Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T04:10:09.444Z Has data issue: false hasContentIssue false

The development of emotion-related neural circuitry in health and psychopathology

Published online by Cambridge University Press:  07 October 2008

Christopher S. Monk*
Affiliation:
University of Michigan
*
Address correspondence and reprint requests to: Christopher S. Monk, Department of Psychology and the Center for Human Growth and Development, 2000 East Hall, 530 Church Street, University of Michigan, Ann Arbor, MI 48109-1043; E-mail: [email protected].

Abstract

Disturbances in the detection of, response to, and interpretation of emotion are common in many forms of psychopathology. The amygdala, striatum, and structures within the prefrontal cortex are highly involved in mediating these stages of emotion processing, and evidence indicates that these regions show structural and functional alterations in different types of psychopathology, including anxiety, depression, and autism spectrum disorders. However, we do not know how genes and the environment interact to alter development of these brain regions in ways that give rise to emotion-related psychopathology. This review discusses the current understanding of brain regions that are involved in emotional functioning, how they develop, and how they are altered in three forms of psychopathology: anxiety, depression, and autism spectrum disorders. Following this, a framework is described that may facilitate the integration of investigations of genetic variation and brain function with symptom and diagnostic measures. The framework involves three components: (a) a greater emphasis on simultaneously analyzing multiple levels (genes, brain function, behavior, symptoms, and diagnoses); (b) further integration of developmental considerations, including timing of environmental events, adaptations (or maladaptations), and disorder-related trajectories that guide some children toward atypical experiences; and (c) greater cross-talk between animal and human investigations to take advantage of biological measures that cannot be acquired in humans.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author.Google Scholar
Angold, A., Costello, E. J., & Erkanli, A. (1999). Comorbidity. Journal of Child Psychology and Psychiatry and Allied Disciplines, 40, 5787.CrossRefGoogle ScholarPubMed
Ashwin, C., Baron-Cohen, S., Wheelwright, S., O'Riordan, M., & Bullmore, E. T. (2007). Differential activation of the amygdala and the “social brain” during fearful face-processing in Asperger syndrome. Neuropsychologia, 45, 214.CrossRefGoogle ScholarPubMed
Aylward, E. H., Minshew, N. J., Goldstein, G., Honeycutt, N. A., Augustine, A. M., Yates, K. O., et al. (1999). MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology, 53, 21452150.CrossRefGoogle ScholarPubMed
Bachevalier, J., & Loveland, K. A. (2006). The orbitofrontal–amygdala circuit and self-regulation of social–emotional behavior in autism. Neuroscience and Biobehavioral Reviews, 30, 97117.CrossRefGoogle ScholarPubMed
Baird, A. A., Gruber, S. A., Fein, D. A., Maas, L. C., Steingard, R. J., Renshaw, P. F., et al. (1999). Functional magnetic resonance imaging of facial affect recognition in children and adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, 38, 195199.CrossRefGoogle ScholarPubMed
Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, A., et al. (2005). White matter development during childhood and adolescence: A cross-sectional diffusion tensor imaging study. Cerebral Cortex, 15, 18481854.CrossRefGoogle ScholarPubMed
Baumann, B., Danos, P., Krell, D., Diekmann, S., Leschinger, A., Stauch, R., et al. (1999). Reduced volume of limbic system-affiliated basal ganglia in mood disorders: Preliminary data from a postmortem study. Journal of Neuropsychiatry and Clinical Neurosciences, 11, 7178.CrossRefGoogle ScholarPubMed
Baxter, M. G., Parker, A., Lindner, C. C., Izquierdo, A. D., & Murray, E. A. (2000). Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. Journal of Neuroscience, 20, 43114319.CrossRefGoogle ScholarPubMed
Biederman, J., Rosenbaum, J. F., Bolduc-Murphy, E. A., Faraone, S. V., Chaloff, J., Hirshfeld, D. R., et al. (1993). A 3-year follow-up of children with and without behavioral inhibition. Journal of the American Academy of Child & Adolescent Psychiatry, 32, 814821.CrossRefGoogle ScholarPubMed
Birbaumer, N., Grodd, W., Diedrich, O., Klose, U., Erb, M., Lotze, M., et al. (1998). fMRI reveals amygdala activation to human faces in social phobics. NeuroReport, 9, 12231226.CrossRefGoogle ScholarPubMed
