Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T08:07:09.447Z Has data issue: false hasContentIssue false

Critical periods for the neurodevelopmental processes of externalizing and internalizing

Published online by Cambridge University Press:  06 May 2015

Don M. Tucker*
Affiliation:
Electrical Geodesics, Inc., and the University of Oregon
Catherine Poulsen
Affiliation:
Electrical Geodesics, Inc., and the University of Oregon
Phan Luu
Affiliation:
Electrical Geodesics, Inc., and the University of Oregon
*
Address correspondence and reprint requests to: Don M. Tucker, Electrical Geodesics, Inc., 500 East 4th Avenue, Suite 200, Eugene, OR 97401; E-mail: [email protected].

Abstract

Research on neurobiological development is providing insight into the nature and mechanisms of human neural plasticity. These mechanisms appear to support two different forms of developmental learning. One form of learning could be described as externalizing, in which neural representations are highly responsive to environmental influences, as the child typically operates under a mode of hedonic approach. A second form of learning supports internalizing, in which motive control separates attention and self-regulation from the immediate influences of the context, particularly when the child faces conditions of avoidance and threat. The dorsal cortical networks of externalizing are organized around dorsal limbic (cingulate, septal, lateral hypothalamic, hippocampal, and ventral striatal) circuits. In contrast, the ventral cortical networks of internalizing are organized around ventral limbic (anterior temporal and orbital cortex, extended amygdala, dorsal striatal, and mediodorsal thalamic) circuits. These dual divisions of the limbic system in turn self-regulate their arousal levels through different brain stem and forebrain neuromodulator projection systems, with dorsal corticolimbic networks regulated strongly by locus coeruleus norepinephrine and brain stem raphe nucleus serotonin projection systems, and ventral corticolimbic networks regulated by ventral tegmental dopamine and forebrain acetylcholine projections. Because the arousal control systems appear to regulate specific properties of neural plasticity in development, an analysis of these systems explains differences between externalizing and internalizing at multiple levels of neural and psychological self-regulation. In neuroscience, the concept of critical periods has been applied to times when experience is essential for the maturation of sensory systems. In a more general neuropsychological analysis, certain periods of the child's development require successful self-regulation through the differential capacities for externalizing and internalizing.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M. (1982). Developmental psychopathology (2nd ed.). New York: Wiley.Google Scholar
Aitken, K. J., & Trevarthen, C. (1997). Self/other organization in human psychological development. Development and Psychopathology, 9, 653677.CrossRefGoogle ScholarPubMed
Alheid, G. F., & Heimer, L. (1988). New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: The striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience, 27, 139.CrossRefGoogle ScholarPubMed
Arnsten, A. F. T., & Goldman-Rakic, P. S. (1984). Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Research, 306, 918.CrossRefGoogle Scholar
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus–norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403450.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Ennis, M., Pieribone, V. A., Nickell, W. T., & Shipley, M. T. (1986). The brain nucleus locus coeruleus: Restricted afferant control of a broad efferent network. Science, 234, 734737.CrossRefGoogle Scholar
