Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T19:16:22.632Z Has data issue: false hasContentIssue false

Childhood adversity and allostatic overload of the hypothalamic–pituitary–adrenal axis: A vulnerability model for depressive disorders

Published online by Cambridge University Press:  21 October 2011

Paul O. Wilkinson*
Affiliation:
University of Cambridge
Ian M. Goodyer
Affiliation:
University of Cambridge
*
Address correspondence and reprint requests to: Paul O. Wilkinson, University of Cambridge, Section of Developmental Psychiatry, Douglas House, 18b Trumpington Road, Cambridge CB2 8AH, UK; E-mail: [email protected].

Abstract

Childhood adversity is associated with increased risk for onset of depressive episodes. This review will present evidence that allostatic overload of the hypothalamic–pituitary–adrenal axis (HPAA) partially mediates this association. The HPAA is the physiological system that regulates levels of the stress hormone cortisol. First, data from animals and humans has shown that early environmental adversity is associated with long-term dysregulation of the HPAA. This may occur due to permanent epigenetic modification of the glucocorticoid receptor. Second, data from humans has demonstrated that HPAA dysregulation is associated with increased risk of future depression onset in healthy individuals, and pharmacological correction of HPAA dysregulation reduces depressive symptoms. HPAA dysregulation may result in corticoid-mediated abnormalities in neurogenesis in early life and/or neurotoxicity on neural systems that subserve emotion and cognition.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, E. K., Doane, L. D., Zinbarg, R. E., Mineka, S., Craske, M. G., & Griffith, J. W. (2010). Prospective prediction of major depressive disorder from cortisol awakening responses in adolescence. Psychoneuroendocrinology, 35, 921931.CrossRefGoogle ScholarPubMed
Albers, E. M., Riksen-Walraven, J. M., Sweep, F. C., & de Weerth, C. (2008). Maternal behavior predicts infant cortisol recovery from a mild everyday stressor. Journal of Child Psychology and Psychiatry, 49, 97103.CrossRefGoogle ScholarPubMed
Alexander, N., Kuepper, Y., Schmitz, A., Osinsky, R., Kozyra, E., & Hennig, J. (2009). Gene–environment interactions predict cortisol responses after acute stress: Implications for the etiology of depression. Psychoneuroendocrinology, 34, 12941303.CrossRefGoogle ScholarPubMed
Amsterdam, J. D., Maislin, G., Abelman, E., Berwish, N., & Winokur, A. (1986). Adrenocortical responsiveness to the ACTH stimulation test in depressed patients and healthy volunteers. Journal of Affective Disorders, 11, 265274.CrossRefGoogle Scholar
Amsterdam, J. D., Maislin, G., Winokur, A., Kling, M., & Gold, P. (1987). Pituitary and adrenocortical responses to the ovine corticotropin releasing hormone in depressed patients and healthy volunteers. Archives of General Psychiatry, 44, 775781.CrossRefGoogle Scholar
Amsterdam, J. D., Marinelli, D. L., Arger, P., & Winokur, A. (1987). Assessment of adrenal gland volume by computed tomography in depressed patients and healthy volunteers: A pilot study. Psychiatry Research, 21, 189197.CrossRefGoogle ScholarPubMed
Anisman, H., Zaharia, M. D., Meaney, M. J., & Merali, Z. (1998). Do early-life events permanently alter behavioral and hormonal responses to stressors? International Journal of Developmental Neuroscience, 16, 149164.CrossRefGoogle ScholarPubMed
Argyropoulos, S. V., Bailey, J. E., Hood, S. D., Kendrick, A. H., Rich, A. S., Laszlo, G., et al. (2002). Inhalation of 35% CO(2) results in activation of the HPA axis in healthy volunteers. Psychoneuroendocrinology, 27, 715729.CrossRefGoogle ScholarPubMed
Austin, M. C., Janosky, J. E., & Murphy, H. A. (2003). Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men. Molecular Psychiatry, 8, 324332.CrossRefGoogle ScholarPubMed
Baghai, T. C., Schule, C., Zwanzger, P., Minov, C., Holme, C., Padberg, F., et al. (2002). Evaluation of a salivary based combined dexamethasone/CRH test in patients with major depression. Psychoneuroendocrinology, 27, 385399.CrossRefGoogle ScholarPubMed
Banki, C. M., Bissette, G., Arato, M., O'Connor, L., & Nemeroff, C. B. (1987). CSF corticotropin-releasing factor-like immunoreactivity in depression and schizophrenia. American Journal of Psychiatry, 144, 873877.Google ScholarPubMed
Banki, C. M., Karmacsi, L., Bissette, G., & Nemeroff, C. B. (1992). CSF corticotropin-releasing hormone and somatostatin in major depression: Response to antidepressant treatment and relapse. European Neuropsychopharmacology, 2, 107113.CrossRefGoogle ScholarPubMed
