Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T15:26:08.293Z Has data issue: false hasContentIssue false

Children's vagal regulatory capacity predicts attenuated sympathetic stress reactivity in a socially supportive context: Evidence for a protective effect of the vagal system

Published online by Cambridge University Press:  17 April 2012

Brian C. Wolff*
Affiliation:
University of Denver
Martha E. Wadsworth
Affiliation:
University of Denver
Frank H. Wilhelm
Affiliation:
University of Salzburg
Iris B. Mauss
Affiliation:
University of California, Berkeley
*
Address correspondence and reprint requests to: Brian C. Wolff, Department of Psychology, University of Denver, 2155 South Race Street, Denver, CO 80208; E-mail: [email protected].

Abstract

Social support and vagal regulatory capacity (VRC), an index of flexible vagal responses during various types of stress, are linked to attenuated stress responding and positive health outcomes. Guided by the polyvagal perspective, we tested whether children's VRC is associated with attenuated sympathetic nervous system (SNS) stress reactivity in socially supportive conditions. Sixty-one 4- to 5-year-old children living in poverty underwent two standardized laboratory stress induction procedures. Cardiac vagal reactivity (respiratory sinus arrhythmia) to a first set of stressors (social, cognitive, physical, and emotional) indexed VRC. During a second set of stressors, participants were randomly assigned to a supportive or nonsupportive social context, and cardiac sympathetic reactivity (preejection period) was assessed. We hypothesized VRC would predict lower SNS stress reactivity, but only in the socially supportive context. Children with high VRC showed attenuated SNS stress reactivity in the socially supportive context compared to children with high VRC in the nonsupportive context and children with low VRC in either context. Individual differences in VRC predict attenuated SNS stress reactivity in socially supportive conditions. Understanding how social support and VRC jointly mitigate SNS stress reactivity may further efforts to prevent negative health outcomes. Implications for biological sensitivity to context and differential susceptibility theories are discussed.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alkon, A., Goldstein, L. H., Smider, N., Essex, M. J., Kupfer, D. J., & Boyce, W. T. (2003). Developmental and contextual influences on autonomic reactivity in young children. Developmental Psychobiology, 42, 6478.CrossRefGoogle ScholarPubMed
Bakker, M. J., Tijsen, M. A., van der Meer, J. N., Koelman, J. H., & Boer, F. (2009). Increased whole-body auditory startle reflex and autonomic reactivity in children with anxiety disorders. Journal of Psychiatry and Neuroscience, 34, 314322.Google ScholarPubMed
Bar-Haim, Y., Marshall, P. J., & Fox, N. A. (2000). Developmental changes in heart period and high-frequency heart period variability from 4 months to 4 years of age. Developmental Psychobiology, 37, 4456.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Beauchaine, T. (2001). Vagal tone, development, and Gray's motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Gatze-Kopp, L., & Mead, H. K. (2007). Polyvagal theory and developmental psychopathology: Emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74, 174184.CrossRefGoogle ScholarPubMed
Belsky, J., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.CrossRefGoogle Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism: The modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98, 459487.CrossRefGoogle ScholarPubMed
Berntson, G. G., Norman, G. J., Hawkley, L. C., & Cacioppo, J. T. (2008). Cardiac autonomic balance versus cardiac regulatory capacity. Psychophysiology, 45, 643652.CrossRefGoogle ScholarPubMed
Berntson, G. G., Quigley, K. S., & Lozano, D. (2007) Cardiovascular psychophysiology. In Cacioppo, J. T. & Tassinary, L. G. (Eds.), Handbook of psychophysiology (3rd ed.). New York: Cambridge University Press.Google Scholar
