry, 48, 978986.CrossRefGoogle ScholarPubMed
Foong, J., Maier, M., Barker, G. J., Brocklehurst, S., Miller, D. H., & Ron, M. A. (2000). In vivo investigation of white matter pathology in schizophrenia with magnetisation transfer imaging. Journal of Neurology, Neurosurgery and Psychiatry, 68, 7074.CrossRefGoogle ScholarPubMed
Foong, J., Symms, M. R., Barker, G. J., Maier, M., Miller, D. H., & Ron, M. A. (2002). Investigating regional white matter in schizophrenia using diffusion tensor imaging. NeuroReport, 13, 333336.CrossRefGoogle ScholarPubMed
Friston, K. J. (1996). Theoretical neurobiology and schizophrenia. British Medical Bulletin, 52, 644655.CrossRefGoogle ScholarPubMed
Friston, K. J. (1997). Data analysis: Basic concepts and overview [Short course notes]. London: University College London, Institute of Neurology, Wellcome Department of Cognitive Neuroscience.Google Scholar
Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30, 115125.CrossRefGoogle ScholarPubMed
Friston, K. J., & Frith, C. D. (1995). Schizophrenia: A disconnection syndrome? Clinical Neuroscience, 3, 8997.Google ScholarPubMed
Fujiwara, H., Hirao, K., Namiki, C., Yamada, M., Shimizu, M., Fukuyama, H., et al. (2007). Anterior cingulate pathology and social cognition in schizophrenia: A study of gray matter, white matter and sulcal morphometry. NeuroImage, 36, 12361245.CrossRefGoogle ScholarPubMed
Fujiwara, H., Namiki, C., Hirao, K., Miyata, J., Shimizu, M., Fukuyama, H., et al. (2007). Anterior and posterior cingulum abnormalities and their association with psychopathology in schizophrenia: A diffusion tensor imaging study. Schizophrenia Research, 95, 215222.CrossRefGoogle ScholarPubMed
Funke, B., Finn, C. T., Plocik, A. M., Lake, S., DeRosse, P., Kane, J. M., et al. (2004). Association of the DTNBP1 locus with schizophrenia in a U.S. population. American Journal of Human Genetics, 75, 891898.CrossRefGoogle Scholar
Fuster, J. M. (2002). Frontal lobe and cognitive development. Journal of Neurocytology, 31, 373385.CrossRefGoogle ScholarPubMed
Gamett, D. C., Greene, T., Wagreich, A. R., Kim, H. H., Koland, J. G., & Cerione, R. A. (1995). Heregulin-stimulated signaling in rat pheochromocytoma cells. Evidence for ErbB3 interactions with Neu/ErbB2 and p85. Journal of Biological Chemistry, 270, 1902219027.CrossRefGoogle ScholarPubMed
Garver, D. L., Nair, T. R., Christensen, J. D., Holcomb, J. A., & Kingsbury, S. J. (2000). Brain and ventricle instability during psychotic episodes of the schizophrenias. Schizophrenia Research, 44, 1123.CrossRefGoogle ScholarPubMed
Gasperoni, T. L., Ekelund, J., Huttunen, M., Palmer, C. G., Tuulio-Henriksson, A., Lonnqvist, J., et al. (2003). Genetic linkage and association between chromosome 1q and working memory function in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 116, 816.CrossRefGoogle Scholar
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861863.CrossRefGoogle ScholarPubMed
Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., et al. (1996). Quantitative magnetic resonance imaging of human brain development: Ages 4–18. Cerebral Cortex, 6, 551560.CrossRefGoogle ScholarPubMed
Glantz, L. A., & Lewis, D. A. (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Archives of General Psychiatry, 57, 6573.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 81748179.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1994). Working memory dysfunction in schizophrenia. Journal of Neuropsychiatry and Clinical Neurosciences, 6, 348357.Google ScholarPubMed
Gourion, D., Goldberger, C., Leroy, S., Bourdel, M. C., Olie, J. P., & Krebs, M. O. (2005). Age at onset of schizophrenia: Interaction between brain-derived neurotrophic factor and dopamine D3 receptor gene variants. NeuroReport, 16, 14071410.CrossRefGoogle ScholarPubMed
Green, M. F. (1996). What are the functional consequences of neurocognitive deficits in schizophrenia? American Journal of Psychiatry, 153, 321330.Google ScholarPubMed
Green, M. F., Kern, R. S., Braff, D. L., & Mintz, J. (2000). Neurocognitive deficits and functional outcome in schizophrenia: Are we measuring the “right stuff”? Schizophrenia Bulletin, 26, 119136.CrossRefGoogle ScholarPubMed
Green, M. J., & Malhi, G. S. (2006). Neural mechanisms of the cognitive control of emotion. Acta Neuropsychiatrica, 18, 144153.CrossRefGoogle ScholarPubMed
Gruber, O., Falkai, P., Schneider-Axmann, T., Schwab, S. G., Wagner, M., & Maier, W. (in press). Neuregulin-1 haplotype HAP(ICE) is associated with lower hippocampal volumes in schizophrenic patients and in non-affected family members. Journal of Psychiatric Research.Google Scholar
Gur, R. E., Cowell, P., Turetsky, B. I., Gallacher, F., Cannon, T., Bilker, W., et al. (1998). A follow-up magnetic resonance imaging study of schizophrenia. Relationship of neuroanatomical changes to clinical and neurobehavioral measures. Archives of General Psychiatry, 55, 145152.CrossRefGoogle ScholarPubMed
Gur, R. E., Loughead, J., Kohler, C. G., Elliott, M. A., Lesko, K., Ruparel, K., et al. (2007). Limbic activation associated with misidentification of fearful faces and flat affect in schizophrenia. Archives of General Psychiatry, 64, 13561366.CrossRefGoogle ScholarPubMed
Gur, R. E., Turetsky, B. I., Cowell, P. E., Finkelman, C., Maany, V., Grossman, R. I., et al. (2000). Temporolimbic volume reductions in schizophrenia. Archives of General Psychiatry, 57, 769775.CrossRefGoogle ScholarPubMed
Hall, J., Whalley, H. C., Job, D. E., Baig, B. J., McIntosh, A. M., Evans, K. L., et al. (2006). A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nature Neuroscience, 9, 14771478.CrossRefGoogle ScholarPubMed
Hao, Y., Liu, Z., Jiang, T., Gong, G., Liu, H., Tan, L., et al. (2006). White matter integrity of the whole brain is disrupted in first-episode schizophrenia. NeuroReport, 17, 2326.CrossRefGoogle ScholarPubMed
Hariri, A. R., Bookheimer, S. Y., & Mazziotta, J. C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. NeuroReport, 11, 4348.CrossRefGoogle ScholarPubMed
Hariri, A. R., Mattay, V. S., Tessitore, A., Fera, F., & Weinberger, D. R. (2003). Neocortical modulation of the amygdala response to fearful stimuli. Biological Psychiatry, 53, 494501.CrossRefGoogle ScholarPubMed