Baldwin, D. A., Markman, E. M., Bill, B., Desjardins, R. N., Irwin, J. M., & Tidball, G. (1996). Infants' reliance on a social criterion for establishing word–object relations. Child Development, 67, 31353153.CrossRefGoogle ScholarPubMed
Baldwin, D. V. (2013). Primitive mechanisms of trauma response: An evolutionary perspective on trauma-related disorders. Neuroscience and Biobehavioral Reviews, 37, 15491566.CrossRefGoogle ScholarPubMed
Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ: Prentice–Hall.Google Scholar
Barbas, H. (1995). Anatomic basis of cognitive–emotional interactions in the primate prefrontal cortex. Neuroscience and Biobehavioral Reviews, 19, 499510.CrossRefGoogle ScholarPubMed
Barbas, H. (2000). Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Research Bulletin, 52, 319330.CrossRefGoogle ScholarPubMed
Bear, M. F., & Singer, W. (1986). Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature, 320, 172176.CrossRefGoogle ScholarPubMed
Benca, R. M. (1996). Sleep in psychiatric disorders. Neurologic Clinics, 14, 739764.CrossRefGoogle ScholarPubMed
Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus–noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42, 3384.CrossRefGoogle ScholarPubMed
Berridge, K. C. (2007). The debate over dopamine's role in reward: The case for incentive salience. Psychopharmacology, 191, 391431.CrossRefGoogle ScholarPubMed
Berridge, K. C. (2009). “Liking” and “wanting” food rewards: Brain substrates and roles in eating disorders. Physiology & Behavior, 97, 537550.CrossRefGoogle Scholar
Blumer, D., & Benson, D. F. (1975). Personality changes with frontal and temporal lobe lesions. In Benson, D. F. & Blumer, D. (Eds.), Psychiatric aspects of neurologic disease (pp. 151170). New York: Gruen & Stratton.Google Scholar
Brodal, A. (1969). Neurological anatomy in relation to clinical medicine. New York: Oxford University Press.Google Scholar
Carcea, I., & Froemke, R. C. (2013). Cortical plasticity, excitatory–inhibitory balance, and sensory perception. Progress in Brain Research, 207, 6590.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Tucker, D. M. (1994). Development and self-regulatory structures of the mind. Development and Psychopathology, 6, 533549.CrossRefGoogle Scholar
Cirelli, C., & Tononi, G. (2008). Is sleep essential? PLOS Biology, 6, e216.CrossRefGoogle ScholarPubMed
Cooper, J. R., Bloom, F. E., & Roth, R. H. (1974). The biochemical basis of neuropharmacology. New York: Oxford University Press.Google Scholar
Cuthbert, B. N. (2014). Research domain criteria: Toward future psychiatric nosology. Asian Journal of Psychiatry, 7, 45.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1998). Emotion in the perspective of an integrated nervous system. Brain Research Reviews, 26, 8386.CrossRefGoogle ScholarPubMed
Dart, R. A. (1934). The dual structure of the neopallium: Its history and significance. Journal of Anatomy, 69, 319.Google ScholarPubMed
Day, J. J., & Sweatt, J. D. (2011). Cognitive neuroepigenetics: A role for epigenetic mechanisms in learning and memory. Neurobiology of Learning and Memory, 96, 212.CrossRefGoogle ScholarPubMed
Day, J. J., & Sweatt, J. D. (2012). Epigenetic treatments for cognitive impairments. Neuropsychopharmacology, 37, 247260.CrossRefGoogle ScholarPubMed
den Ouden, H.E., Frith, U., Frith, C., & Blakemore, S. J. (2005). Thinking about intentions. NeuroImage, 28, 787796.CrossRefGoogle ScholarPubMed
Derryberry, D., & Rothbart, M. K. (1984). Emotion, attention, and temperament. In Izard, C. E., Kagan, J., & Zajonc, R. B. (Eds.), Emotions, cognition, and behavior (pp. 132166). Cambridge: Cambridge University Press.Google Scholar
Derryberry, D., & Rothbart, M. K. (1988). Affect, arousal, and attention as components of temperament. Journal of Personality and Social Psychology, 55, 958966.CrossRefGoogle ScholarPubMed