Bjork, J. M., Knutson, B., Fong, G. W., Caggiano, D. M., Bennett, S. M., & Hommer, D. W. (2004). Incentive-elicited brain activation in adolescents: Similarities and differences from young adults. Journal of Neuroscience, 24, 17931802.CrossRefGoogle ScholarPubMed
Boes, A. D., McCormick, L. M., Coryell, W. H., & Nopoulos, P. (2008). Rostral anterior cingulate cortex volume correlates with depressed mood in normal healthy children. Biological Psychiatry, 63, 391397.CrossRefGoogle ScholarPubMed
Bowley, M. P., Drevets, W. C., Ongur, D., & Price, J. L. (2002). Low glial numbers in the amygdala in major depressive disorder. Biological Psychiatry, 52, 404412.CrossRefGoogle ScholarPubMed
Bremner, J. D., Narayan, M., Anderson, E. R., Staib, L. H., Miller, H. L., & Charney, D. S. (2000). Hippocampal volume reduction in major depression. American Journal of Psychiatry, 157, 115117.CrossRefGoogle ScholarPubMed
Brown, T. A., & Barlow, D. H. (1992). Comorbidity among anxiety disorders: Implications for treatment and DSM-IV. Journal of Consulting and Clinical Psychology, 60, 835844.CrossRefGoogle ScholarPubMed
Brune, C. W., Kim, S. J., Salt, J., Leventhal, B. L., Lord, C., & Cook, E. H. Jr. (2006). 5-HTTLPR genotype-specific phenotype in children and adolescents with autism. American Journal of Psychiatry, 163, 21482156.CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Wu, J., DeLisi, L. E., Holcomb, H., Kessler, R., Johnson, J., et al. (1986). Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F]2-deoxyglucose in affective illness. Journal of Affective Disorders, 10, 137152.CrossRefGoogle ScholarPubMed
Butter, C. M., Mishkin, M., & Rosvold, H. E. (1963). Conditioning and extinction of a food-rewarded response after selective ablations of the frontal cortex in rhesus monkeys. Experimental Neurology, 7, 6575.CrossRefGoogle ScholarPubMed
Campeau, S., & Davis, M. (1995). Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. Journal of Neuroscience, 15, 23012311.CrossRefGoogle ScholarPubMed
Carmichael, S. T., & Price, J. L. (1995). Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. Journal of Comparative Neurology, 363, 615641.CrossRefGoogle ScholarPubMed
Cascio, C. J., Gerig, G., & Piven, J. (2007). Diffusion tensor imaging: Application to the study of the developing brain. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 213223.CrossRefGoogle Scholar
Casey, B. J., Cohen, J. D., Jezzard, P., Turner, R., Noll, D. C., Trainor, R. J., et al. (1995). Activation of prefrontal cortex in children during a nonspatial working memory task with functional MRI. NeuroImage, 2, 221229.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Cicchetti, D. (1984). The emergence of developmental psychopathology. Child Development, 55, 17.CrossRefGoogle ScholarPubMed
Cicchetti, D. (1990). A historical perspective on the discipline of developmental psychopathology. In Rolf, A. M. J., Cicchetti, D., Nuechterlein, K., & Weintraub, S. (Eds.), Risk and protective factors in the development of psychopathology (pp. 228). New York: Cambridge University Press.CrossRefGoogle Scholar
Cicchetti, D., & Blender, J. A. (2004). A multiple-levels-of-analysis approach to the study of developmental processes in maltreated children. Proceedings of the National Academy of Science of the United States of America, 101, 1732517326.CrossRefGoogle Scholar
Cicchetti, D., & Dawson, G. (2002). Multiple levels of analysis. Development and Psychopathology, 14, 417420.CrossRefGoogle ScholarPubMed
Cooney, R. E., Atlas, L. Y., Joormann, J., Eugene, F., & Gotlib, I. H. (2006). Amygdala activation in the processing of neutral faces in social anxiety disorder: Is neutral really neutral? Psychiatry Research, 148, 5559.CrossRefGoogle ScholarPubMed
Costello, E. J., Mustillo, S., Erkanli, A., Keeler, G., & Angold, A. (2003). Prevalence and development of psychiatric disorders in childhood and adolescence. Archives of General Psychiatry, 60, 837844.CrossRefGoogle ScholarPubMed
Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290, 337344.CrossRefGoogle ScholarPubMed
Courchesne, E., Pierce, K., Schumann, C. M., Redcay, E., Buckwalter, J. A., Kennedy, D. P., et al. (2007). Mapping early brain development in autism. Neuron, 56, 399413.CrossRefGoogle ScholarPubMed
Critchley, H. D., Daly, E. M., Bullmore, E. T., Williams, S. C., Van Amelsvoort, T., Robertson, D. M., et al. (2000). The functional neuroanatomy of social behaviour: Changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain, 123, 22032212.CrossRefGoogle ScholarPubMed