Harrison, P. J., & Law, A. J. (2006). Neuregulin 1 and schizophrenia: Genetics, gene expression, and neurobiology. Biological Psychiatry, 60, 132140.CrossRefGoogle ScholarPubMed
Harrison, P. J., & Weinberger, D. R. (2005). Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence. Molecular Psychiatry, 10, 4068.CrossRefGoogle ScholarPubMed
Hashimoto, R., Numakawa, T., Ohnishi, T., Kumamaru, E., Yagasaki, Y., Ishimoto, T., et al. (2006). Impact of the DISC1 Ser704Cys polymorphism on risk for major depression, brain morphology and ERK signaling. Human Molecular Genetics, 15, 30243033.CrossRefGoogle ScholarPubMed
Hennah, W., Tuulio-Henriksson, A., Paunio, T., Ekelund, J., Varilo, T., Partonen, T., et al. (2005). A haplotype within the DISC1 gene is associated with visual memory functions in families with a high density of schizophrenia. Molecular Psychiatry, 10, 10971103.CrossRefGoogle ScholarPubMed
Hennah, W., Varilo, T., Kestila, M., Paunio, T., Arajarvi, R., Haukka, J., et al. (2003). Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Human Molecular Genetics, 12, 31513159.CrossRefGoogle ScholarPubMed
Highley, J. R., Walker, M. A., Esiri, M., Crow, T. J., & Harrison, P. J. (2002). Asymmetry of the uncinate fasciculus: A post-mortem study of normal subjects and patients with schizophrenia. Cerebral Cortex, 12, 12181224.CrossRefGoogle ScholarPubMed
Hikida, T., Jaaro-Peled, H., Seshadri, S., Oishi, K., Hookway, C., Kong, S., et al. (2007). Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proceedings of the National Academy of Sciences of the United States of America, 104, 1450114506.CrossRefGoogle ScholarPubMed
Ho, B. C., Andreasen, N. C., Dawson, J. D., & Wassink, T. H. (2007). Association between brain-derived neurotrophic factor Val66Met gene polymorphism and progressive brain volume changes in schizophrenia. American Journal of Psychiatry, 164, 18901899.CrossRefGoogle ScholarPubMed
Ho, B. C., Andreasen, N. C., Nopoulos, P., Arndt, S., Magnotta, V., & Flaum, M. (2003). Progressive structural brain abnormalities and their relationship to clinical outcome: A longitudinal magnetic resonance imaging study early in schizophrenia. Archives of General Psychiatry, 60, 585594.CrossRefGoogle ScholarPubMed
Ho, B. C., Milev, P., O'Leary, D. S., Librant, A., Andreasen, N. C., & Wassink, T. H. (2006). Cognitive and magnetic resonance imaging brain morphometric correlates of brain-derived neurotrophic factor Val66Met gene polymorphism in patients with schizophrenia and healthy volunteers. Archives of General Psychiatry, 63, 731740.CrossRefGoogle ScholarPubMed
Hoffman, R. E., & McGlashan, T. H. (1997). Synaptic elimination, neurodevelopment, and the mechanism of hallucinated “voices” in schizophrenia. American Journal of Psychiatry, 154, 16831689.CrossRefGoogle Scholar
Holland, P. C., & Gallagher, M. (1999). Amygdala circuitry in attentional and representational processes. Trends in Cognitive Sciences, 3, 6573.CrossRefGoogle ScholarPubMed
Holland, P. C., & Gallagher, M. (2004). Amygdala-frontal interactions and reward expectancy. Current Opinion in Neurobiology, 14, 148155.CrossRefGoogle ScholarPubMed
Hooker, C., & Park, S. (2002). Emotion processing and its relationship to social functioning in schizophrenia patients. Psychiatry Research, 112, 4150.CrossRefGoogle ScholarPubMed
Horan, W. P., Subotnik, K. L., Snyder, K. S., & Nuechterlein, K. H. (2006). Do recent-onset schizophrenia patients experience a “social network crisis”? Psychiatry, 69, 115129.CrossRefGoogle ScholarPubMed
Hovatta, I., Lichtermann, D., Juvonen, H., Suvisaari, J., Terwilliger, J. D., Arajarvi, R., et al. (1998). Linkage analysis of putative schizophrenia gene candidate regions on chromosomes 3p, 5q, 6p, 8p, 20p and 22q in a population-based sampled Finnish family set. Molecular Psychiatry, 3, 452457.CrossRefGoogle Scholar
Hulshoff Pol, H. E., Schnack, H. G., Bertens, M. G., van Haren, N. E., van der Tweel, I., Staal, W. G., et al. (2002). Volume changes in gray matter in patients with schizophrenia. American Journal of Psychiatry, 159, 244250.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex—Developmental changes and effects of aging. Brain Research, 163, 195205.Google ScholarPubMed
Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517527.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167178.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Hwu, H. G., Lin, M. W., Lee, P. C., Lee, S. F., Ou-Yang, W. C., & Liu, C. M. (2000). Evaluation of linkage of markers on chromosome 6p with schizophrenia in Taiwanese families. American Journal of Medical Genetics, 96, 7478.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Hyde, T. M., Ziegler, J. C., & Weinberger, D. R. (1992). Psychiatric disturbances in metachromatic leukodystrophy. Insights into the neurobiology of psychosis. Archives of Neurology, 49, 401406.CrossRefGoogle ScholarPubMed
Ingi, T., & Aoki, Y. (2002). Expression of RGS2, RGS4 and RGS7 in the developing postnatal brain. European Journal of Neuroscience, 15, 929936.CrossRefGoogle ScholarPubMed
Job, D. E., Whalley, H. C., Johnstone, E. C., & Lawrie, S. M. (2005). Grey matter changes over time in high risk subjects developing schizophrenia. NeuroImage, 25, 10231030.CrossRefGoogle ScholarPubMed
Johnstone, E. C., Abukmeil, S. S., Byrne, M., Clafferty, R., Grant, E., Hodges, A., et al. (2000). Edinburgh high risk study—Findings after four years: Demographic, attainment and psychopathological issues. Schizophrenia Research, 46, 115.CrossRefGoogle ScholarPubMed
Jones, D. K., Catani, M., Pierpaoli, C., Reeves, S. J., Shergill, S. S., O'Sullivan, M., et al. (2006). Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia. Human Brain Mapping, 27, 230238.CrossRefGoogle ScholarPubMed
Jones, P., Rodgers, B., Murray, R., & Marmot, M. (1994). Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet, 344, 13981402.CrossRefGoogle ScholarPubMed
Kamiya, A., Kubo, K., Tomoda, T., Takaki, M., Youn, R., Ozeki, Y., et al. (2005). A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nature Cell Biology, 7, 11671178.CrossRefGoogle ScholarPubMed