Barr, C. S., Newman, T. K., Shannon, C., Parker, C., Dvoskin, R. L., Becker, M. L., et al. (2004). Rearing condition and rh5-HTTLPR interact to influence limbic–hypothalamic–pituitary–adrenal axis response to stress in infant macaques. Biological Psychiatry, 55, 733738.CrossRefGoogle ScholarPubMed
Bartels, M., Van den Berg, M., Sluyter, F., Boomsma, D. I., & de Geus, E. J. (2003). Heritability of cortisol levels: Review and simultaneous analysis of twin studies. Psychoneuroendocrinology, 28, 121137.CrossRefGoogle ScholarPubMed
Bayart, F., Hayashi, K. T., Faull, K. F., Barchas, J. D., & Levine, S. (1990). Influence of maternal proximity on behavioral and physiological responses to separation in infant rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 104, 98107.CrossRefGoogle ScholarPubMed
Beach, S. R., Brody, G. H., Todorov, A. A., Gunter, T. D., & Philibert, R. A. (2010). Methylation at SLC6A4 is linked to family history of child abuse: An examination of the Iowa Adoptee sample. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153B, 710713.CrossRefGoogle ScholarPubMed
Belanoff, J. K., Flores, B. H., Kalezhan, M., Sund, B., & Schatzberg, A. F. (2001). Rapid reversal of psychotic depression using mifepristone. Journal of Clinical Psychopharmacology, 21, 516521.CrossRefGoogle ScholarPubMed
Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., & Williams, R. (2009). Vulnerability genes or plasticity genes? Molecular Psychiatry, 14, 746754.CrossRefGoogle ScholarPubMed
Bet, P. M., Penninx, B. W., Bochdanovits, Z., Uitterlinden, A. G., Beekman, A. T., van Schoor, N. M., et al. (2009). Glucocorticoid receptor gene polymorphisms and childhood adversity are associated with depression: New evidence for a gene–environment interaction. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150B, 660669.CrossRefGoogle ScholarPubMed
Bhagwagar, Z., Hafizi, S., & Cowen, P. J. (2003). Increase in concentration of waking salivary cortisol in recovered patients with depression. American Journal of Psychiatry, 160, 18901891.CrossRefGoogle ScholarPubMed
Binder, E. B., Owens, M. J., Liu, W., Deveau, T. C., Rush, A. J., Trivedi, M. H., et al. (2010). Association of polymorphisms in genes regulating the corticotropin-releasing factor system with antidepressant treatment response. Archives of General Psychiatry, 67, 369379.CrossRefGoogle ScholarPubMed
Binneman, B., Feltner, D., Kolluri, S., Shi, Y., Qiu, R., & Stiger, T. (2008). A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. American Journal of Psychiatry, 165, 617620.CrossRefGoogle ScholarPubMed
Bissette, G., Klimek, V., Pan, J., Stockmeier, C., & Ordway, G. (2003). Elevated concentrations of CRF in the locus coeruleus of depressed subjects. Neuropsychopharmacology, 28, 13281335.CrossRefGoogle ScholarPubMed
Bradley, R. G., Binder, E. B., Epstein, M. P., Tang, Y., Nair, H. P., Liu, W., et al. (2008). Influence of child abuse on adult depression: Moderation by the corticotropin-releasing hormone receptor gene. Archives of General Psychiatry, 65, 190200.CrossRefGoogle ScholarPubMed
Brent, D., Melhem, N., Ferrell, R., Emslie, G., Wagner, K. D., Ryan, N., et al. (2010). Association of FKBP5 polymorphisms with suicidal events in the Treatment of Resistant Depression in Adolescents (TORDIA) study. American Journal of Psychiatry, 167, 190197.CrossRefGoogle ScholarPubMed
Brown, G. W., Craig, T. K., & Harris, T. O. (2008). Parental maltreatment and proximal risk factors using the Childhood Experience of Care & Abuse (CECA) instrument: A life-course study of adult chronic depression—5. Journal of Affective Disorders, 110, 222233.CrossRefGoogle ScholarPubMed
Brown, G. W., & Harris, T. (1978). Social origins of depression. A study of psychiatric disorder in women. London: Tavistock Publications.Google Scholar
Buchanan, T. W., Tranel, D., & Adolphs, R. (2006). Impaired memory retrieval correlates with individual differences in cortisol response but not autonomic response. Learning & Memory, 13, 382387.CrossRefGoogle Scholar
Buchen, L. (2010). Neuroscience: In their nurture. Nature, 467, 146148.CrossRefGoogle ScholarPubMed
Buss, C., Wolf, O. T., Witt, J., & Hellhammer, D. H. (2004). Autobiographic memory impairment following acute cortisol administration. Psychoneuroendocrinology, 29, 10931096.CrossRefGoogle ScholarPubMed
Cannon, W. B. (1932). The wisdom of the body. New York: W.W. Norton & Co.CrossRefGoogle Scholar
Carlson, M., & Earls, F. (1997). Psychological and neuroendocrinological sequelae of early social deprivation in institutionalized children in Romania. Annals of the New York Academy of Sciences, 807, 419428.CrossRefGoogle ScholarPubMed
Carpenter, L. L., Tyrka, A. R., McDougle, C. J., Malison, R. T., Owens, M. J., Nemeroff, C. B., et al. (2004). Cerebrospinal fluid corticotropin-releasing factor and perceived early-life stress in depressed patients and healthy control subjects. Neuropsychopharmacology, 29, 777784.CrossRefGoogle ScholarPubMed