Derryberry, D., & Rothbart, M. K. (1997). Reactive and effortful processes in the organization of temperament. Development and Psychopathology, 9, 633652.CrossRefGoogle ScholarPubMed
Derryberry, D., & Tucker, D. M. (2006). Motivation, self-regulation, and self-organization. In Cohen, D. J. & Cicchetti, D. (Eds.), Handbook of developmental psychopathology: Developmental neuroscience (Vol. 1, pp. 502532). New York: Wiley.Google Scholar
DeYoung, C. G. (2013). The neuromodulator of exploration: A unifying theory of the role of dopamine in personality. Frontiers in Human Neuroscience, 7, 762.CrossRefGoogle ScholarPubMed
DeYoung, C. G. (in press). Cybernetic Big Five theory. Journal of Research in Personality.Google Scholar
Dishion, T. J., Nelson, S. E., Winter, C. E., & Bullock, B. M. (2004). Adolescent friendship as a dynamic system: Entropy and deviance in the etiology and course of male antisocial behavior. Journal of Abnormal Child Psychology, 32, 651663.CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1973). Personality, learning, and “anxiety.” In Eysenck (Ed.), Handbook of abnormal psychology (pp. 390419). London: Pitman.Google Scholar
Fairbairn, W. R. D. (1994). Psychoanalytic studies of the personality. New York: Routledge.Google Scholar
Flor-Henry, P., & Koles, Z. J. (1984). Statistical quantitative EEG studies of depression, mania, schizophrenia and normals. Biological Psychology, 19, 257279.CrossRefGoogle ScholarPubMed
Floresco, S. B., & Phillips, A. G. (2001). Delay-dependent modulation of memory retrieval by infusion of a dopamine D1 agonist into the rat medial prefrontal cortex. Behavioral Neuroscience, 115, 934939.CrossRefGoogle ScholarPubMed
Fonagy, P. (2000). Attachment and borderline personality disorder. Journal of the American Psychoanalytic Association, 48, 11291146, 1175–1187.CrossRefGoogle ScholarPubMed
Gabriel, M., Kubota, Y., Sparenborg, S., Straube, K., & Vogt, B. A. (1991). Effects of cingulate cortical lesions on avoidance learning and training-induced unit activity in rabbits. Experimental Brain Research, 86, 585600.CrossRefGoogle ScholarPubMed
Gabriel, M., Lambert, R. W., Foster, K., Orona, E., Sparenborg, S., & Maiorca, R. R. (1983). Anterior thalamic lesions and neuronal activity in the cingulate and retrosplenial cortices during discriminative avoidance behavior in rabbits. Behavioral Neuroscience, 97, 675696.CrossRefGoogle ScholarPubMed
Gabriel, M., & Sparenborg, S. (1986). Anterior thalamic discriminative neuronal responses enhanced during learning in rabbits with subicular and cingulate cortical lesions. Brain Research, 384, 195198.CrossRefGoogle ScholarPubMed
Galaburda, A. M., & Pandya, D. N. (1983). The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. Journal of Comparative Neurology, 221, 169184.CrossRefGoogle ScholarPubMed
Garcia, S. E., Tully, E. C., Tarantino, N., South, S., Iacono, W. G., & McGue, M. (2013). Changes in genetic and environmental influences on trait anxiety from middle adolescence to early adulthood. Journal of Affective Disorders, 151, 4653.CrossRefGoogle ScholarPubMed
Goldberg, G. (1985). Supplementary motor area structure and function: Review and hypotheses. Behavioral and Brain Sciences, 8, 567616.CrossRefGoogle Scholar
Gottlieb, G., & Willoughby, M. T. (2006). Probabilistic epigenesis of psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Theory and method (Vol. 1, 2nd ed., pp. 673700). Hoboken, NJ: Wiley.Google Scholar
Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
Greenough, W. T., & Black, J. E. (1992). Induction of brain structure by experience: Substrates for cognitive development. In Gunnar, M. & Nelson, C. (Eds.), Minnesota symposium on child psychology: Developmental behavioral neuroscience: (Vol. 24, pp. 155200). Hillsdale, NJ: Erlbaum.Google Scholar
Grossberg, S. (1980). How does a brain build a cognitive code? Psychological Review, 87, 151.CrossRefGoogle ScholarPubMed