Kanaan, R. A., Shergill, S. S., Barker, G. J., Catani, M., Ng, V. W., Howard, R., et al. (2006). Tract-specific anisotropy measurements in diffusion tensor imaging. Psychiatry Research, 146, 7382.CrossRefGoogle ScholarPubMed
Kanakry, C. G., Li, Z., Nakai, Y., Sei, Y., & Weinberger, D. R. (2007). Neuregulin-1 regulates cell adhesion via an ErbB2/phosphoinositide-3 kinase/Akt-dependent pathway: Potential implications for schizophrenia and cancer. PLoS ONE, 2, e1369.CrossRefGoogle ScholarPubMed
Kanazawa, T., Glatt, S. J., Tsutsumi, A., Kikuyama, H., Koh, J., Yoneda, H., et al. (2007). Schizophrenia is not associated with the functional candidate gene ERBB3: Results from a case–control study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 144, 113116.CrossRefGoogle Scholar
Karlsgodt, K. H., Niendam, T. A., van Erp, T. G., Poldrack, R. A., Nuechterlein, K. H., & Cannon, T. D. (2008). White matter integrity and prediction of social and role functioning in subjects at ultra-high risk for psychosis. Unpublished manuscript.Google Scholar
Karlsgodt, K. H., van Erp, T. G., Poldrack, R. A., Bearden, C. E., Nuechterlein, K. H., & Cannon, T. D. (2008). Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biological Psychiatry, 63, 512518.CrossRefGoogle ScholarPubMed
Kasai, K., Shenton, M. E., Salisbury, D. F., Hirayasu, Y., Lee, C. U., Ciszewski, A. A., et al. (2003). Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. American Journal of Psychiatry, 160, 156164.CrossRefGoogle ScholarPubMed
Kasai, K., Shenton, M. E., Salisbury, D. F., Hirayasu, Y., Onitsuka, T., Spencer, M. H., et al. (2003). Progressive decrease of left Heschl gyrus and planum temporale gray matter volume in first-episode schizophrenia: A longitudinal magnetic resonance imaging study. Archives of General Psychiatry, 60, 766775.CrossRefGoogle ScholarPubMed
Keightley, M. L., Winocur, G., Graham, S. J., Mayberg, H. S., Hevenor, S. J., & Grady, C. L. (2003). An fMRI study investigating cognitive modulation of brain regions associated with emotional processing of visual stimuli. Neuropsychologia, 41, 585596.CrossRefGoogle ScholarPubMed
Kirkpatrick, B., Conley, R. C., Kakoyannis, A., Reep, R. L., & Roberts, R. C. (1999). Interstitial cells of the white matter in the inferior parietal cortex in schizophrenia: An unbiased cell-counting study. Synapse, 34, 95102.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Kirkpatrick, B., Messias, N. C., Conley, R. R., & Roberts, R. C. (2003). Interstitial cells of the white matter in the dorsolateral prefrontal cortex in deficit and nondeficit schizophrenia. Journal of Nervous and Mental Disease, 191, 563567.CrossRefGoogle ScholarPubMed
Kitamura, H., Matsuzawa, H., Shioiri, T., Someya, T., Kwee, I. L., & Nakada, T. (2005). Diffusion tensor analysis in chronic schizophrenia. A preliminary study on a high-field (3.0T) system. European Archives of Psychiatry and Clinical Neuroscience, 255, 313318.CrossRefGoogle Scholar
Klingberg, T. (2006). Development of a superior frontal-intraparietal network for visuo–spatial working memory. Neuropsychologia, 44, 21712177.CrossRefGoogle Scholar
Klingberg, T., Vaidya, C. J., Gabrieli, J. D., Moseley, M. E., & Hedehus, M. (1999). Myelination and organization of the frontal white matter in children: A diffusion tensor MRI study. NeuroReport, 10, 28172821.CrossRefGoogle ScholarPubMed
Kohler, C. G. B. A. R. (2004). Recognition of facial emotions in schizophrenia. Current Opinion in Psychiatry, 17, 8186.CrossRefGoogle Scholar
Kosaka, H., Omori, M., Murata, T., Iidaka, T., Yamada, H., Okada, T., et al. (2002). Differential amygdala response during facial recognition in patients with schizophrenia: An fMRI study. Schizophrenia Research, 57, 8795.CrossRefGoogle ScholarPubMed
Krasnegor, N. A., Lyon, G. R., & Goldman-Rakic, P. S. (1997). Development of the prefrontal cortex: Evolution, neurobiology, and behavior. Baltimore, MD: Paul H. Brookes.Google Scholar
Kring, A. M., Kerr, S. L., Smith, D. A., & Neale, J. M. (1993). Flat affect in schizophrenia does not reflect diminished subjective experience of emotion. Journal of Abnormal Psychology, 102, 507517.CrossRefGoogle Scholar
Kubicki, M., Westin, C., Maier, S., Frumin, M., Nestor, P. G., Salisbury, D., et al. (2002). Uncinate fasciculus findings in schizophrenia: A magnetic resonance diffusion tensor imaging study. American Journal of Psychiatry, 159, 813820.CrossRefGoogle ScholarPubMed
Kubicki, M., Westin, C., Nestor, P. G., Wible, C. G., Frumin, M., Maier, S. E., et al. (2003). Cingulate fasiculus integrity disruption in schizophrenia: A magnetic resonance diffusion tensor imaging study. Biological Psychiatry, 54, 11711180.CrossRefGoogle Scholar
Kumra, S., Ashtari, M., McMeniman, M., Vogel, J., Augustin, R., Becker, D. E., et al. (2004). Reduced frontal white matter integrity in early-onset schizophrenia: A preliminary study. Biological Psychiatry, 55, 11381145.CrossRefGoogle ScholarPubMed
Kvajo, M., McKellar, H., Arguello, P. A., Drew, L. J., Moore, H., MacDermott, A. B., et al. (2008). A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proceedings of the National Academy of Sciences of the United States of America, 105, 70767081.CrossRefGoogle ScholarPubMed
Kyriakopoulos, M., Vyas, N. S., Barker, G. J., Chitnis, X. A., & Frangou, S. (2008). A diffusion tensor imaging study of white matter in early-onset schizophrenia. Biological Psychiatry, 63, 519523.CrossRefGoogle ScholarPubMed
Lane, H. Y., Liu, Y. C., Huang, C. L., Chang, Y. C., Wu, P. L., Huang, C. H., et al. (2008). RGS4 polymorphisms predict clinical manifestations and responses to risperidone treatment in patients with schizophrenia. Journal of Clinical Psychopharmacology, 28, 6468.CrossRefGoogle ScholarPubMed
Lane, R. D., Reiman, E. M., Bradley, M. M., Lang, P. J., Ahern, G. L., Davidson, R. J., et al. (1997). Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia, 35, 14371444.CrossRefGoogle ScholarPubMed
Lang, U. E., Puls, I., Muller, D. J., Strutz-Seebohm, N., & Gallinat, J. (2007). Molecular mechanisms of schizophrenia. Cellular Physiology and Biochemistry, 20, 687702.CrossRefGoogle ScholarPubMed