Borstein, M. H., & Suess, P. E. (2000). Child and mother cardiac vagal tone: Continuity, stability, and concordance across the first 5 years. Developmental Psychology, 36, 5465.CrossRefGoogle Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.CrossRefGoogle ScholarPubMed
Boyce, W. T., Quas, J., Alkon, A., Smider, N. A., Essex, M. J., & Kupfer, D. J. (2001). Autonomic reactivity and psychopathology in middle childhood. British Journal of Psychiatry, 179, 144150.CrossRefGoogle ScholarPubMed
Briggs, R. (1982). The snowman. London: Snowman Enterprises.Google Scholar
Brown, M. W. (1942). The runaway bunny. New York: HarperFestival.Google Scholar
Brown, M. W. (1947). Goodnight moon. New York: HarperFestival.Google Scholar
Cacioppo, J., Uchino, B., & Berntson, G. (1994). Individual differences in the autonomic origins of heart rate reactivity: The psychometrics of respiratory sinus arrhythmia and preejection period. Psychophysiology, 31, 412419.CrossRefGoogle ScholarPubMed
Calkins, S. D., & Keane, S. P. (2004). Cardiac vagal regulation across the preschool period: Stability, continuity, & implications for childhood adjustment. Developmental Psychobiology, 45, 101112.CrossRefGoogle ScholarPubMed
Carapetian, S., Siedlarz, M., Jackson, S., & Perlmuter, L. C. (2008). Orthostatic blood pressure regulation predicts classroom effort in children. International Journal of Psychophysiology, 68, 7074.CrossRefGoogle ScholarPubMed
Carlson, R. (1985). Gesell School Readiness Test. In Keyser, D. & Sweetland, R. (Eds.), Test critiques. Kansas City, KS: Test Corporation of America.Google Scholar
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
Cohen, S., & Hamrick, N. (2003). Stable individual differences in physiological response to stressors: Implications for stress-elicited changes in immune related health. Brain, Behavior, and Immunity, 17, 407414.CrossRefGoogle ScholarPubMed
Cohen, S., Janicki-Deverts, D., & Miller, G. E. (2007). Psychological stress and disease. Journal of the American Medical Association, 298, 16851687.CrossRefGoogle ScholarPubMed
Dearing, E., & Hamilton, L. C. (2006). V. Contemporary advances and classic advice for analyzing mediating and moderating variables. Monographs of the Society for Research in Child Development, 71, 88104.Google Scholar
Doussard-Roosevelt, J. A., Montgomery, L. A., & Porges, S. W. (2003). Short-term stability of physiological measures in kindergarten children: Respiratory sinus arrhythmia, heart period, and cortisol. Developmental Psychobiology, 43, 231242.CrossRefGoogle ScholarPubMed
Doussard-Roosevelt, J. A., & Porges, S. W. (1999). Soothing and stress. In Lewis, M. & Ramsey, D. (Eds.), The role of neurobehavioral organization in stress responses: A polyvagal model (pp. 5776). Mahwah, NJ: Erlbaum.Google Scholar
Ellis, B. J., Essex, M. J., & Boyce, W. T. (2005). Biological sensitivity to context: II. Empirical explorations of an evolutionary–developmental theory. Development and Psychopathology, 17, 303328.CrossRefGoogle ScholarPubMed
El-Sheikh, M. (2005). The role of emotional responses and physiological reactivity in the marital conflict–child functioning link. Journal of Child Psychology and Psychiatry, 46), 11911199.CrossRefGoogle ScholarPubMed
El-Sheikh, M., Erath, S. A., Buckhalt, J. A., Granger, D. A., & Mize, J. (2008). Cortisol and children's adjustment: The moderating role of sympathetic nervous system activity. Journal of Abnormal Child Psychology, 36, 601611.CrossRefGoogle ScholarPubMed
El-Sheikh, M., Kouros, C. D., Erath, S., Cummings, E. M., Keller, P., Stanton, L., et al. (2009). Marital conflict and children's externalizing behavior: Interactions between parasympathetic and sympathetic nervous system activity. Monographs of the Society for Child Development, 74, 169.Google ScholarPubMed
El-Sheikh, M., & Whitson, S. A. (2006). Longitudinal relations between marital conflict and child adjustment: Vagal regulation as a protective factor. Journal of Family Psychology, 20, 3039.CrossRefGoogle ScholarPubMed