Hanganu-Opatz, I. L. (2010). Between molecules and experience: Role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. Brain Research Reviews, 64, 160176.CrossRefGoogle ScholarPubMed
Harkness, K. L., & Tucker, D. M. (2000). Motivation of neural plasticity: Neural mechanisms in the self-organization of depression. In Lewis, M. D. & Granic, I. (Eds.), Emotion, development, and self-organization (pp. 186208). New York: Cambridge University Press.CrossRefGoogle Scholar
Hazell, J. (1977). Personal relations therapy: The collected papers of H. J. S. Guntrip. New York: Jason Aronson.Google Scholar
Heimer, L., & Nauta, W. J. (1969). The hypothalamic distribution of the stria terminalis in the rat. Brain Research, 13, 284297.CrossRefGoogle ScholarPubMed
Heimer, L., Van Hoesen, G. W., Trimble, M., & Zahm, D. S. (2007). Anatomy of neuropsychiatry: The new anatomy of the basal forebrain and its implications for neuropsychiatric illness. New York: Academic Press.Google Scholar
Hendler, J. A. (1995). Types of planning: Can artificial intelligence yield insights into prefrontal function? In Grafman, J., Holyoak, K. J., & Boller, F. (Eds.), Structure and functions of the human prefrontal cortex (Vol. 769, pp. 265276). New York: New York Academy of Sciences.Google Scholar
Hensch, T. K. (2005a). Critical period plasticity in local cortical circuits. Nature Reviews Neuroscience, 6, 877888.CrossRefGoogle ScholarPubMed
Hensch, T. K. (2005b). Critical period mechanisms in developing visual cortex. Current Topics in Developmental Biology, 69, 215237.CrossRefGoogle ScholarPubMed
Hinshelwood, R., Robinson, S., & Zarate, O. (2011). Introducing Melanie Klein: A graphic guide. New York: Icon Books.Google Scholar
Hinton, G., Plaut, D., & Shalice, T. (1993). Simulating brain damage. Scientific American, 7682.CrossRefGoogle ScholarPubMed
Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28, 229289.CrossRefGoogle Scholar
Huttenlocher, P. R. (1979). Synpatic density in human frontal cortex—Developmental changes and effects of aging. Brain Research, 163, 195205.Google Scholar
Ikemoto, S. (2010). Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory. Neuroscience & Biobehavioral Reviews, 35, 129150.CrossRefGoogle ScholarPubMed
Jones, E. G. (2007). The thalamus (Vol. 1). Cambridge: Cambridge University Press.Google Scholar
Jung, C. G. (1971). Psychological types (Vol. 6). Princeton, NJ: Princeton University Press. (Original work published 1921)Google Scholar
Kamin, L. J. (1968). Selective association and conditioning. In Mackintosh, N. J. & Honig, W. K. (Eds.), Fundamental issues in associative learning (pp. 4264). Halifax, NS: Dalhousie University Press.Google Scholar
Kohut, H. (1978). The search for the self. New York: International Universities Press.Google Scholar
Kokkinidis, L., & Anisman, H. (1980). Amphetamine models of paranoid schizophrenia: An overview and elaboration of animal experimentation. Psychological Bulletin, 88, 551578.CrossRefGoogle ScholarPubMed
Kokkinidis, L., & Anisman, H. (1983). Amphetamine-induced stereotypy: Reply to Rebec and Bashore. Psychological Bulletin, 93, 368372.CrossRefGoogle ScholarPubMed
Kumsta, R., Stevens, S., Brookes, K., Schlotz, W., Castle, J., Beckett, C., et al. (2010). 5HTT genotype moderates the influence of early institutional deprivation on emotional problems in adolescence: Evidence from the English and Romanian Adoptee (ERA) study. Journal of Child Psychology and Psychiatry, 51, 755762.CrossRefGoogle ScholarPubMed
Lieberman, P. (1984). The biology and evolution of language. Cambridge, MA: Harvard University Press.Google Scholar
Liotti, M., & Tucker, D. M. (1994). Emotion in asymmetric corticolimbic networks. In Davidson, R. J. & Hugdahl, K. (Eds.), Human brain laterality (pp. 389424). New York: Oxford University Press.Google Scholar