Lawrie, S. M., & Abukmeil, S. S. (1998). Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. British Journal of Psychiatry, 172, 110120.CrossRefGoogle ScholarPubMed
Lazarus, R. S. (1991). Cognition and motivation in emotion. American Psychologist, 46, 352367.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1989). Cognitive–emotional interactions in the brain. Cognition & Emotion, 3, 267289.CrossRefGoogle Scholar
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155184.CrossRefGoogle ScholarPubMed
Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: A meta-analysis. Journal of Abnormal Psychology, 114, 599611.CrossRefGoogle ScholarPubMed
Lee, K. H., Farrow, T. F., Spence, S. A., & Woodruff, P. W. (2004). Social cognition, brain networks and schizophrenia. Psychological Medicine, 34, 391400.CrossRefGoogle ScholarPubMed
Lewis, D. A. (2002). The human brain revisited: Opportunities and challenges in postmortem studies of psychiatric disorders. Neuropsychopharmacology, 26, 143154.CrossRefGoogle ScholarPubMed
Li, W., Zhang, Q., Oiso, N., Novak, E. K., Gautam, R., O'Brien, E. P., et al. (2003). Hermansky–Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nature Genetics, 35, 8489.CrossRefGoogle ScholarPubMed
Li, W., Zhou, Y., Jentsch, J. D., Brown, R. A., Tian, X., Ehninger, D., et al. (2007). Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proceedings of the National Academy of Sciences of the United States of America, 104, 1828018285.CrossRefGoogle ScholarPubMed
Lieberman, J. A., Tollefson, G. D., Charles, C., Zipursky, R., Sharma, T., Kahn, R. S., et al. (2005). Antipsychotic drug effects on brain morphology in first-episode psychosis. Archives of General Psychiatry, 62, 361370.CrossRefGoogle ScholarPubMed
Lieberman, M. D., Eisenberger, N. I., Crockett, M. J., Tom, S. M., Pfeifer, J. H., & Way, B. M. (2007). Putting feelings into words: Affect labeling disrupts amygdala activity in response to affective stimuli. Psychological Science, 18, 421428.CrossRefGoogle ScholarPubMed
Lim, K. O., Ardekani, B. A., Nierenberg, J., Butler, P. D., Javitt, D. C., & Hoptman, M. J. (2006). Voxelwise correlational analyses of white matter integrity in multiple cognitive domains in schizophrenia. American Journal of Psychiatry, 163, 20082010.CrossRefGoogle ScholarPubMed
Lim, K. O., Hedehus, M., Moseley, M., de Crespigny, A., Sullivan, E. V., & Pfefferbaum, A. (1999). Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Archives of General Psychiatry, 56, 367374.CrossRefGoogle ScholarPubMed
Liu, Y., Ford, B., Mann, M. A., & Fischbach, G. D. (2001). Neuregulins increase alpha7 nicotinic acetylcholine receptors and enhance excitatory synaptic transmission in GABAergic interneurons of the hippocampus. Journal of Neuroscience, 21, 56605669.CrossRefGoogle ScholarPubMed
Marchionni, M. A., Goodearl, A. D., Chen, M. S., Bermingham-McDonogh, O., Kirk, C., Hendricks, M., et al. (1993). Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature, 362, 312318.CrossRefGoogle ScholarPubMed
Mathalon, D. H., Sullivan, E. V., Lim, K. O., & Pfefferbaum, A. (2001). Progressive brain volume changes and the clinical course of schizophrenia in men: A longitudinal magnetic resonance imaging study. Archives of General Psychiatry, 58, 148157.CrossRefGoogle Scholar
McDonald, C., & Murray, R. M. (2000). Early and late environmental risk factors for schizophrenia. Brain Research. Brain Research Reviews, 31, 130137.CrossRefGoogle ScholarPubMed
McGlashan, T. H., & Hoffman, R. E. (2000). Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Archives of General Psychiatry, 57, 637648.CrossRefGoogle ScholarPubMed
McGorry, P. D., Yung, A. R., & Phillips, L. J. (2003). The “close-in” or ultra high-risk model: A safe and effective strategy for research and clinical intervention in prepsychotic mental disorder. Schizophrenia Bulletin, 29, 771790.CrossRefGoogle Scholar
McIntosh, A. M., Baig, B. J., Hall, J., Job, D., Whalley, H. C., Lymer, G. K., et al. (2007). Relationship of catechol-O-methyltransferase variants to brain structure and function in a population at high risk of psychosis. Biological Psychiatry, 61, 11271134.CrossRefGoogle Scholar
McIntosh, A. M., Moorhead, T. W., Job, D., Lymer, G. K., Munoz Maniega, S., McKirdy, J., et al. (2007). The effects of a neuregulin 1 variant on white matter density and integrity. Molecular Psychiatry [E-pub ahead of print].Google ScholarPubMed
Mednick, S. A., Machon, R. A., Huttunen, M. O., & Bonett, D. (1988). Adult schizophrenia following prenatal exposure to an influenza epidemic. Archives of General Psychiatry, 45, 189192.CrossRefGoogle Scholar
Millar, J. K., Christie, S., & Porteous, D. J. (2003). Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochemical and Biophysical Research Communications, 311, 10191025.CrossRefGoogle Scholar
Millar, J. K., Wilson-Annan, J. C., Anderson, S., Christie, S., Taylor, M. S., Semple, C. A., et al. (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human Molecular Genetics, 9, 14151423.CrossRefGoogle ScholarPubMed
Minami, T., Nobuhara, K., Okugawa, G., Takase, K., Yoshida, T., Sawada, S., et al. (2003). Diffusion tensor magnetic resonance imaging of disruption of regional white matter in schizophrenia. Neuropsychobiology, 47, 141145.CrossRefGoogle ScholarPubMed
Monk, C. S., Webb, S. J., & Nelson, C. A. (2001). Prenatal neurobiological development: Molecular mechanisms and anatomical change. Developmental Neuropsychology, 19, 211236.CrossRefGoogle ScholarPubMed
Morris, D. W., Rodgers, A., McGhee, K. A., Schwaiger, S., Scully, P., Quinn, J., et al. (2004). Confirming RGS4 as a susceptibility gene for schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 125, 5053.CrossRefGoogle Scholar
Morris, J. A., Kandpal, G., Ma, L., & Austin, C. P. (2003). DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: Regulation and loss of interaction with mutation. Human Molecular Genetics, 12, 15911608.CrossRefGoogle ScholarPubMed
Morriss, M. C., Zimmerman, R. A., Bilaniuk, L. T., Hunter, J. V., & Haselgrove, J. C. (1999). Changes in brain water diffusion during childhood. Neuroradiology, 41, 929934.CrossRefGoogle ScholarPubMed
