Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T13:09:48.191Z Has data issue: false hasContentIssue false

Development and neurotransmitter-environmental interactions

Published online by Cambridge University Press:  04 March 2009

Graham A. Rogeness*
Affiliation:
The University of Texas Health Science Center at San Antonio
Erin B. McClure
Affiliation:
The University of Texas Health Science Center at San Antonio
*
Graham A. Rogeness, Department of Psychiatry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78284-7792

Abstract

Norepinephrine (NE), dopamine (DA), and serotonin (5HT) are three of the more than thirty neurotransmitters (NTs) in the brain. Axons from a relatively small number of cell bodies located in the midbrain and brainstem branch out to connect with virtually all areas of the brain. Via these connections, these three NTs participate in the regulation of several behavioral systems that help modulate the interaction of the individual with his/her environment. Because the NT systems continue to develop after birth, interactions between the individual and his/her environment after birth may affect the development of these systems and have long-term effects on the individual's behavior. Animal studies indicate that early experience affects behavior and biogenic amine systems in the adult. For instance, one study showed that maternal deprivation, which is analogous to human neglect, affects the NE system in monkeys and may have a long-lasting effect on its development and function. In a previous study, similar relationships between early neglect and the NE system in humans were examined. Our results show that emotionally disturbed children with a history of neglect have lower dopamine-β-hydroxylase (DβH) activity, an enzyme involved in the synthesis of NE, than do children with no history of neglect. Additionally, the children with a history of neglect have lower systolic and diastolic blood pressure, both of which are functions mediated by the NE system, than the other children studied. These results support findings in animal studies that neglect affects the development of the NE system in a long-lasting, if not permanent way.

Type
Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neuro-sciences, 13, 266271.Google Scholar
Antelman, S. M., & Caggiula, A. R. (1977). Norepinephrine-dopamine interactions and behavior: A new hypothesis of stress-related interactions between brain norepinephrine and dopamine is proposed. Science, 195, 646653.CrossRefGoogle Scholar
Bale, J. F., & Murph, J. R. (1992). Congenital infections and the nervous system. Pediatric Clinics of North America, 39, 669690.Google Scholar
Bayart, F., Hayashi, K. T., Faull, K. F., Barchas, J. D., & Levine, S. (1990). Influence of maternal proximity on behaviorial and physiological responses to separation in infant rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 104, 98107.CrossRefGoogle Scholar
Bjorklund, A., & Lindvall, O. (1984). Dopamine-containing systems in the CNS. In Bjorkland, A. & Hokfelt, T. (Eds.), Handbook of chemical neuroanatomy: Vol. 2. Classical transmitters in the CNS, Part 1 (pp. 55122). Amsterdam: Elsevier Science Publishers, B. V.Google Scholar
Bowden, C. L., Deutsch, C. K., & Swanson, J. M. (1988). Plasma dopamine-b-hydroxylase and platelet monoamine oxidase in attention deficit disorder and conduct disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 27, 171174.Google Scholar
Bowlby, J. (1969). Attachment and loss: Attachment. New York: Basic Books.Google Scholar