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science, 277, 16591662.CrossRefGoogle ScholarPubMed
Luria, A. R. (1973). The working brain: An introduction to neuropsychology. New York: Basic Books.Google Scholar
Luu, P., & Tucker, D. M. (2003a). Self-regulation and the executive functions: Electrophysiological clues. In Zani, A. & Preverbio, A. M. (Eds.), The cognitive electrophysiology of mind and brain (pp. 199223). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Luu, P., & Tucker, D. M. (2003b). Self-regulation by the medial frontal cortex: Limbic representation of motive set-points. In Beauregard, M. (Ed.), Consciousness, emotional self-regulation and the brain (pp. 123161). Amsterdam: John Benjamins.Google Scholar
MacLean, P. D. (1990). The triune brain in evolution: Role in paleocerebral functions. New York: Plenum Press.Google Scholar
Mahler, M. S. (1968). On human symbiosis and the vicissitudes of individuation. New York: International Universities Press.Google Scholar
Maricic, T., Gunther, V., Georgiev, O., Gehre, S., Curlin, M., Schreiweis, C., et al. (2013). A recent evolutionary change affects a regulatory element in the human FOXP2 gene. Molecular Biology and Evolution, 30, 844852.CrossRefGoogle ScholarPubMed
Marin-Padilla, M. (1998). Cajal-Retzius cells and the development of the neocortex. Trends in Neurosciences, 21, 6471.CrossRefGoogle ScholarPubMed
Marwaha, S., Broome, M. R., Bebbington, P. E., Kuipers, E., & Freeman, D. (2014). Mood instability and psychosis: Analyses of British national survey data. Schizophrenia Bulletin, 40, 269277.CrossRefGoogle ScholarPubMed
Mesulam, M. M. (1990). Large-scale neurocognitive networks and distributed processing of attention, language, and memory. Annals of Neurology, 28, 597613.CrossRefGoogle ScholarPubMed
Mesulam, M. M., Mufson, E. J., Levey, A. I., & Wainer, B. H. (1983). Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. Journal of Comparative Neurology, 214, 170197.CrossRefGoogle ScholarPubMed
Mesulam, M. M., Van Hoesen, G. W., Pandya, D. N., & Geschwind, N. (1977). Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: A study with a new method for horseradish peroxidase histochemistry. Brain Research, 13, 393414.CrossRefGoogle Scholar
Mishkin, M. (1982). A memory system in the monkey. Philosophical Transactions of the Royal Society of London, 298B, 8395.Google Scholar
Morrison, J. H., Foote, S. L., Molliver, M. E., Bloom, F. E., & Lidov, H. G. W. (1982). Noradrenergic and serotonergic fibers innervate complementary layers in monkey primary visual cortex: An immunohistochemical study. Proceedings of the National Academy of Sciences, 79, 24012405.CrossRefGoogle ScholarPubMed
Moruzzi, G., & Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology, 1, 445473.CrossRefGoogle ScholarPubMed
Nagy, E., Liotti, M., Brown, S., Waiter, G., Bromiley, A., Trevarthen, C., et al. (2010). The neural mechanisms of reciprocal communication. Brain Research, 1353, 159167.CrossRefGoogle ScholarPubMed
Nauta, W. J. H., & Haymaker, W. (1969). Hypothalamic nuclei and fiber connections. In Haymaker, W., Anderson, E., & Nauta, W. J. H. (Eds.), The hypothalamus (pp. 136209). Springfield, IL: Charles C. Thomas.Google Scholar
Oberlander, T. F. (2012). Fetal serotonin signaling: Setting pathways for early childhood development and behavior. Journal of Adolescent Health, 51(Suppl. 2), S9S16.CrossRefGoogle ScholarPubMed
O'Donnell, P. (2010). Adolescent maturation of cortical dopamine. Neurotoxicity Research, 18, 306312.CrossRefGoogle ScholarPubMed
Pandya, D. N., & Seltzer, B. (1982). Association areas of the cerebral cortex. Trends in Neural Science, 5, 386390.CrossRefGoogle Scholar
Pandya, D. N., Seltzer, B., & Barbas, H. (1988). Input–output organization of the primate cerebral cortex. Comparative Primate Biology, 4, 3980.Google Scholar