Mueser, K. T., & Bond, G. (2000). Psychosocial treatment approaches for schizophrenia. Current Opinion in Psychiatry, 13, 2735.CrossRefGoogle Scholar
Mueser, K. T., & McGurk, S. R. (2004). Schizophrenia. Lancet, 363, 20632072.CrossRefGoogle ScholarPubMed
Mukherjee, P., Miller, J. H., Shimony, J. S., Philip, J. V., Nehra, D., Snyder, A. Z., et al. (2002). Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR. American Journal of Neuroradiology, 23, 14451456.Google ScholarPubMed
Murotani, T., Ishizuka, T., Hattori, S., Hashimoto, R., Matsuzaki, S., & Yamatodani, A. (2007). High dopamine turnover in the brains of Sandy mice. Neuroscience Letters, 421, 4751.CrossRefGoogle ScholarPubMed
Murray, R. M., Sham, P., Van Os, J., Zanelli, J., Cannon, M., & McDonald, C. (2004). A developmental model for similarities and dissimilarities between schizophrenia and bipolar disorder. Schizophrenia Research, 71, 405416.CrossRefGoogle ScholarPubMed
Nair, T. R., Christensen, J. D., Kingsbury, S. J., Kumar, N. G., Terry, W. M., & Garver, D. L. (1997). Progression of cerebroventricular enlargement and the subtyping of schizophrenia. Psychiatry Research—Neuroimaging, 74, 141150.CrossRefGoogle ScholarPubMed
Nakamura, M., McCarley, R. W., Kubicki, M., Dickey, C. C., Niznikiewicz, M. A., Voglmaier, M. M., et al. (2005). Fronto-temporal disconnectivity in schizotypal personality disorder: A diffusion tensor imaging study. Biological Psychiatry, 58, 468478.CrossRefGoogle ScholarPubMed
Nakamura, M., Nestor, P. G., McCarley, R. W., Levitt, J. J., Hsu, L., Kawashima, T., et al. (2007). Altered orbitofrontal sulcogyral pattern in schizophrenia. Brain, 130(Pt. 3), 693707.CrossRefGoogle ScholarPubMed
Nakamura, M., Salisbury, D. F., Hirayasu, Y., Bouix, S., Pohl, K. M., Yoshida, T., et al. (2007). Neocortical gray matter volume in first-episode schizophrenia and first-episode affective psychosis: A cross-sectional and longitudinal MRI study. Biological Psychiatry, 62, 773783.CrossRefGoogle ScholarPubMed
Nelson, M. D., Saykin, A. J., Flashman, L. A., & Riordan, H. J. (1998). Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: A meta-analytic study. Archives of General Psychiatry, 55, 433440.CrossRefGoogle ScholarPubMed
Nemoto, K., Ohnishi, T., Mori, T., Moriguchi, Y., Hashimoto, R., Asada, T., et al. (2006). The Val66Met polymorphism of the brain-derived neurotrophic factor gene affects age-related brain morphology. Neuroscience Letters, 397, 2529.CrossRefGoogle ScholarPubMed
Nestor, P. G., Kubicki, M., Gurrera, R. J., Niznikiewicz, M., Frumin, M., McCarley, R. W., et al. (2004). Neuropsychological correlates of diffusion tensor imaging in schizophrenia. Neuropsychology, 18, 629637.CrossRefGoogle ScholarPubMed
Nestor, P. G., Kubicki, M., Kuroki, N., Gurrera, R. J., Niznikiewicz, M., Shenton, M. E., et al. (2007). Episodic memory and neuroimaging of hippocampus and fornix in chronic schizophrenia. Psychiatry Research, 155, 2128.CrossRefGoogle ScholarPubMed
Numakawa, T., Yagasaki, Y., Ishimoto, T., Okada, T., Suzuki, T., Iwata, N., et al. (2004). Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Human Molecular Genetics, 13, 26992708.CrossRefGoogle ScholarPubMed
O'Tuathaigh, C. M., Babovic, D., O'Meara, G., Clifford, J. J., Croke, D. T., & Waddington, J. L. (2007). Susceptibility genes for schizophrenia: Characterisation of mutant mouse models at the level of phenotypic behaviour. Neuroscience and Biobehavioral Reviews, 31, 6078.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. (2002). Rethinking feelings: An FMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14, 12151229.CrossRefGoogle ScholarPubMed
Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9, 242249.CrossRefGoogle ScholarPubMed
Okugawa, G., Sedvall, G., & Agartz, I. (2002). Reduced grey and white matter volumes in the temporal lobe of male patients with chronic schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 252, 120123.CrossRefGoogle ScholarPubMed
Ozeki, Y., Tomoda, T., Kleiderlein, J., Kamiya, A., Bord, L., Fujii, K., et al. (2003). Disrupted-in-schizophrenia-1 (DISC-1): Mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proceedings of the National Academy of Sciences of the United States of America, 100, 289294.CrossRefGoogle ScholarPubMed
Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., et al. (2003). Neuroanatomical abnormalities before and after onset of psychosis: A cross-sectional and longitudinal MRI comparison. Lancet, 361, 281288.CrossRefGoogle ScholarPubMed
Pantelis, C., Yucel, M., Wood, S. J., Velakoulis, D., Sun, D., Berger, G., et al. (2005). Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophrenia Bulletin, 31, 672696.CrossRefGoogle ScholarPubMed
Patterson, P. H. (1992). Process outgrowth and the specificity of connections. In Hall, Z. W. (Ed.), An introduction to molecular neurobiology. Sunderland, MA: Sinauer Associates.Google Scholar
Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342345.CrossRefGoogle ScholarPubMed
Paus, T., Collins, D. L., Evans, A. C., Leonard, G., Pike, B., & Zijdenbos, A. (2001). Maturation of white matter in the human brain: A review of magnetic resonance studies. Brain Research Bulletin, 54, 255266.CrossRefGoogle Scholar
Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., et al. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283, 19081911.CrossRefGoogle ScholarPubMed
Peled, S., Gudbjartsson, H., Westin, C., Kikinis, R., & Jolesz, F. (1998). Magnetic resonance imaging shows orientation and asymmetry of white matter fiber tracts. Brain Research, 780, 2733.CrossRefGoogle ScholarPubMed
Penn, D. L., Corrigan, P. W., Bentall, R. P., Racenstein, J. M., & Newman, L. (1997). Social cognition in schizophrenia. Psychological Bulletin, 121, 114132.CrossRefGoogle ScholarPubMed
Petrides, M., & Pandya, D. N. (2002). Association pathways of the prefrontal cortex and functional observations. In Stuss, D. T. & Knight, R. T. (Eds.), Principles of frontal lobe function. New York: Oxford University Press.Google Scholar
Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51, 874887.CrossRefGoogle ScholarPubMed