Dalton, K. M., Nacewicz, B. M., Johnstone, T., Schaefer, H. S., Gernsbacher, M. A., Goldsmith, H. H., et al. (2005). Gaze fixation and the neural circuitry of face processing in autism. Nature Neuroscience, 8, 519526.CrossRefGoogle ScholarPubMed
Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., et al. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9, 2830.CrossRefGoogle ScholarPubMed
Davies, S., Bishop, D., Manstead, A. S., & Tantam, D. (1994). Face perception in children with autism and Asperger's syndrome. Journal of Child Psychology and Psychiatry and Allied Disciplines, 35, 10331057.CrossRefGoogle ScholarPubMed
Davis, M. (1999). Functional neuroanatomy of anxiety and fear: A focus on the amygdala. In Charney, D. S. (Ed.), Neurobiology of mental illness. New York: Oxford University Press.Google Scholar
Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6, 1334.CrossRefGoogle ScholarPubMed
Dawson, G., Webb, S. J., Wijsman, E., Schellenberg, G., Estes, A., Munson, J., et al. (2005). Neurocognitive and electrophysiological evidence of altered face processing in parents of children with autism: Implications for a model of abnormal development of social brain circuitry in autism. Development and Psychopathology, 17, 679697.CrossRefGoogle Scholar
De Bellis, M. D., Casey, B. J., Dahl, R. E., Birmaher, B., Williamson, D. E., Thomas, K. M., et al. (2000). A pilot study of amygdala volumes in pediatric generalized anxiety disorder. Biological Psychiatry, 48, 5157.CrossRefGoogle ScholarPubMed
Delgado, M. R., Frank, R. H., & Phelps, E. A. (2005). Perceptions of moral character modulate the neural systems of reward during the trust game. Nature Neuroscience, 8, 16111618.CrossRefGoogle ScholarPubMed
Drevets, W. C. (1999). Prefrontal cortical–amygdalar metabolism in major depression. Annals of the New York Academy of Sciences, 877, 614637.CrossRefGoogle ScholarPubMed
Drevets, W. C., Price, J. L., Simpson, J. R. Jr., Todd, R. D., Reich, T., Vannier, M., et al. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386, 824827.CrossRefGoogle ScholarPubMed
Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., et al. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9, 18.CrossRefGoogle ScholarPubMed
Emery, N. J., Capitanio, J. P., Mason, W. A., Machado, C. J., Mendoza, S. P., & Amaral, D. G. (2001). The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 115, 515544.CrossRefGoogle ScholarPubMed
Ernst, M., Nelson, E. E., Jazbec, S., McClure, E. B., Monk, C. S., Leibenluft, E., et al. (2005). Amygdala and nucleus accumbens in response to receipt and omission of gains in adults and adolescents. NeuroImage, 25, 12791291.CrossRefGoogle ScholarPubMed
Ernst, M., Pine, D. S., & Hardin, M. (2006). Triadic model of the neurobiology of motivated behavior in adolescence. Psychological Medicine, 36, 299312.CrossRefGoogle ScholarPubMed
Eshel, N., Nelson, E. E., Blair, R. J., Pine, D. S., & Ernst, M. (2007). Neural substrates of choice selection in adults and adolescents: Development of the ventrolateral prefrontal and anterior cingulate cortices. Neuropsychologia, 45, 12701279.CrossRefGoogle ScholarPubMed
Fischer, H., Wright, C. I., Whalen, P. J., McInerney, S. C., Shin, L. M., & Rauch, S. L. (2003). Brain habituation during repeated exposure to fearful and neutral faces: A functional MRI study. Brain Research Bulletin, 59, 387392.CrossRefGoogle ScholarPubMed
Forbes, E. E., Christopher May, J., Siegle, G. J., Ladouceur, C. D., Ryan, N. D., Carter, C. S., et al. (2006). Reward-related decision-making in pediatric major depressive disorder: An fMRI study. Journal of Child Psychology and Psychiatry and Allied Disciplines, 47, 10311040.CrossRefGoogle ScholarPubMed
Forbes, E. E., & Dahl, R. E. (2005). Neural systems of positive affect: Relevance to understanding child and adolescent depression? Development and Psychopathology, 17, 827850.CrossRefGoogle ScholarPubMed
Fox, N. A., Nichols, K. E., Henderson, H. A., Rubin, K., Schmidt, L., Hamer, D., et al. (2005). Evidence for a gene–environment interaction in predicting behavioral inhibition in middle childhood. Psychological Science, 16, 921926.CrossRefGoogle ScholarPubMed
Frodl, T., Meisenzahl, E. M., Zetzsche, T., Born, C., Jager, M., Groll, C., et al. (2003). Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biological Psychiatry, 53, 338344.CrossRefGoogle ScholarPubMed