Evans, B., Gideon, R., & Scheinman, A. (1986). Stand by me. Universal City, CA: Sony Pictures.Google Scholar
Evans, G. W. (2003). A multimethodological analysis of cumulative risk and allostatic load among rural children. Developmental Psychology, 39, 924933.CrossRefGoogle ScholarPubMed
Evans, G. W., & English, K. (2002). The environment of poverty: Multiple stressor exposure, psychophysiological stress, and socioemotional adjustment. Child Development, 73, 12381248.CrossRefGoogle ScholarPubMed
Gerra, G., Zaimovic, A., Zambelli, U., Timpano, M., Reali, N., Bernasconi, S., et al. (2000). Neuroendocrine responses to psychological stress in adolescents with anxiety disorder. Neuropsychobiology, 42, 8292.CrossRefGoogle ScholarPubMed
Glynn, L. M., Christenfeld, N., & Gerin, W. (1999). Gender, social support, and cardiovascular responses to stress. Psychosomatic Medicine, 61, 234242.CrossRefGoogle ScholarPubMed
Gottman, J. M. (1994). What predicts divorce? The relation between marital processes and marital outcomes. Hillside, NJ: Erlbaum.Google Scholar
Grossman, P., & Taylor, E. W. (2007). Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biological Psychology, 74, 263285.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Fisher, P. A., & The Early Experience Stress, and Prevention Network. (2006). Bringing basic research on early experience and stress neurobiology to bear on preventive interventions for neglected and maltreated children. Development and Psychopathology, 18, 651677.CrossRefGoogle ScholarPubMed
Hubbard, J. A., Smithmyer, C. M., Ramsden, S. R., Parker, E. H., Flanagan, K. D., Dearing, K. F., et al. (2002). Observational, physiological, and self-report measures of children's anger: Relations to reactive versus proactive aggression. Child Development, 73, 11011118.CrossRefGoogle ScholarPubMed
Kagan, J., & Snidman, K. (1991). Temperamental factors in human development. American Psychologist, 46, 856862.CrossRefGoogle ScholarPubMed
Kamarck, T. W., Debski, T. T., & Manuck, S. B. (2000). Enhancing the laboratory-to-life generalizability of cardiovascular reactivity using multiple occasions of measurement. Psychophysiology, 37, 533542.CrossRefGoogle ScholarPubMed
Kashdan, T. B., & Rottenberg, J. (2010). Psychological flexibility as a fundamental aspect of health. Clinical Psychology Review, 30, 865878.CrossRefGoogle ScholarPubMed
Kaufman, A., & Kaufman, N. (1983). Kaufman Assessment Battery for Children. Circle Pines, MN: American Guidance Service.Google Scholar
Kiecolt-Glaser, J. K., & Glaser, R. (1995). Psychoneuroimmunology and health consequences: Data and shared mechanisms. Psychosomatic Medicine, 57, 269274.CrossRefGoogle ScholarPubMed
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84, 394421.CrossRefGoogle ScholarPubMed
Lamorisse, A. (1956). The red balloon. Chatsworth, CA: Homevision.Google Scholar
Lundberg, U. (2006). Stress, subjective and objective health. International Journal of Social Welfare, 15(Suppl. 1), S41S48.CrossRefGoogle Scholar
Manly, J. T., Kim, J. E., Rogosch, F. A., & Cicchetti, D. (2001). Dimensions of child maltreatment and children's adjustment: Contributions of developmental timing and subtype. Development and Psychopathology, 13, 759782.CrossRefGoogle ScholarPubMed
Manuck, S. B., Cohen, S., Rabin, B. S., Muldoon, M. F., & Bachen, E. A. (1991). Individual differences in cellular immune response to stress. Psychological Science, 2, 111115.CrossRefGoogle Scholar
Martin, B. (1967). Brown bear, brown bear, what do you see? New York: Henry Holt.Google Scholar
Moore, G. A., & Calkins, S. D. (2004). Infants' vagal regulation in the still-face paradigm is related to dyadic coordination of mother–infant interaction. Developmental Psychology, 40, 10681080.CrossRefGoogle ScholarPubMed