Pandya, D. N., Van Hoesen, G. W., & Mesulam, M. M. (1981). Efferent connections of the cingulate gyrus in the rhesus monkey. Experimental Brain Research, 42, 319330.CrossRefGoogle ScholarPubMed
Panksepp, J. (1981). Brain opioids: A neurochemical substrate for narcotic and social dependence. In Cooper, S. (Ed.), Theory in psychopharmacology (Vol. 1). New York: Academic Press.Google Scholar
Panksepp, J. (2003). Neuroscience: Feeling the pain of social loss. Science, 302, 237239.CrossRefGoogle ScholarPubMed
Panksepp, J., Siviy, S. M., & Mormansell, L. A. (1985). Brain opioids and social emotions. In Reite, M. & Field, T. (Eds.), The psychobiology of attachment and separation (pp. 349). New York: Academic Press.CrossRefGoogle Scholar
Passingham, R. E. (1970). The neurological basis of introversion–extroversion: Gray's theory. Behavioral Research and Therapy, 8, 353366.CrossRefGoogle Scholar
Passingham, R. E. (1987). Two cortical systems for directing movement. In Bock, G., O'Connor, M., & Marsh, J. (Eds.), Novartis Foundation symposia: Motor areas of the cerebral cortex (Vol. 132, pp. 151164). New York: Wiley.Google Scholar
Piaget, J. (1992). The origins of intelligence in children. New York: International Universities Press. (Original work published 1936)Google Scholar
Post, R. M. (1986). Does limbic system dysfunction play a role in affective illness? In Benjamin, D. K. & Livingston, K. E. (Eds.), The limbic system: Functional organization and clinical disorders (pp. 229249). New York: Raven Press.Google Scholar
Pribram, K. H. (1981). Emotions. In Filskov, S. K. & Boll, T. J. (Eds.), Handbook of clinical neuropsychology (pp. 102134). New York: Wiley.Google Scholar
Pribram, K. H., & Gill, M. M. (1976). Freud's “project” re-assessed. New York: Basic Books.Google Scholar
Pribram, K. H., & MacLean, P. D. (1953). Neuronographic analysis of medial and basal cerebral cortex: II. Monkey. Journal of Neurophysiology, 16, 324340.CrossRefGoogle ScholarPubMed
Pribram, K. H., & McGuinness, D. (1975). Arousal, activation, and effort in the control of attention. Psychological Review, 82, 6149.CrossRefGoogle ScholarPubMed
Rakic, P. (2009). Evolution of the neocortex: A perspective from developmental biology. Nature Reviews Neuroscience, 10, 724735.CrossRefGoogle ScholarPubMed
Rapaport, D. (1948). The clinical application of psychological tests. New York: International Universities Press.Google Scholar
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H. & Prokasy, W. F. (Eds.), Classical conditioning: Vol. 2. Current research and theory (pp. 6599). New York: Appleton–Century–Crofts.Google Scholar
Rothbart, M. K., & Posner, M. I. (2006). Temperament, attention, and developmental psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Developmental neuroscience (Vol. 2, 2nd ed., pp. 465501). Hoboken, NJ: Wiley.Google Scholar
Sanides, F. (1975). Comparative neurology of the temporal lobe in primates including man with reference to speech. Brain and Language, 2, 396419.CrossRefGoogle ScholarPubMed
Saucier, G., & Goldberg, L. R. (1998). What is beyond the Big Five? Journal of Personality, 66, 495524.Google ScholarPubMed
Saucier, G., Thalmayer, A. G., Payne, D. L., Carlson, R., Sanogo, L., Ole-Kotikash, L., et al. (2013). A basic bivariate structure of personality attributes evident across nine languages. Journal of Personality. Advance online publication.Google ScholarPubMed
Schildkraut, J. (1965). The catecholamine hypothesis of affective disorders: A review of supporting evidence. American Journal of Psychiatry, 122, 509522.CrossRefGoogle ScholarPubMed
Schnack, H. G., van Haren, N. E., Brouwer, R. M., Evans, A., Durston, S., Boomsma, D. I., et al. (2014). Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cerebral Cortex. Advance online publication.Google Scholar