Gallagher, M., McMahan, R. W., & Schoenbaum, G. (1999). Orbitofrontal cortex and representation of incentive value in associative learning. Journal of Neuroscience, 19, 66106614.CrossRefGoogle ScholarPubMed
Galvan, A., Hare, T., Voss, H., Glover, G., & Casey, B. J. (2007). Risk-taking and the adolescent brain: Who is at risk? Developmental Science, 10, F8F14.CrossRefGoogle ScholarPubMed
Galvan, A., Hare, T. A., Parra, C. E., Penn, J., Voss, H., Glover, G., et al. (2006). Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. Journal of Neuroscience, 26, 68856892.CrossRefGoogle ScholarPubMed
Gewirtz, J. C., McNish, K. A., & Davis, M. (1998). Lesions of the bed nucleus of the stria terminalis block sensitization of the acoustic startle reflex produced by repeated stress, but not fear-potentiated startle. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 22, 625648.CrossRefGoogle Scholar
Giedd, J. N., Vaituzis, A. C., Hamburger, S. D., Lange, N., Rajapakse, J. C., Kaysen, D., et al. (1996). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: Ages 4–18 years. Journal of Comparative Neurology, 366, 223230.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Science of the United States of America, 101, 81748179.CrossRefGoogle ScholarPubMed
Grelotti, D. J., Klin, A. J., Gauthier, I., Skudlarski, P., Cohen, D. J., Gore, J. C., et al. (2005). fMRI activation of the fusiform gyrus and amygdala to cartoon characters but not to faces in a boy with autism. Neuropsychologia, 43, 373385.CrossRefGoogle ScholarPubMed
Gross, C., & Hen, R. (2004). The developmental origins of anxiety. Nature Review of Neuroscience, 5, 545552.CrossRefGoogle ScholarPubMed
Gross, C., Zhuang, X., Stark, K., Ramboz, S., Oosting, R., Kirby, L., et al. (2002). Serotonin 1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature, 416, 396400.CrossRefGoogle Scholar
Guyer, A. E., Monk, C. S., McClure, E. B., Nelson, E. E., Roberson-Nay, R., Adler, A. D., et al. (2008). Developmental differences in amygdala response to fearful facial expressions. Journal of Cognitive Neuroscience, 20, 15651582.CrossRefGoogle Scholar
Guyer, A. E., Nelson, E. E., Perez-Edgar, K., Hardin, M. G., Roberson-Nay, R., Monk, C. S., et al. (2006). Striatal functional alteration in adolescents characterized by early childhood behavioral inhibition. Journal of Neuroscience, 26, 63996405.CrossRefGoogle ScholarPubMed
Hadjikhani, N., Joseph, R. M., Snyder, J., & Tager-Flusberg, H. (2006). Anatomical differences in the mirror neuron system and social cognition network in autism. Cerebral Cortex, 16, 12761282.CrossRefGoogle ScholarPubMed
Hardan, A. Y., Girgis, R. R., Lacerda, A. L., Yorbik, O., Kilpatrick, M., Keshavan, M. S., et al. (2006). Magnetic resonance imaging study of the orbitofrontal cortex in autism. Journal of Child Neurology, 21, 866871.CrossRefGoogle ScholarPubMed
Heisler, L. K., Chu, H. M., Brennan, T. J., Danao, J. A., Bajwa, P., Parsons, L. H., et al. (1998). Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proceedings of the National Academy of Science of the United States of America, 95, 1504915054.CrossRefGoogle ScholarPubMed
Hitchcock, J., & Davis, M. (1986). Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm. Behavioral Neuroscience, 100, 1122.CrossRefGoogle ScholarPubMed
Hitchcock, J. M., & Davis, M. (1987). Fear-potentiated startle using an auditory conditioned stimulus: Effect of lesions of the amygdala. Physiology and Behavior, 39, 403408.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex: Developmental changes and effects of aging. Brain Research, 163, 1925.Google ScholarPubMed
Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517527.CrossRefGoogle ScholarPubMed
Jansiewicz, E. M., Goldberg, M. C., Newschaffer, C. J., Denckla, M. B., Landa, R., & Mostofsky, S. H. (2006). Motor signs distinguish children with high functioning autism and Asperger's syndrome from controls. Journal of Autism and Developmental Disorders, 36, 613621.CrossRefGoogle ScholarPubMed
Joseph, R. M., & Tanaka, J. (2003). Holistic and part-based face recognition in children with autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 44, 529542.CrossRefGoogle ScholarPubMed
Kalin, N. H., Shelton, S. E., & Davidson, R. J. (2007). Role of the primate orbitofrontal cortex in mediating anxious temperament. Biological Psychiatry, 62, 11341139.CrossRefGoogle ScholarPubMed
Kalin, N. H., Shelton, S. E., Davidson, R. J., & Kelley, A. E. (2001). The primate amygdala mediates acute fear but not the behavioral and physiological components of anxious temperament. Journal of Neuroscience, 21, 20672074.CrossRefGoogle Scholar