Bowlby, J. (1973). Attachment and loss: Separation, anxiety, and anger. New York: Basic Books.Google Scholar
Bowlby, J. (1980). Attachment and loss: Loss, sadness, and depression. New York: Basic Books.Google Scholar
Cabib, S., Puglisi-Allegra, S., & D'Amato, F. R. (1993). Effects of postnatal stress on dopamine mesolimbic system responses to aversive experiences in adult life. Brain Research, 604, 232239.Google Scholar
Cacioppo, J. T., Berntson, G. G., Binkley, P. F., Quigley, K. S., Uchino, B. N., & Fieldstone, A. (1994). Autonomic cardiac control. II. Noninvasive indices and basal response as revealed by autonomic blockades. Psychophysiology, 31, 586598.Google Scholar
Chapais, B. (1988). Rank maintenance in female Japanese macaques: Experimental evidence for social dependency. Behavior, 104, 4159.Google Scholar
Cicchctti, D., & Barnett, D. (1991). Toward the development of a scientific nosology of child maltreatment. In Grove, W. & Cicchetti, D. (Eds.), Thinking clearly about psychology (Vol. 2, pp. 346377). Minneapolis: University of Minnesota Press.Google Scholar
Clarke, A. S., & Schneider, M. L. (1993). Prenatal stress has long-term effects on behavioral responses to stress in juvenile rhesus monkeys. Developmental Psychobiology, 26, 293304.Google Scholar
Cloninger, C. R. (1986). A unified biosocial theory of personality and its role in the development of anxiety states. Psychiatric Developments, 3, 167226.Google Scholar
Cloninger, C. R. (1987). A systematic method for clinical description and classification of personality variants. Archives of General Psychiatry, 44, 573588.CrossRefGoogle ScholarPubMed
Coccaro, E. F. (1989). Central serotonin and impulsive aggression. British Journal of Psychiatry, 155, 5262.Google Scholar
Coleman, M. (1971). Platelet serotonin in disturbed monkeys and children. Clinical Proceedings Children's Hospital, 27, 187194.Google Scholar
Cooper, J. R., Bloom, F. E., & Roth, R. H. (1986 a). Catecholamines II: CNS aspects. In Cooper, J. R., Bloom, F. E., & Roth, R. H. (Eds.), The biochemical basis of neuropharmacology (pp. 259314). New York: Oxford University Press.Google Scholar
Cooper, J. R., Bloom, F. E., & Roth, R. H. (1986 b). Serotonin (5-hydrotryptamine) and histamine. In Cooper, J. R., Bloom, F. E., & Roth, R. H. (Eds.), The biochemical basis of neuropharmacology (pp. 315351). New York: Oxford University Press.Google Scholar
Coyle, J. T. (1985). Introduction to the pharmacology of the synapse. In Hales, R. E. & Frances, A. J. (Eds.), American Psychiatric Association annual review (pp. 616). Washington, DC: American Psychiatric Press.Google Scholar
Curtius, H.-C., Niederwiescr, A., Viscontini, M., Leimbacher, W., Wegmann, H., Blehova, B., Rey, F., Schaub, J., & Schmidt, H. (1981). Serotonin and dopamine synthesis in phenylketonuria. Advances in Experimental Medicine and Biology, 133, 277291.Google Scholar
Dawson, G., Hessl, D., & Frey, K. (1994). Social influences on early developing biological and behavioral systems related to risk for affective disorder. Development and Psychopathology, 6, 759779.CrossRefGoogle Scholar
DeBellis, M. D., Lefter, L., Trickett, P. K., & Putnam, F. W. (1994). Urinary catecholamine excretion in sexually abused girls. Journal of the American Academy of Child and Adolescent Psychiatry, 33, 320327.CrossRefGoogle Scholar
DeBellis, M. D., & Putnam, F. W. (1994). The psychobiology of childhood maltreatment. Child and Adolescent Psychiatric Clinics of North America, 3, 663679.CrossRefGoogle Scholar