Schultz, W. (1997). Dopamine neurons and their role in reward mechanisms. Current Opinion in Neurobiology, 7, 191197.CrossRefGoogle ScholarPubMed
Schultz, W. (1998). The phasic reward signal of primate dopamine neurons. Advances in Pharmacology, 42, 686690.CrossRefGoogle ScholarPubMed
Seamans, J. K., Floresco, S. B., & Phillips, A. G. (1998). D1 receptor modulation of hippocampal–prefrontal cortical circuits integrating spatial memory with executive functions in the rat. Journal of Neuroscience, 18, 16131621.CrossRefGoogle ScholarPubMed
Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K., & Van Hoesen, G. W. (2001). Prefrontal cortex in humans and apes: A comparative study of area 10. American Journal of Physical Anthropology, 11, 224241.3.0.CO;2-I>CrossRefGoogle Scholar
Shapiro, D. (1965). Neurotic styles. New York: Basic Books.Google Scholar
Shapiro, D. (1981). Autonomy and the rigid character. New York: Basic Books.Google Scholar
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676679.CrossRefGoogle ScholarPubMed
Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., et al. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28, 35863594.CrossRefGoogle ScholarPubMed
Shima, K., & Tanji, J. (1998). Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements. Journal of Neurophysiology, 80, 32473260.CrossRefGoogle ScholarPubMed
Shima, K., & Tanji, J. (2000). Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. Journal of Neurophysiology, 84, 21482160.CrossRefGoogle ScholarPubMed
Shipp, S. (2005). The importance of being agranular: A comparative account of visual and motor cortex. Philosophical Transactions of the Royal Society of London, 360B, 797814.CrossRefGoogle Scholar
Spiteri, E., Konopka, G., Coppola, G., Bomar, J., Oldham, M., Ou, J., et al. (2007). Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. American Journal of Human Genetics, 81, 11441157.CrossRefGoogle ScholarPubMed
Swaab, D. F. (2008). Sexual orientation and its basis in brain structure and function. Proceedings of the National Academy of Sciences, 105, 1027310274.CrossRefGoogle ScholarPubMed
Sweatt, J. D. (2013). The emerging field of neuroepigenetics. Neuron, 80, 624632.CrossRefGoogle ScholarPubMed
Takesian, A. E., & Hensch, T. K. (2013). Balancing plasticity/stability across brain development. Progress in Brain Research, 207, 334.CrossRefGoogle ScholarPubMed
Tellegen, A. (1985). Structures of mood and personality and their relevance to assessing anxiety, with an emphasis on self-report. In Tuma, A. H. & Maser, J. D. (Eds.), Anxiety and the anxiety disorders (pp. 681706). Hillsdale, NJ: Erlbaum.Google Scholar
Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine Reviews, 10, 4962.CrossRefGoogle ScholarPubMed
Tops, M., Russo, S., Boksem, M. A., & Tucker, D. M. (2009). Serotonin: Modulator of a drive to withdraw. Brain and Cognition, 71, 427436.CrossRefGoogle ScholarPubMed
Toyoizumi, T., Miyamoto, H., Yazaki-Sugiyama, Y., Atapour, N., Hensch, T. K., & Miller, K. D. (2013). A theory of the transition to critical period plasticity: Inhibition selectively suppresses spontaneous activity. Neuron, 80, 5163.CrossRefGoogle ScholarPubMed
Trevarthen, C. (1984). Emotions in infancy: Regulators of contacts and relationships with persons. In Scherer, K. & Ekman, P. (Eds.), Approaches to emotion (pp. 129157). Hillsdale, NJ: Erlbaum.Google Scholar
Trevarthen, C. (1986). Brain science and the human spirit. Zygon, 21, 161200.CrossRefGoogle Scholar
Tseng, K. Y., & O'Donnell, P. (2007). D2 dopamine receptors recruit a GABA component for their attenuation of excitatory synaptic transmission in the adult rat prefrontal cortex. Synapse, 61, 843850.CrossRefGoogle ScholarPubMed
Tucker, D. M. (1993). Emotional experience and the problem of vertical integration. Neuropsychology, 7, 500509.CrossRefGoogle Scholar