Kaufman, J., Yang, B. Z., Douglas-Palumberi, H., Houshyar, S., Lipschitz, D., Krystal, J. H., et al. (2004). Social supports and serotonin transporter gene moderate depression in maltreated children. Proceedings of the National Academy of Science of the United States of America, 101, 1731617321.CrossRefGoogle ScholarPubMed
Keedwell, P. A., Andrew, C., Williams, S. C., Brammer, M. J., & Phillips, M. L. (2005). The neural correlates of anhedonia in major depressive disorder. Biological Psychiatry, 58, 843853.CrossRefGoogle ScholarPubMed
Killgore, W. D., & Yurgelun-Todd, D. A. (2006). Ventromedial prefrontal activity correlates with depressed mood in adolescent children. NeuroReport, 17, 167171.CrossRefGoogle ScholarPubMed
Klin, A., Jones, W., Schultz, R., Volkmar, F., & Cohen, D. (2002). Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Archives of General Psychiatry, 59, 809816.CrossRefGoogle ScholarPubMed
Knutson, B., Bhanji, J. P., Cooney, R. E., Atlas, L. Y., & Gotlib, I. H. (2008). Neural responses to monetary incentives in major depression. Biological Psychiatry, 63, 686692.CrossRefGoogle ScholarPubMed
Krishnan, K. R., McDonald, W. M., Doraiswamy, P. M., Tupler, L. A., Husain, M., Boyko, O. B., et al. (1993). Neuroanatomical substrates of depression in the elderly. European Archives of Psychiatry and Clinical Neuroscience, 243, 4146.CrossRefGoogle ScholarPubMed
Krishnan, K. R., McDonald, W. M., Escalona, P. R., Doraiswamy, P. M., Na, C., Husain, M. M., et al. (1992). Magnetic resonance imaging of the caudate nuclei in depression. Preliminary observations. Archives of General Psychiatry, 49, 553557.CrossRefGoogle ScholarPubMed
Kumari, V., Mitterschiffthaler, M. T., Teasdale, J. D., Malhi, G. S., Brown, R. G., Giampietro, V., et al. (2003). Neural abnormalities during cognitive generation of affect in treatment-resistant depression. Biological Psychiatry, 54, 777791.CrossRefGoogle ScholarPubMed
Lacerda, A. L., Nicoletti, M. A., Brambilla, P., Sassi, R. B., Mallinger, A. G., Frank, E., et al. (2003). Anatomical MRI study of basal ganglia in major depressive disorder. Psychiatry Research, 124, 129140.CrossRefGoogle ScholarPubMed
Langdell, T. (1978). Recognition of faces: An approach to the study of autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 19, 255268.CrossRefGoogle Scholar
LeDoux, J. (1996). Emotional networks and motor control: A fearful view. Progress in Brain Research, 107, 437446.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1990). Information flow from sensation to emotion: Plasticity in the neural computation of stimulus value. In Moore, G. M. (Ed.), Learning and computational neuroscience: Foundations of adaptive networks. Cambridge, MA: MIT Press.Google Scholar
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155184.CrossRefGoogle ScholarPubMed
LeDoux, J. E., Cicchetti, P., Xagoraris, A., & Romanski, L. M. (1990). The lateral amygdaloid nucleus: Sensory interface of the amygdala in fear conditioning. Journal of Neuroscience, 10, 10621069.CrossRefGoogle ScholarPubMed
Lee, Y., & Davis, M. (1997). Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. Journal of Neuroscience, 17, 64346446.CrossRefGoogle ScholarPubMed
Lenze, E. J., & Sheline, Y. I. (1999). Absence of striatal volume differences between depressed subjects with no comorbid medical illness and matched comparison subjects. American Journal of Psychiatry, 156, 19891991.CrossRefGoogle ScholarPubMed
Leonardo, E. D., & Hen, R. (2008). Anxiety as a developmental disorder. Neuropsychopharmacology, 33, 134140.CrossRefGoogle ScholarPubMed
Levesque, J., Eugene, F., Joanette, Y., Paquette, V., Mensour, B., Beaudoin, G., et al. (2003). Neural circuitry underlying voluntary suppression of sadness. Biological Psychiatry, 53, 502510.CrossRefGoogle ScholarPubMed
Levesque, J., Joanette, Y., Mensour, B., Beaudoin, G., Leroux, J. M., Bourgouin, P., et al. (2004). Neural basis of emotional self-regulation in childhood. Neuroscience, 129, 361369.CrossRefGoogle ScholarPubMed
Liston, C., Watts, R., Tottenham, N., Davidson, M. C., Niogi, S., Ulug, A. M., et al. (2006). Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cerebral Cortex, 16, 553560.CrossRefGoogle ScholarPubMed
Masten, A. S. (2007). Resilience in developing systems: Progress and promise as the fourth wave rises. Development and Psychopathology, 19, 921930.CrossRefGoogle ScholarPubMed
May, J. C., Delgado, M. R., Dahl, R. E., Stenger, V. A., Ryan, N. D., Fiez, J. A., et al. (2004). Event-related functional magnetic resonance imaging of reward-related brain circuitry in children and adolescents. Biological Psychiatry, 55, 359366.CrossRefGoogle ScholarPubMed