DeLong, G. R. (1993). Effects of nutrition on brain development in humans. American Journal of Clinical Nutrition. 57(Suppl. 2), 286S290S.Google Scholar
Depue, R. A., & Spoont, M. R. (1986). Conceptualizing a serotonin trait. A behavioral dimension of constraint. Annals of the New York Academy of Sciences, 487, 4762.Google Scholar
Duncan, G. J., Brooks-Gunn, J., & Klebanov, P. K. (1994). Economic deprivation and early childhood development. Child Development, 65(Spec. No. 2), 296318.Google Scholar
Eisensmith, R. C., & Woo, S. L. C. (1991). Phenylketonuria and the phenylalanine hydroxylase gene. Molecular Biology and Medicine, 8, 318.Google ScholarPubMed
Foote, S. L., & Morrison, J. H. (1987 a). Extrathalamic modulation of cortical function. Annual Reviews in Neuroscience, 10, 6795.CrossRefGoogle ScholarPubMed
Foote, S. L., & Morrison, J. H. (1987b). Development of noradrenergic, serotonergic, and dopaminergic innervation of neocortex. Current Topics in Developmental Biology, 21, 391423.CrossRefGoogle ScholarPubMed
Fride, E., Dan, Y., Feldon, J., Halevy, G., & Weinstock, M. (1986). Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats. Physiology and Behavior, 37, 681687.Google Scholar
Fride, E., & Weinstock, M. (1987). Increased interhemisphcric coupling of the dopamine systems induced by prenatal stress. Brain Research Bulletin, 18, 457461.Google Scholar
Fride, E., & Weinstock, M. (1988). Prenatal stress increases anxiety related behavior and alters cerebral lateralization of dopamine activity. Life Sciences. 42, 10591065.CrossRefGoogle ScholarPubMed
Galvin, M., Shekhar, A., Simon, J., Stilwell, B., Ten Eyck, R., Laite, G., Karwisch, G., & Blix, S. (1991). Low dopamine beta-hydroxylase: A biological sequela of abuse and neglect? Psychiatry Research, 39, 111.Google Scholar
Gillberg, C., & Svennerholm, L. (1987). CSF monoamines in autistic syndromes and other pervasive developmental disorders of early childhood. British Journal of Psychiatry, 151, 8994.CrossRefGoogle ScholarPubMed
Gray, J. A. (1982). The neuropsychology of anxiety; An inquiry into the functions of the septohippocampal system. Oxford: Oxford University Press.Google Scholar
Gray, J. A. (1987). The psychology of fear and stress. Cambridge: Cambridge University Press.Google Scholar
Guyton, A. C. (1991). Textbook of medical physiology (8th ed.). Philadelphia: W. B. Saunders.Google Scholar
Hanley, W. B., Clarke, J. T. R., & Schoonheyt, W. (1987). Maternal phenylketonuria (PKU)-A review. Clinical Biochemistry, 20, 149156.Google Scholar
Harlow, H. F., Harlow, M. K., & Suomi, S. J. (1971). From thought to therapy: Lessons from a primate laboratory. American Scientist, 59, 538549.Google Scholar
Heath, A. C., Cloninger, C. R., & Martin, N. G. (1994). Testing a model for the genetic structure of personality: A comparison of the personality systems of Cloninger and Eysenck. Journal of Personality and Social Psychology, 66(A), 762775.Google Scholar
Higley, J. D., Suomi, S. J., & Linnoila, M. (1992). A longitudinal assessment of CSF monoamine metabolite and plasma Cortisol concentrations in young rhesus monkeys. Biological Psychiatry, 32, 127145.CrossRefGoogle ScholarPubMed
Holtzman, N. A., Kronmal, R. A., Van Doorninck, W., Azen, C., & Koch, R. (1986). Effect of age at loss of dietary control on intellectual performance and behavior of children with phenylketonuria. New England Journal of Medicine. 314, 593598.Google Scholar