Tucker, D. M. (2001). Motivated anatomy: A core-and-shell model of corticolimbic architecture. In Gainotti, G. (Ed.), Handbook of neuropsychology: Emotional behavior and its disorders (Vol. 5, 2nd ed., pp. 125160). Amsterdam: Elsevier.Google Scholar
Tucker, D. M. (2007). Mind from body: Experience from neural structure. New York: Oxford University Press.CrossRefGoogle Scholar
Tucker, D. M., & Luu, P. (1998). Cathexis revisited: Corticolimbic resonance and the adaptive control of memory. Annals of the New York Academy of Sciences, 843, 134152.CrossRefGoogle ScholarPubMed
Tucker, D. M., & Luu, P. (2006). Adaptive binding. In Zimmer, H., Mecklinger, A., & Lindenberger, U. (Eds.), Binding in human memory: A neurocognitive approach (pp. 85108). New York: Oxford University Press.Google Scholar
Tucker, D. M., & Luu, P. (2007). Neurophysiology of motivated learning: Adaptive mechanisms of cognitive bias in depression. Cognitive Therapy and Research, 31, 189209.CrossRefGoogle Scholar
Tucker, D. M., & Luu, P. (2012). Cognition and neural development. New York: Oxford University Press.CrossRefGoogle Scholar
Tucker, D. M., Luu, P., & Derryberry, D. (2005). Love hurts: The evolution of empathic concern through the encephalization of nociceptive capacity. Development and Psychopathology, 17, 699713.CrossRefGoogle ScholarPubMed
Tucker, D. M., Luu, P., & Poulsen, C. (in press). The neurodevelopmental process of self-organization. In Cicchetti, D. (Ed.), Developmental psychopathology (3rd ed.). Hoboken, NJ: Wiley.Google Scholar
Tucker, D. M., & Moller, L. (2007). The metamorphosis: Individuation of the adolescent brain. In Romer, D. & Walker, E. F. (Eds.), Adolescent psychopathology and the developing brain: Integrating brain and prevention science (pp. 85102). New York: Oxford University Press.CrossRefGoogle Scholar
Tucker, D. M., & Williamson, P. A. (1984). Asymmetric neural control systems in human self-regulation. Psychological Review, 91, 185215.CrossRefGoogle ScholarPubMed
Turrigiano, G. (2007). Homeostatic signaling: The positive side of negative feedback. Current Opinion in Neurobiology, 17, 318324.CrossRefGoogle ScholarPubMed
Turrigiano, G. (2012). Homeostatic synaptic plasticity: Local and global mechanisms for stabilizing neuronal function. Cold Spring Harbor Perspectives in Biology, 4, a005736.CrossRefGoogle ScholarPubMed
Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In Ingle, D. J., Mansfield, R. J. W., & Goodale, M. A. (Eds.), The analysis of visual behavior (pp. 549586). Cambridge, MA: MIT Press.Google Scholar
Vargha-Khadem, F., Gadian, D. G., Copp, A., & Mishkin, M. (2005). FOXP2 and the neuroanatomy of speech and language. Nature Reviews Neuroscience, 6, 131138.CrossRefGoogle ScholarPubMed
von de Malsburg, C., & Singer, W. (1988). Principles of cortical network organization. In Rakic, P. & Singer, W. (Eds.), Neurobiology of neocortex (pp. 6999). New York: Wiley.Google Scholar
Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150, 563565.CrossRefGoogle Scholar
Wise, R. A. (1989). The brain and reward. In Liebman, J. & Cooper, S. J. (Eds.), The neuropharmacological basis of reward (pp. 377424). Oxford: Clarendon Press.Google Scholar
Yakovlev, P. I. (1948). Motility, behavior and the brain. Journal of Nervous and Mental Disease, 107, 313335.CrossRefGoogle ScholarPubMed
Yakovlev, P. I., & Lecours, A. R. (1967). The myelinogenetic cycles of regional maturation of the brain. In Minkowski, A. (Ed.), Regional development of the brain in early life (pp. 370). Oxford: Blackwell.Google Scholar
Zikopoulos, B., & Barbas, H. (2006). Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. Journal of Neuroscience, 26, 73487361.CrossRefGoogle Scholar
Zola-Morgan, S., & Squire, L. R. (1993). Neuroanatomy of memory. Annual Review of Neuroscience, 16, 547563.CrossRefGoogle ScholarPubMed