Mayberg, H. S., Brannan, S. K., Tekell, J. L., Silva, J. A., Mahurin, R. K., McGinnis, S., et al. (2000). Regional metabolic effects of fluoxetine in major depression: Serial changes and relationship to clinical response. Biological Psychiatry, 48, 830843.CrossRefGoogle ScholarPubMed
Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., et al. (1999). Reciprocal limbic–cortical function and negative mood: Converging PET findings in depression and normal sadness. American Journal of Psychiatry, 156, 675682.CrossRefGoogle ScholarPubMed
Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., et al. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45, 651660.CrossRefGoogle ScholarPubMed
McClure, E. B., Monk, C. S., Nelson, E. E., Parrish, J. M., Adler, A., Blair, R. J. R., et al. (2007). Abnormal attention modulation of fear circuit function in pediatric generalized anxiety disorder. Archives of General Psychiatry, 64, 97106.CrossRefGoogle ScholarPubMed
Meaney, M. J., & Szyf, M. (2005). Maternal care as a model for experience-dependent chromatin plasticity? Trends in Neurosciences, 28, 456463.CrossRefGoogle Scholar
Meyer, J. A., Mundy, P. C., Van Hecke, A. V., & Durocher, J. S. (2006). Social attribution processes and comorbid psychiatric symptoms in children with Asperger syndrome. Autism, 10, 383402.CrossRefGoogle ScholarPubMed
Milham, M. P., Nugent, A. C., Drevets, W. C., Dickstein, D. P., Leibenluft, E., Ernst, M., et al. (2005). Selective reduction in amygdala volume in pediatric anxiety disorders: A voxel-based morphometry investigation. Biological Psychiatry, 57, 961966.CrossRefGoogle ScholarPubMed
Monk, C. S., Klein, R. G., Telzer, E. H., Schroth, E. A., , S., , M., Moulton, J. L. I., et al. (2008). Amygdala and nucleus accumbens activation to emotional facial expressions in children and adolescents at risk for major depression. American Journal of Psychiatry, 165, 9098.CrossRefGoogle ScholarPubMed
Monk, C. S., McClure, E. B., Nelson, E. E., Zarahn, E., Bilder, R. M., Leibenluft, E., et al. (2003). Adolescent immaturity in attention-related brain engagement to emotional facial expressions. NeuroImage, 20, 420428.CrossRefGoogle ScholarPubMed
Monk, C. S., Nelson, E. E., McClure, E. B., Mogg, K., Bradley, B. P., Leibenluft, E., et al. (2006). Ventrolateral prefrontal cortex activation and attentional bias in response to angry faces in adolescents with generalized anxiety disorder. American Journal of Psychiatry, 163, 10911097.CrossRefGoogle ScholarPubMed
Monk, C. S., & Pine, D. S. (2004). Childhood anxiety disorders: A cognitive neurobiological perspective. In Charney, D. S., Nestler, E. J., & Bunney, B. S. (Eds.), Neurobiology of mental illness. New York: Oxford University Press.Google Scholar
Monk, C. S., Telzer, E. H., Mogg, K., Bradley, B. P., Mai, X., Louro, H. M. C., et al. (2008). Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Archives of General Psychiatry, 65, 568576.CrossRefGoogle ScholarPubMed
Morgan, M. A., & LeDoux, J. E. (1995). Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behavioral Neuroscience, 109, 681688.CrossRefGoogle Scholar
Mostofsky, S. H., Burgess, M. P., & Gidley Larson, J. C. (2007). Increased motor cortex white matter volume predicts motor impairment in autism. Brain, 130, 21172122.CrossRefGoogle ScholarPubMed
Nacewicz, B. M., Dalton, K. M., Johnstone, T., Long, M. T., McAuliff, E. M., Oakes, T. R., et al. (2006). Amygdala volume and nonverbal social impairment in adolescent and adult males with autism. Archives of General Psychiatry, 63, 14171428.CrossRefGoogle ScholarPubMed
Ogai, M., Matsumoto, H., Suzuki, K., Ozawa, F., Fukuda, R., Uchiyama, I., et al. (2003). fMRI study of recognition of facial expressions in high-functioning autistic patients. Neuroreport, 14, 559563.CrossRefGoogle ScholarPubMed
Ongur, D., Drevets, W. C., & Price, J. L. (1998). Glial reduction in the subgenual prefrontal cortex in mood disorders. Proceedings of the National Academy of Science of the United States of America, 95, 1329013295.CrossRefGoogle ScholarPubMed
Ongur, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex, 10, 206219.CrossRefGoogle ScholarPubMed
Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T., & Toth, M. (1998). Increased anxiety of mice lacking the serotonin 1A receptor. Proceedings of the National Academy of Science of the United States of America, 95, 1073410739.CrossRefGoogle Scholar