Phillips, M. L., Drevets, W. C., Rauch, S. L., & Lane, R. (2003). Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biological Psychiatry, 54, 504514.CrossRefGoogle ScholarPubMed
Pinkham, A. E., Penn, D. L., Perkins, D. O., Graham, K. A., & Siegel, M. (2007). Emotion perception and social skill over the course of psychosis: A comparison of individuals “at-risk” for psychosis and individuals with early and chronic schizophrenia spectrum illness. Cognitive Neuropsychiatry, 12, 198212.CrossRefGoogle ScholarPubMed
Pletnikov, M. V., Ayhan, Y., Nikolskaia, O., Xu, Y., Ovanesov, M. V., Huang, H., et al. (2008). Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Molecular Psychiatry, 13, 173186, 115.CrossRefGoogle ScholarPubMed
Posner, M. I. (2001). Emotion and temperament. Developmental Science, 4, 313329.Google Scholar
Posner, M. I., & Rothbart, M. K. (1998). Attention, self-regulation and consciousness. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353, 19151927.Google ScholarPubMed
Price, G., Bagary, M. S., Cercignani, M., Altmann, D. R., & Ron, M. A. (2005). The corpus callosum in first episode schizophrenia: A diffusion tensor imaging study. Journal of Neurology, Neurosurgery and Psychiatry, 76, 585587.CrossRefGoogle ScholarPubMed
Price, G., Cercignani, M., Parker, G. J., Altmann, D. R., Barnes, T. R., Barker, G. J., et al. (2008). White matter tracts in first-episode psychosis: A DTI tractography study of the uncinate fasciculus. NeuroImage, 39, 949955.CrossRefGoogle ScholarPubMed
Rapoport, J. L., Giedd, J. N., Blumenthal, J., Hamburger, S., Jeffries, N., Fernandez, T., et al. (1999). Progressive cortical change during adolescence in childhood-onset schizophrenia. A longitudinal magnetic resonance imaging study. Archives of General Psychiatry, 56, 649654.CrossRefGoogle ScholarPubMed
Rosso, I. M., Cannon, T. D., Huttunen, T., Huttunen, M. O., Lonnqvist, J., & Gasperoni, T. L. (2000). Obstetric risk factors for early-onset schizophrenia in a Finnish birth cohort. American Journal of Psychiatry, 157, 801807.CrossRefGoogle Scholar
Roy, K., Murtie, J. C., El-Khodor, B. F., Edgar, N., Sardi, S. P., Hooks, B. M., et al. (2007). Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proceedings of the National Academy of Sciences of the United States of America, 104, 81318136.CrossRefGoogle ScholarPubMed
Sawamura, N., & Sawa, A. (2006). Disrupted-in-schizophrenia-1 (DISC1): A key susceptibility factor for major mental illnesses. Annals of the New York Academy of Sciences, 1086, 126133.CrossRefGoogle ScholarPubMed
Saxena, S., & Caroni, P. (2007). Mechanisms of axon degeneration: From development to disease. Progress in Neurobiology, 83, 174191.CrossRefGoogle ScholarPubMed
Sayers, S. L., Curran, P. J., & Mueser, K. T. (1996). Factor structure and construct validity of the Scale for the Assessment of Negative Symptoms. Psychological Assessment, 8, 269280.CrossRefGoogle Scholar
Saykin, A. J., Gur, R. C., Gur, R. E., Mozley, P. D., Mozley, L. H., Resnick, S. M., et al. (1991). Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Archives of General Psychiatry, 48, 618624.CrossRefGoogle ScholarPubMed
Schlosser, R. G., Nenadic, I., Wagner, G., Gullmar, D., von Consbruch, K., Kohler, S., et al. (2007). White matter abnormalities and brain activation in schizophrenia: A combined DTI and fMRI study. Schizophrenia Research, 89, 111.CrossRefGoogle ScholarPubMed
Schmidt-Kastner, R., van Os, J., Steinbusch, H. W. M., & Schmitz, C. (2006). Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia. Schizophrenia Research, 84, 253271.CrossRefGoogle ScholarPubMed
Schmithorst, V. J., Wilke, M., Dardzinski, B. J., & Holland, S. K. (2002). Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: A cross-sectional diffusion-tensor MR imaging study. Radiology, 222, 212218.CrossRefGoogle ScholarPubMed
Schurov, I. L., Handford, E. J., Brandon, N. J., & Whiting, P. J. (2004). Expression of disrupted in schizophrenia 1 (DISC1) protein in the adult and developing mouse brain indicates its role in neurodevelopment. Molecular Psychiatry, 9, 11001110.CrossRefGoogle ScholarPubMed
Schwab, S. G., Hallmayer, J., Albus, M., Lerer, B., Eckstein, G. N., Borrmann, M., et al. (2000). A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: Support for loci on chromosome 10p and 6. Molecular Psychiatry, 5, 638649.CrossRefGoogle ScholarPubMed
Schwab, S. G., Knapp, M., Mondabon, S., Hallmayer, J., Borrmann-Hassenbach, M., Albus, M., et al. (2003). Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. American Journal of Human Genetics, 72, 185190.CrossRefGoogle Scholar
Selemon, L. D., Rajkowska, G., & Goldman-Rakic, P. S. (1995). Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Archives of General Psychiatry, 52, 805820.CrossRefGoogle ScholarPubMed
Selemon, L. D., Rajkowska, G., & Goldman-Rakic, P. S. (1998). Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: Application of a three-dimensional, stereologic counting method. Journal of Comparative Neurology, 392, 402412.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Seligman, M. E., & Csikszentmihalyi, M. (2000). Positive psychology. An introduction. American Psychologist, 55, 514.CrossRefGoogle ScholarPubMed
Sergi, M. J., Rassovsky, Y., Widmark, C., Reist, C., Erhart, S., Braff, D. L., et al. (2007). Social cognition in schizophrenia: Relationships with neurocognition and negative symptoms. Schizophrenia Research, 90, 316324.CrossRefGoogle ScholarPubMed
Shenton, M. E., Dickey, C. C., Frumin, M., & McCarley, R. W. (2001). A review of MRI findings in schizophrenia. Schizophrenia Research, 49, 152.CrossRefGoogle ScholarPubMed
Shtasel, D. L., Gur, R. E., Gallacher, F., Heimberg, C., Cannon, T., & Gur, R. C. (1992). Phenomenology and functioning in first-episode schizophrenia. Schizophrenia Bulletin, 18, 449462.CrossRefGoogle ScholarPubMed
Silver, H., Feldman, P., Bilker, W., & Gur, R. C. (2003). Working memory deficit as a core neuropsychological dysfunction in schizophrenia. American Journal of Psychiatry, 160, 18091816.CrossRefGoogle ScholarPubMed
Smolka, M. N., Schumann, G., Wrase, J., Grusser, S. M., Flor, H., Mann, K., et al. (2005). Catechol-O-methyltransferase val158met genotype affects processing of emotional stimuli in the amygdala and prefrontal cortex. Journal of Neuroscience, 25, 836842.CrossRefGoogle ScholarPubMed