Obradovic, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: The interactive effects of stress reactivity and family adversity on socioemotional behavior and school readiness. Child Development, 81, 270289.CrossRefGoogle ScholarPubMed
Oosterman, M., De Schipper, J. C., Fisher, P., Dozier, M., & Schuengel, C. (2010). Autonomic reactivity in relation to attachment and early adversity among foster children. Development and Psychopathology, 22, 109118.CrossRefGoogle ScholarPubMed
Pfister, M. (1992). Rainbow fish. Zurich: Nord-Sud Verlag AG.Google Scholar
Pluess, M., & Belsky, J. (2010). Differential susceptibility to parenting and quality child care. Developmental Psychology, 46, 379390.CrossRefGoogle ScholarPubMed
Porges, S.W. (2001). The polyvagal theory: Phylogenetic substrates of a social nervous system. International Journal of Psychophysiology, 42 123146CrossRefGoogle ScholarPubMed
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116143.CrossRefGoogle ScholarPubMed
Propper, C., Moore, G. A., Mills-Koonce, R., Halpern, C. T., Hill-Soderlund, A. L., Calkins, S. D., et al. (2008). Gene–environment contributions to the development of infant vagal reactivity: The interaction of dopamine and maternal sensitivity. Child Development, 79, 13771394.CrossRefGoogle Scholar
Quas, J. A., Bauer, A., & Boyce, W. T. (2004). Physiological reactivity, social support, and memory in early childhood. Child Development, 75, 797814.CrossRefGoogle ScholarPubMed
Quigley, K. S., & Stifter, C. A. (2006). A comparative validation of sympathetic reactivity in children and adults. Psychophysiology, 43, 357365.CrossRefGoogle ScholarPubMed
Repetti, R. L., Taylor, S. E., & Seeman, T. E. (2002). Risky families: Family social environments and the mental and physical health of offspring. Psychological Bulletin, 128, 330366.CrossRefGoogle ScholarPubMed
Rottenberg, J., Clift, A., Bolden, S., & Salomon, K. (2007). RSA fluctuation in major depressive disorder. Psychophysiology, 44, 450458.CrossRefGoogle ScholarPubMed
Sanchez, M. M., Ladd, C. O., & Plotsky, P. M. (2001). Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Development and Psychopathology, 13, 419449.CrossRefGoogle ScholarPubMed
Spielberg, S. (1988). The land before time. Universal City, CA: Amblin Entertainment.Google Scholar
Stifter, C. A., Fox, N. A., & Porges, S. W. (1989). Facial expressivity and vagal tone in 5- and 10-month-old infants. Infant Behavior & Development, 12, 127137.CrossRefGoogle Scholar
Uchino, B. N., Cacioppo, J. T., & Kiecolt-Glaser, J. K. (1996). The relationship between social support and physiological processes: A review with emphasis on underlying mechanisms and implications for health. Psychological Bulletin, 119, 488531.CrossRefGoogle ScholarPubMed
Uchino, B. N., Cacioppo, J. T., Malarkey, W., & Glaser, R. (1995). Individual differences in cardiac sympathetic control predict endocrine and immune responses to acute psychological stress. Journal of Personality and Social Psychology, 69, 736743.CrossRefGoogle ScholarPubMed
Wadsworth, M. E., Raviv, T., Reinhard, C., Wolff, B., Santiago, C. D., & Schachter, L. (2008). Indirect effects model of the association between poverty and child functioning: The role of children's poverty-related stress. Journal of Loss and Trauma, 13, 156185.CrossRefGoogle Scholar
Whisman, M. A., & McClelland, G. H. (2005). Designing, testing, and interpreting interactions and moderator effects in family research. Journal of Family Psychology, 19, 111120.CrossRefGoogle ScholarPubMed
Whitson, S., & El-Sheikh, M. (2003). Marital conflict and health: Processes and protective factors. Aggression and Violent Behavior, 8, 283312.CrossRefGoogle Scholar
Wilhelm, F. H., Grossman, P., & Roth, W. T. (1999). Analysis of cardiovascular regulation. Biomedical Sciences Instrumentation, 35, 135140.Google ScholarPubMed
Wolff, B. C., Santiago, C. D., & Wadsworth, M. E. (2009). Poverty and involuntary engagement stress responses: Examining the link to anxiety and aggression within low-income families. Anxiety, Stress, and Coping, 22, 309325.CrossRefGoogle ScholarPubMed