Phan, K. L., Fitzgerald, D. A., Nathan, P. J., & Tancer, M. E. (2006). Association between amygdala hyperactivity to harsh faces and severity of social anxiety in generalized social phobia. Biological Psychiatry, 59, 424429.CrossRefGoogle ScholarPubMed
Phan, K. L., Taylor, S. F., Welsh, R. C., Ho, S. H., Britton, J. C., & Liberzon, I. (2004). Neural correlates of individual ratings of emotional salience: A trial-related fMRI study. NeuroImage, 21, 768780.CrossRefGoogle ScholarPubMed
Pierce, K., Haist, F., Sedaghat, F., & Courchesne, E. (2004). The brain response to personally familiar faces in autism: Findings of fusiform activity and beyond. Brain, 127, 27032716.CrossRefGoogle ScholarPubMed
Pillay, S. S., Renshaw, P. F., Bonello, C. M., Lafer, B. C., Fava, M., & Yurgelun-Todd, D. (1998). A quantitative magnetic resonance imaging study of caudate and lenticular nucleus gray matter volume in primary unipolar major depression: Relationship to treatment response and clinical severity. Psychiatry Research, 84, 6174.CrossRefGoogle ScholarPubMed
Pine, D. S. (2007). A neuroscience framework for pediatric anxiety disorders. Journal of Child Psychiatry and Psychology, 48, 631648.CrossRefGoogle ScholarPubMed
Pine, D. S., Cohen, P., Gurley, D., Brook, J., & Ma, Y. (1998). The risk for early-adulthood anxiety and depressive disorders in adolescents with anxiety and depressive disorders. Archives of General Psychiatry, 55, 5664.CrossRefGoogle ScholarPubMed
Ramboz, S., Oosting, R., Amara, D. A., Kung, H. F., Blier, P., Mendelsohn, M., et al. (1998). Serotonin receptor 1A knockout: An animal model of anxiety-related disorder. Proceedings of the National Academy of Science of the United States of America, 95, 1447614481.CrossRefGoogle ScholarPubMed
Redcay, E., & Courchesne, E. (2005). When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological Psychiatry, 58, 19.CrossRefGoogle ScholarPubMed
Reynolds, S. M., & Berridge, K. C. (2002). Positive and negative motivation in nucleus accumbens shell: Bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. Journal of Neuroscience, 22, 73087320.CrossRefGoogle Scholar
Rilling, J., Gutman, D., Zeh, T., Pagnoni, G., Berns, G., & Kilts, C. (2002). A neural basis for social cooperation. Neuron, 35, 395405.CrossRefGoogle ScholarPubMed
Roberson-Nay, R., McClure, E. B., Monk, C. S., Nelson, E. E., Guyer, A. E., Fromm, S. J., et al. (2006). Increased amygdala activity during successful memory encoding in adolescent major depressive disorder: An fMRI study. Biological Psychiatry, 60, 966973.CrossRefGoogle ScholarPubMed
Rosenbaum, J. F., Biederman, J., Gersten, M., Hirshfeld, D. R., Meminger, S. R., Herman, J. B., et al. (1988). Behavioral inhibition in children of parents with panic disorder and agoraphobia. A controlled study. Archives of General Psychiatry, 45, 463470.CrossRefGoogle ScholarPubMed
Rosenbaum, J. F., Biederman, J., Hirshfeld, D. R., Bolduc, E. A., Faraone, S. V., Kagan, J., et al. (1991). Further evidence of an association between behavioral inhibition and anxiety disorders: Results from a family study of children from a non-clinical sample. Journal of Psychiatric Research, 25, 4965.CrossRefGoogle ScholarPubMed
Rosso, I. M., Cintron, C. M., Steingard, R. J., Renshaw, P. F., Young, A. D., & Yurgelun-Todd, D. A. (2005). Amygdala and hippocampus volumes in pediatric major depression. Biological Psychiatry, 57, 2126.CrossRefGoogle ScholarPubMed
Sarter, M., & Markowitsch, H. J. (1984). Collateral innervation of the medial and lateral prefrontal cortex by amygdaloid, thalamic, and brain-stem neurons. Journal of Comparative Neurology, 224, 445460.CrossRefGoogle ScholarPubMed
Schultz, W. (2004). Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology. Current Opinion in Neurobiology, 14, 139147.CrossRefGoogle ScholarPubMed
Schumann, C. M., Hamstra, J., Goodlin-Jones, B. L., Lotspeich, L. J., Kwon, H., Buonocore, M. H., et al. (2004). The amygdala is enlarged in children but not adolescents with autism; The hippocampus is enlarged at all ages. Journal of Neuroscience, 24, 63926401.CrossRefGoogle Scholar
Schwartz, C. E., Snidman, N., & Kagan, J. (1999). Adolescent social anxiety as an outcome of inhibited temperament in childhood. Journal of the American Academy of Child & Adolescent Psychiatry, 38, 10081015.CrossRefGoogle ScholarPubMed
Sheline, Y. I., Barch, D. M., Donnelly, J. M., Ollinger, J. M., Snyder, A. Z., & Mintun, M. A. (2001). Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: An fMRI study. Biological Psychiatry, 50, 651658.CrossRefGoogle ScholarPubMed