Snook, L., Paulson, L. A., Roy, D., Phillips, L., & Beaulieu, C. (2005). Diffusion tensor imaging of neurodevelopment in children and young adults. NeuroImage, 26, 11641173.CrossRefGoogle ScholarPubMed
So, H. C., Chen, R. Y., Chen, E. Y., Cheung, E. F., Li, T., & Sham, P. C. (2008). An association study of RGS4 polymorphisms with clinical phenotypes of schizophrenia in a Chinese population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147, 7785.CrossRefGoogle Scholar
Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6, 309315.CrossRefGoogle ScholarPubMed
Stefansson, H., Sarginson, J., Kong, A., Yates, P., Steinthorsdottir, V., Gudfinnsson, E., et al. (2003). Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. American Journal of Human Genetics, 72, 8387.CrossRefGoogle Scholar
Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., et al. (2002). Neuregulin 1 and susceptibility to schizophrenia. American Journal of Human Genetics, 71, 877892.CrossRefGoogle ScholarPubMed
Stefansson, H., Steinthorsdottir, V., Thorgeirsson, T. E., Gulcher, J. R., & Stefansson, K. (2004). Neuregulin 1 and schizophrenia. Annals of Medicine, 36, 6271.CrossRefGoogle ScholarPubMed
Straub, R. E., Jiang, Y., MacLean, C. J., Ma, Y., Webb, B. T., Myakishev, M. V., et al. (2002). Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. American Journal of Human Genetics, 71, 337348.CrossRefGoogle ScholarPubMed
Straub, R. E., Lipska, B. K., Egan, M. F., Goldberg, T. E., Callicott, J. H., Mayhew, M. B., et al. (2007). Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Molecular Psychiatry, 12, 854869.CrossRefGoogle ScholarPubMed
Straub, R. E., MacLean, C. J., O'Neill, F. A., Burke, J., Murphy, B., Duke, F., et al. (1995). A potential vulnerability locus for schizophrenia on chromosome 6p24-22: Evidence for genetic heterogeneity. Nature Genetics, 11, 287293.CrossRefGoogle ScholarPubMed
Sun, D., Phillips, L., Velakoulis, D., Yung, A., McGorry, P. D., Wood, S. J., et al. (in press). Progressive brain structural changes mapped as psychosis develops in ‘at risk’ individuals. Schizophrenia Research.Google Scholar
Sun, D., Stuart, G. W., Jenkinson, M., Wood, S. J., McGorry, P. D., Velakoulis, D., et al. (in press). Brain surface contraction mapped in first-episode schizophrenia: A longitudinal magnetic resonance imaging study. Molecular Psychiatry.Google Scholar
Sun, Z., Wang, F., Cui, L., Breeze, J., Du, X., Wang, X., et al. (2003). Abnormal anterior cingulum in patients with schizophrenia: A diffusion tensor imaging study. NeuroReport, 14, 18331836.CrossRefGoogle ScholarPubMed
Suzuki, M., Nohara, S., Hagino, H., Kurokawa, K., Yotsutsuji, T., Kawasaki, Y., et al. (2002). Regional changes in brain gray and white matter in patients with schizophrenia demonstrated with voxel-based analysis of MRI. Schizophrenia Research, 55, 4154.CrossRefGoogle ScholarPubMed
Szeszko, P. R., Ardekani, B. A., Ashtari, M., Kumra, S., Robinson, D. G., Sevy, S., et al. (2005). White matter abnormalities in first-episode schizophrenia or schizoaffective disorder: A diffusion tensor imaging study. American Journal of Psychiatry, 162, 602605.CrossRefGoogle ScholarPubMed
Szeszko, P. R., Lipsky, R., Mentschel, C., Robinson, D., Gunduz-Bruce, H., Sevy, S., et al. (2005). Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Molecular Psychiatry, 10, 631636.CrossRefGoogle ScholarPubMed
Szeszko, P. R., Robinson, D. G., Ashtari, M., Vogel, J., Betensky, J., Sevy, S., et al. (2008). Clinical and neuropsychological correlates of white matter abnormalities in recent onset schizophrenia. Neuropsychopharmacology, 33, 976984.CrossRefGoogle ScholarPubMed
Szeszko, P. R., Robinson, D. G., Sevy, S., Kumra, S., Rupp, C. I., Betensky, J. D., et al. (2007). Anterior cingulate grey-matter deficits and cannabis use in first-episode schizophrenia. British Journal of Psychiatry, 190, 230236.CrossRefGoogle ScholarPubMed
Tan, H. Y., Chen, Q., Sust, S., Buckholtz, J. W., Meyers, J. D., Egan, M. F., et al. (2007). Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function. Proceedings of the National Academy of Sciences of the United States of America, 104, 1253612541.CrossRefGoogle ScholarPubMed
Tan, W., Wang, Y., Gold, B., Chen, J., Dean, M., Harrison, P. J., et al. (2007). Molecular cloning of a brain-specific, developmentally regulated neuregulin 1 (NRG1) isoform and identification of a functional promoter variant associated with schizophrenia. Journal of Biological Chemistry, 282, 2434324351.CrossRefGoogle ScholarPubMed
Tang, J. X., Zhou, J., Fan, J. B., Li, X. W., Shi, Y. Y., Gu, N. F., et al. (2003). Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. Molecular Psychiatry, 8, 717718.CrossRefGoogle ScholarPubMed
Taylor, S. F., Phan, K. L., Britton, J. C., & Liberzon, I. (2005). Neural response to emotional salience in schizophrenia. Neuropsychopharmacology, 30, 984995.CrossRefGoogle ScholarPubMed
Taylor, W. D., Zuchner, S., McQuoid, D. R., Payne, M. E., MacFall, J. R., Steffens, D. C., et al. (2008). The brain-derived neurotrophic factor VAL66MET polymorphism and cerebral white matter hyperintensities in late-life depression. American Journal of Geriatric Psychiatry, 16, 263271.CrossRefGoogle ScholarPubMed
Taylor, W. D., Zuchner, S., Payne, M. E., Messer, D. F., Doty, T. J., MacFall, J. R., et al. (2007). The COMT Val158Met polymorphism and temporal lobe morphometry in healthy adults. Psychiatry Research, 155, 173177.CrossRefGoogle ScholarPubMed
Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald, D., Evans, A. C., & Toga, A. W. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404, 190193.CrossRefGoogle ScholarPubMed
Thompson, P. M., Hayashi, K. M., de Zubicaray, G., Janke, A. L., Rose, S. E., Semple, J., et al. (2003). Dynamics of gray matter loss in Alzheimer's disease. Journal of Neuroscience, 23, 9941005.CrossRefGoogle ScholarPubMed
Thompson, P. M., Vidal, C., Giedd, J. N., Gochman, P., Blumenthal, J., Nicolson, R., et al. (2001). Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 1165011655.CrossRefGoogle ScholarPubMed