Insel, T. R., Scanlan, J., Champoux, M., & Suomi, S. J. (1988). Rearing paradigm in a nonhuman primate affects response to beta-CCE challenge. Psychopharmacology, 96, 8186.CrossRefGoogle Scholar
Introini-Collison, I. B., Castellano, C., & McGaugh, J. L. (1994). Interaction of GABAergic and Betanoradrenergic drugs in the regulation of memory storage. Behavioral and Neural Biology, 61, 150155.Google Scholar
Iversen, S. (1984). Cortical monoamine and behavior. In Descarries, L. & Jasper, H. H. (Eds.), Monoamine innervation of the cerebral cortex. New York: Alan R. Liss.Google Scholar
Kagan, J., Reznick, J. S., & Snidman, N. (1987). The physiology and psychology of behavioral inhibition in young children. Child Development, 58, 14591473.Google Scholar
Kandel, E. R., & Jessell, T. (1991). Early experience and the fine tuning of synaptic connections. In Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (Eds.), Principles of neural science (pp. 945959). New York: Elsevier.Google Scholar
Kliegman, R. M., & Behrman, R. E. (1992). Substance abuse and withdrawal. In Behrman, R. E., Kliegman, R. M., Nelson, W. E., & Vaughn, V. C., III (Eds.), Nelson textbook of pediatrics (pp. 490492). Philadelphia: W. B. Saunders.Google Scholar
Kraemer, G. W. (1992). A psychobiological theory of attachment. Behavioral and Brain Sciences, 15, 493541.Google Scholar
Kraemer, G. W., Ebert, M. H., Lake, C. R., & McKinney, W. T. (1984). Hypersensitivity to damphetamine several years after early social deprivation in rhesus monkeys. Psychopharmacology, 82, 266271.CrossRefGoogle ScholarPubMed
Kraemer, G. W., Ebert, M. H., Schmidt, D. E., & McKinney, W. T. (1989). A longitudinal study of the effect of different social rearing conditions on cerebrospinal fluid norepinephrine and biogenic amine metabolites in rhesus monkeys. Neuropsychopharmacology, 2, 175189.CrossRefGoogle ScholarPubMed
Kramer, P. D. (1993). Listening to Prozac. New York: Penguin Books.Google Scholar
Kruesi, M. J. P., Rapoport, J. L., Hamburger, S., Hibbs, E., Potter, W. Z., Lenanc, M., & Brown, G. L. (1990). Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Archives of General Psychiatry, 47, 419426.CrossRefGoogle ScholarPubMed
Kupfermann, I. (1991). Behavior in all organisms is shaped by the interaction of genes and environment. In Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (Eds.), Principles of neural science (pp. 9871008). New York: Elsevier.Google Scholar
Langlais, P. J., Walsh, F. Y., Bird, E. D., & Levy, H. C. (1985). Cerebrospinal fluid neurotransmitter metabolites in neurologically normal infants and children. Pediatrics, 75, 580586.Google Scholar
Levy, M. N. (1984). Cardiac sympathetic-parasympathetic interactions. Federation Proceedings, 43, 25982602.Google Scholar
Lewis, M. H., Gluck, J. P., Beauchamp, A. J., Keresztury, M. F., & Mailman, R. B. (1990). Long-term effects of early social isolation in Macaca mulatta: Changes in dopamine receptor function following apomorphine challenge. Brain Research, 513, 6773.Google Scholar
Lieberman, J. A. (1989). Dopamine pathophysiology in tardive dyskinesia. Psychiatric Annals, 19(6), 289296.CrossRefGoogle Scholar
Lou, H. C., Lykkelund, C., Gerdes, A. M., Udesen, H., & Bruhn, P. (1987). Increased vigilance and dopamine synthesis by large doses of tyrosine or phenylalanine restriction in phenylketonuria. Acta Psychiatrica Scandinavica, 76, 560565.CrossRefGoogle ScholarPubMed
Lykkelund, C., Nielsen, J. B., Lou, H. C., Rasmussen, V., Gerdes, A. M., Christensen, E., & Guttler, F. (1988). Increased neurotransmitter biosynthesis in phenylketonuria induced by phenylalanine restriction or by supplementation of unrestricted diet with large amounts of tyrosine. European Journal of Pediatrics, 148, 238245.CrossRefGoogle ScholarPubMed