Sheline, Y. I., Gado, M. H., & Price, J. L. (1998). Amygdala core nuclei volumes are decreased in recurrent major depression. NeuroReport, 9, 20232028.CrossRefGoogle ScholarPubMed
Siegle, G. J., Granholm, E., Ingram, R. E., & Matt, G. E. (2001). Pupillary and reaction time measures of sustained processing of negative information in depression. Biological Psychiatry, 49, 624636.CrossRefGoogle ScholarPubMed
Siegle, G. J., Konecky, R. O., Thase, M. E., & Carter, C. S. (2003). Relationships between amygdala volume and activity during emotional information processing tasks in depressed and never-depressed individuals: An fMRI investigation. Annals of the New York Academy of Sciences, 985, 481484.CrossRefGoogle ScholarPubMed
Siegle, G. J., Steinhauer, S. R., Thase, M. E., Stenger, V. A., & Carter, C. S. (2002). Can't shake that feeling: Event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biological Psychiatry, 51, 693707.CrossRefGoogle ScholarPubMed
Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R., & Thase, M. E. (2007). Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: Related and independent features. Biological Psychiatry, 61, 198209.CrossRefGoogle ScholarPubMed
Somerville, L. H., Kim, H., Johnstone, T., Alexander, A. L., & Whalen, P. J. (2004). Human amygdala responses during presentation of happy and neutral faces: Correlations with state anxiety. Biological Psychiatry, 55, 897903.CrossRefGoogle ScholarPubMed
Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., et al. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59, 184192.CrossRefGoogle ScholarPubMed
Stein, M. B., Goldin, P. R., Sareen, J., Zorrilla, L. T., & Brown, G. G. (2002). Increased amygdala activation to angry and contemptuous faces in generalized social phobia. Archives of General Psychiatry, 59, 10271034.CrossRefGoogle ScholarPubMed
Stein, M. B., Simmons, A. N., Feinstein, J. S., & Paulus, M. P. (2007). Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. American Journal of Psychiatry, 164, 318327.CrossRefGoogle ScholarPubMed
Steinberg, L. (2005). Cognitive and affective development in adolescence. Trends in Cognitive Sciences, 9, 6974.CrossRefGoogle ScholarPubMed
Surguladze, S., Brammer, M. J., Keedwell, P., Giampietro, V., Young, A. W., Travis, M. J., et al. (2005). A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biological Psychiatry, 57, 201209.CrossRefGoogle ScholarPubMed
Thomas, K. M., Drevets, W. C., Dahl, R. E., Ryan, N. D., Birmaher, B., Eccard, C. H., et al. (2001a). Amygdala response to fearful faces in anxious and depressed children. Archives of General Psychiatry, 58, 10571063.CrossRefGoogle ScholarPubMed
Thomas, K. M., Drevets, W. C., Whalen, P. J., Eccard, C. H., Dahl, R. E., Ryan, N. D., et al. (2001b). Amygdala response to facial expressions in children and adults. Biological Psychiatry, 49, 309316.CrossRefGoogle ScholarPubMed
Tillfors, M., Furmark, T., Marteinsdottir, I., Fischer, H., Pissiota, A., Langstrom, B., et al. (2001). Cerebral blood flow in subjects with social phobia during stressful speaking tasks: A PET study. American Journal of Psychiatry, 158, 12201226.CrossRefGoogle ScholarPubMed
Timms, R. J. (1977). Cortical inhibition and facilitation of the defence reaction [Proceedings]. Journal of Physiology, 266, 98P99P.Google ScholarPubMed
Volkmar, F. R., Sparrow, S. S., Rende, R. D., & Cohen, D. J. (1989). Facial perception in autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 30, 591598.CrossRefGoogle ScholarPubMed
Weissman, M. M., Warner, V., Wickramaratne, P., Moreau, D., & Olfson, M. (1997). Offspring of depressed parents. 10 Years later. Archives of General Psychiatry, 54, 932940.CrossRefGoogle ScholarPubMed
Weissman, M. M., Wickramaratne, P., Nomura, Y., Warner, V., Pilowsky, D., & Verdeli, H. (2006). Offspring of depressed parents: 20 years later. American Journal of Psychiatry, 163, 10011008.CrossRefGoogle ScholarPubMed
Whalen, P. J. (1998). Fear, vigilance, and ambiguity: Initial neuroimaging studies of the human amygdala. Current Directions in Psychological Science, 7, 177187.CrossRefGoogle Scholar
Yurgelun-Todd, D. A., & Killgore, W. D. (2006). Fear-related activity in the prefrontal cortex increases with age during adolescence: A preliminary fMRI study. Neuroscience Letters, 406, 194199.CrossRefGoogle ScholarPubMed
Zecevic, N., & Rakic, P. (2001). Development of layer I neurons in the primate cerebral cortex. Journal of Neuroscience, 21, 56075619.CrossRefGoogle ScholarPubMed