Thomson, P. A., Wray, N. R., Millar, J. K., Evans, K. L., Hellard, S. L., Condie, A., et al. (2005). Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Molecular Psychiatry, 10, 657668, 616.CrossRefGoogle ScholarPubMed
Tosato, S., Ruggeri, M., Bonetto, C., Bertani, M., Marrella, G., Lasalvia, A., et al. (2007). Association study of dysbindin gene with clinical and outcome measures in a representative cohort of Italian schizophrenic patients. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 144B, 647659.CrossRefGoogle Scholar
Tunbridge, E. M., Harrison, P. J., & Weinberger, D. R. (2006). Catechol-O-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biological Psychiatry, 60, 141151.CrossRefGoogle ScholarPubMed
van Erp, T. G. M., Saleh, P. A., Rosso, I. M., Huttunen, M., Lonnqvist, J., Pirkola, T., et al. (2002). Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers. American Journal of Psychiatry, 159, 15141520.CrossRefGoogle ScholarPubMed
van Haren, N. E., Pol, H. E., Schnack, H. G., Cahn, W., Brans, R., Carati, I., et al. (2008). Progressive brain volume loss in schizophrenia over the course of the illness: Evidence of maturational abnormalities in early adulthood. Biological Psychiatry, 63, 106113.CrossRefGoogle ScholarPubMed
Vartanian, T., Fischbach, G., & Miller, R. (1999). Failure of spinal cord oligodendrocyte development in mice lacking neuregulin. Proceedings of the National Academy of Sciences of the United States of America, 96, 731735.CrossRefGoogle ScholarPubMed
Vaskovsky, A., Lupowitz, Z., Erlich, S., & Pinkas-Kramarski, R. (2000). ErbB-4 activation promotes neurite outgrowth in PC12 cells. Journal of Neurochemistry, 74, 979987.CrossRefGoogle ScholarPubMed
Veling, W., Mackenbach, J. P., van Os, J., & Hoek, H. W. (2008). Cannabis use and genetic predisposition for schizophrenia: A case-control study. Psychological Medicine, 16.Google ScholarPubMed
Villegas, R., Villegas, G. M., Longart, M., Hernandez, M., Maqueira, B., Buonanno, A., et al. (2000). Neuregulin found in cultured-sciatic nerve conditioned medium causes neuronal differentiation of PC12 cells. Brain Research, 852, 305318.CrossRefGoogle ScholarPubMed
Wang, F., Sun, Z., Cui, L., Du, X., Wang, X., Zhang, H., et al. (2004). Anterior cingulum abnormalities in male patients with schizophrenia determined through diffusion tensor imaging. American Journal of Psychiatry, 161, 573575.CrossRefGoogle ScholarPubMed
Wang, X., He, G., Gu, N., Yang, J., Tang, J., Chen, Q., et al. (2004). Association of G72/G30 with schizophrenia in the Chinese population. Biochemical and Biophysical Research Communications, 319, 12811286.CrossRefGoogle ScholarPubMed
Watanabe, Y., Fukui, N., Nunokawa, A., Muratake, T., Kaneko, N., Kitamura, H., et al. (2007). No association between the ERBB3 gene and schizophrenia in a Japanese population. Neuroscience Research, 57, 574578.CrossRefGoogle Scholar
Webb, S. J., Monk, C. S., & Nelson, C. A. (2001). Mechanisms of postnatal neurobiological development: Implications for human development. Developmental Neuropsychology, 19, 147171.CrossRefGoogle ScholarPubMed
Weinberger, D. R. (1995). From neuropathology to neurodevelopment. Lancet, 346, 552557.CrossRefGoogle ScholarPubMed
Weinberger, D. R., Aloia, M. S., Goldberg, T. E., & Berman, K. F. (1994). The frontal lobes and schizophrenia. Journal of Neuropsychiatry and Clinical Neurosciences, 6, 419427.Google ScholarPubMed
Weinberger, D. R., Berman, K. F., Suddath, R., & Torrey, E. F. (1992). Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: A magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. American Journal of Psychiatry, 149, 890897.Google ScholarPubMed
Whalen, P. J., Shin, L. M., McInerney, S. C., Fischer, H., Wright, C. I., & Rauch, S. L. (2001). A functional MRI study of human amygdala responses to facial expressions of fear versus anger. Emotion, 1, 7083.CrossRefGoogle ScholarPubMed
White, T., Kendi, A. T., Lehericy, S., Kendi, M., Karatekin, C., Guimaraes, A., et al. (2007). Disruption of hippocampal connectivity in children and adolescents with schizophrenia—A voxel-based diffusion tensor imaging study. Schizophrenia Research, 90, 302307.CrossRefGoogle ScholarPubMed
Williams, H. J., Owen, M. J., & O'Donovan, M. C. (2007). Is COMT a susceptibility gene for schizophrenia? Schizophrenia Bulletin, 33, 635641.CrossRefGoogle ScholarPubMed
Williams, L. M., Das, P., Liddell, B. J., Olivieri, G., Peduto, A. S., David, A. S., et al. (2007). Fronto-limbic and autonomic disjunctions to negative emotion distinguish schizophrenia subtypes. Psychiatry Research, 155, 2944.CrossRefGoogle ScholarPubMed
Williams, N. M., Preece, A., Spurlock, G., Norton, N., Williams, H. J., McCreadie, R. G., et al. (2004). Support for RGS4 as a susceptibility gene for schizophrenia. Biological Psychiatry, 55, 192195.CrossRefGoogle ScholarPubMed
Wright, I. C., Rabe-Hesketh, S., Woodruff, P. W., David, A. S., Murray, R. M., & Bullmore, E. T. (2000). Meta-analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry, 157, 1625.CrossRefGoogle ScholarPubMed
Yakovlev, P., & Lecours, A. (1967). Regional development of the brain in early life. Boston: Blackwell Scientific.Google Scholar
Yucel, M., Stuart, G. W., Maruff, P., Velakoulis, D., Crowe, S. F., Savage, G., et al. (2001). Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: An MRI morphometric study. Cerebral Cortex, 11, 1725.CrossRefGoogle ScholarPubMed
Zammit, S., Spurlock, G., Williams, H., Norton, N., Williams, N., O'Donovan, M. C., et al. (2007). Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: Interactions with tobacco and cannabis use. British Journal of Psychiatry, 191, 402407.CrossRefGoogle ScholarPubMed
Zhou, S. Y., Suzuki, M., Hagino, H., Takahashi, T., Kawasaki, Y., Nohara, S., et al. (2003). Decreased volume and increased asymmetry of the anterior limb of the internal capsule in patients with schizophrenia. Biological Psychiatry, 54, 427436.CrossRefGoogle ScholarPubMed
Zornberg, G. L., Buka, S. L., & Tsuang, M. T. (2000). The problem of obstetrical complications and schizophrenia. Schizophrenia Bulletin, 26, 249256.CrossRefGoogle ScholarPubMed