Lyons-Ruth, K., & Zeanah, C. H. Jr., (1993). The family context of infant mental health: I. Affective development in the primary caregiving relationship. In Zeanah, C. H. Jr., (Ed.), Handbook of infant mental health (pp. 1437). New York/London: Guilford Press.Google Scholar
Maas, J. W., & Leckman, J. F. (1983). Relationships between central nervous system noradrenergic function and plasma and urinary MHPG and other norepinephrine metabolites. In Maas, J. W. (Ed.), MHPG: Basic mechanisms and psychopathology (pp. 3343). San Diego: Academic Press.Google Scholar
Mednick, S. A., Parnas, J., & Schulsinger, F. (1987). The Copenhagen High Risk Project, 1962–86. Schizophrenia Bulletin, 13, 485495.Google Scholar
Nagatsu, T., & Undenfriend, S. (1972). Photometric assay of dopamine-b-hydroxylase activity in human blood. Clinical Chemistry, 18, 980983.CrossRefGoogle Scholar
Oades, R. D. (1985). The role of noradrenaline in tuning and dopamine in switching between signals in the CNS. Neuroscience and Biobehavioral Reviews, 9, 261282.Google Scholar
Plaznik, A., & Kostowski, W. (1983). The interrelationship between brain noradrenergic and dopaminergic neuronal systems in regulating animal behavior: Possible clinical implications. Psychopharmacology Bulletin, 19, 511.Google Scholar
Pucilowski, O., & Kostowski, W. (1983). Aggressive behavior and the central serotonergic system. Behavioural Brain Research, 9, 3348.Google Scholar
Quay, H. C. (1988 a). The behavioral reward and inhibition system in childhood behavior disorder. In Bloomingdale, L. M. (Ed.), Attention deficit disorder (Vol III, pp. 177186). New York: Pergammon Press.Google Scholar
Quay, H. C. (1988b). Attention deficit disorder and the behavioral inhibition system: The relevance of the neuropsychological theory of Jeffrey A. Gray. In Bloomingdale, L. M. & Sergeant, J. (Eds.), Attention deficit disorder: Criteria, cognition, intervention (pp. 117125). Oxford: Pergamon.Google Scholar
Raleigh, M. J., McGuirc, M. T., Brammer, G. L., Pollack, D. B., & Yuwilcr, A. (1991). Serotonergic mechanisms promote dominance acquisition in adult male vervet monkeys. Brain Research, 559, 181190.Google Scholar
Raleigh, M. J., McGuire, M. T., Brammer, G. L., & Yuwiler, A. (1984). Social and environmental influences on blood serotonin concentrations in monkeys. Archives of General Psychiatry, 41, 405410.Google Scholar
Rao, M. L., Muller-Oerlinghausen, B., Mackert, A., Strebel, B., Stieglitz, R. D., & Volz, H. P. (1992). Blood serotonin, serum melatonin and light therapy in healthy subjects and in patients with nonscasonal depression. Acta Psychiatrica Scandinavica, 86, 127132.Google Scholar
Rogeness, G. A. (1991). Psychosocial factors and amine systems. Psychiatry Research, 37, 215217.Google Scholar
Rogeness, G. A., Amrung, S. A., Macedo, C. A., Harris, W. R., & Fischer, C. (1986a). Psychopathology in abused or neglected children. Journal of the American Academy of Child and Adolescent Psychiatry, 25, 659665.Google Scholar
Rogeness, G. A., Hernandez, J. M., Macedo, C. A., Amrung, S. A., & Hoppe, S. K. (1986 b). Near-zero plasma dopamine-b-hydroxylase and conduct disorder in emotionally disturbed boys. Journal of the American Academy of Child Psychiatry, 25, 521527.CrossRefGoogle Scholar
Rogeness, G. A., Javors, M. A., Maas, J. W., & Macedo, C. A. (1990). Catecholamines and diagnoses in children. Journal of the American Academy of Child Psychiatry, 29, 234241.Google Scholar
Rogeness, G. A., Javors, M. A., Maas, J. W., Macedo, C. A., & Fischer, C. (1987). Plasma dopamine hydroxylase, HVA, MHPG, and conduct disorder in emotionally disturbed boys. Biological Psychiatry, 22, 11581162.Google Scholar
Rogeness, G. A., Javors, M. A., & Pliszka, S. R. (1992). Ncurochemistry and child and adolescent psychiatry. Journal of the American Academy of Child and Adolescent Psychiatry. 31, 765781.CrossRefGoogle ScholarPubMed
Roy, A., Guthrie, S., Karoum, F., Pickar, D., & Linnoila, M. (1988). High intcrcorrelations among urinary outputs of norepinephrine and its major metabolites. Archives of General Psychiatry, 45, 158161.CrossRefGoogle ScholarPubMed
Schneider, M. L. (1992). Prenatal stress exposure alters postnatal behavioral expression under conditions of novelty challenge in rhesus monkey infants. Developmental Psychobiology, 25, 529540.Google Scholar
Seeman, P., Bzowej, N. H., Guan, H. C., Bergenon, C., Becker, L. E., Reynolds, G. P., Bird, E. D., Riederer, P., Jellinger, K., Watanabe, S., & Tourtellotte, W. W. (1987). Human brain dopamine receptors in children and aging adults. Synapse, 1, 399404.Google Scholar
Seifert, W. E., Foxx, J. L., & Butler, I. J. (1980). Age effect on dopamine and serotonin metabolite levels in cerebrospinal fluid. Annals of Neurology, 8, 3842.Google Scholar
Shaywitz, B. A., Cohen, D. J., Leckman, J. F., Young, J. G., & Bowers, M. B. J. (1980). Ontogeny of dopamine and serotonin metabolites in the cerebrospinal fluid of children with neurological disorders. Developmental Medicine and Child Neurology, 22, 748754.CrossRefGoogle ScholarPubMed
Silverstein, F. S., Johnston, M. V., Hutchinson, R. J., & Edwards, N. L. (1985). Lesch-Nyhan syndrome: CSF neurotransmitter abnormalities. Neurology, 35, 907911.CrossRefGoogle ScholarPubMed
Soubrie, P. (1986). Reconciling the role of central serotonin neurons in human and animal behavior. Behavioral and Brain Sciences, 9, 319364.Google Scholar
Svensson, T. H. (1987). Peripheral, autonomic regulation of locus coeruleus noradrenergic neurons in brain: putative implications for psychiatry and psychopharmacology. Psychopharmacology, 92, 17.Google Scholar
Taylor, E. H., Hommes, F. A., & Stewart, D. E. (1983). Effect of experimental hyperphenylalaninemia on biogenic amine synthesis at later stages of brain development. Biochemical Medicine, 29, 307317.Google Scholar
Walsh, A. (1990). Illegitimacy, child abuse and neglect, and cognitive development. Journal of Genetic Psychology, 151, 279285.CrossRefGoogle ScholarPubMed
Weinshilboum, R. M. (1983). Biochemical genetics of catecholamines in man. Mayo Clinic Proceedings, 58, 319330.Google Scholar
Wise, R. A., & Rompre, P. P. (1989). Brain dopamine and reward. Annual Review of Psychology, 40, 191225.Google Scholar
Yang, T., & Levy, M. N. (1992). Sequencc of excitation as a factor in sympathetic-parasympathetic interactions in the heart. Circulation Research, 71(4), 898905.Google Scholar
Zimmerberg, B., & Shartrand, A. M. (1992). Temperature-dependent effects of maternal separation on growth, activity, and amphetamine sensitivity in the rat. Developmental Psychobiology, 25, 213226.Google Scholar
Zuckerman, M. (1983). A correlational test in humans of the biological models of sensation seeking, impulsivity, and anxiety. In Zuckerman, M. (Ed.), Biological basis of sensation seeking, impulsivity, and anxiety (pp. 229248). Hillsdale, NJ: Erlbaum.Google Scholar