Carroll, B. J., Curtis, G. C., Davies, B. M., Mendels, J., & Sugerman, A. A. (1976). Urinary free cortisol excretion in depression. Psychological Medicine, 6, 4350.CrossRefGoogle ScholarPubMed
Carroll, B. J., Curtis, G. C., & Mendels, J. (1976). Cerebrospinal fluid and plasma free cortisol concentrations in depression. Psychological Medicine, 6, 235244.CrossRefGoogle ScholarPubMed
Carroll, B. J., Feinberg, M., Greden, J. F., Tarika, J., Albala, A. A., Haskett, R. F., et al. (1981). A specific laboratory test for the diagnosis of melancholia. Standardization, validation, and clinical utility. Archives of General Psychiatry, 38, 1522.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Chapman, D. P., Whitfield, C. L., Felitti, V. J., Dube, S. R., Edwards, V. J., & Anda, R. F. (2004). Adverse childhood experiences and the risk of depressive disorders in adulthood. Journal of Affective Disorders, 82, 217225.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2001a). Diverse patterns of neuroendocrine activity in maltreated children. Development and Psychopathology, 13, 677693.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2001b). The impact of child maltreatment and psychopathology on neuroendocrine functioning. Development and Psychopathology, 13, 783804.CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F. A., Gunnar, M., & Toth, S. L. (2010). The differential impacts of early physical and sexual abuse and internalizing problems on daytime cortisol rhythm in school-aged children. Child Development, 81, 252269.CrossRefGoogle ScholarPubMed
Collier, D. A., Stober, G., Li, T., Heils, A., Catalano, M., Di Bella, D., et al. (1996). A novel functional polymorphism within the promoter of the serotonin transporter gene: Possible role in susceptibility to affective disorders. Molecular Psychiatry, 1, 453460.Google ScholarPubMed
Cools, R., Roberts, A. C., & Robbins, T. W. (2008). Serotoninergic regulation of emotional and behavioural control processes. Trends in Cognitive Sciences, 12, 3140.CrossRefGoogle ScholarPubMed
Coplan, J. D., Andrews, M. W., Rosenblum, L. A., Owens, M. J., Friedman, S., Gorman, J. M., et al. (1996). Persistent elevations of cerebrospinal fluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: Implications for the pathophysiology of mood and anxiety disorders. Proceedings of the National Academy of Sciences of the United States of America, 93, 16191623.CrossRefGoogle ScholarPubMed
Danese, A., Moffitt, T. E., Harrington, H., Milne, B. J., Polanczyk, G., Pariante, C. M., et al. (2009). Adverse childhood experiences and adult risk factors for age-related disease: Depression, inflammation, and clustering of metabolic risk markers. Archives of Pediatrics and Adolescent Medicine, 163, 11351143.CrossRefGoogle ScholarPubMed
De Bellis, M. D. (2002). Developmental traumatology: A contributory mechanism for alcohol and substance use disorders. Psychoneuroendocrinology, 27, 155170.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Baum, A. S., Birmaher, B., Keshavan, M. S., Eccard, C. H., Boring, A. M., et al. (1999). A.E. Bennett Research Award. Developmental traumatology: Part I. Biological stress systems. Biological Psychiatry, 45, 12591270.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Chrousos, G. P., Dorn, L. D., Burke, L., Helmers, K., Kling, M. A., et al. (1994). Hypothalamic–pituitary–adrenal axis dysregulation in sexually abused girls. Journal of Clinical Endocrinology & Metabolism, 78, 249255.Google ScholarPubMed
De Bellis, M. D., Gold, P. W., Geracioti, T. D. Jr., Listwak, S. J., & Kling, M. A. (1993). Association of fluoxetine treatment with reductions in CSF concentrations of corticotropin-releasing hormone and arginine vasopressin in patients with major depression. American Journal of Psychiatry, 150, 656657.Google ScholarPubMed
Derijk, R. H., & de Kloet, E. R. (2008). Corticosteroid receptor polymorphisms: Determinants of vulnerability and resilience. European Journal of Pharmacology, 583, 303311.CrossRefGoogle ScholarPubMed
Dettling, A. C., Feldon, J., & Pryce, C. R. (2002). Repeated parental deprivation in the infant common marmoset (Callithrix jacchus, primates) and analysis of its effects on early development. Biological Psychiatry, 52, 10371046.CrossRefGoogle ScholarPubMed
Dettling, A. C., Gunnar, M. R., & Donzella, B. (1999). Cortisol levels of young children in full-day childcare centers: Relations with age and temperament. Psychoneuroendocrinology, 24, 519536.CrossRefGoogle ScholarPubMed
Dettling, A. C., Parker, S. W., Lane, S., Sebanc, A., & Gunnar, M. R. (2000). Quality of care and temperament determine changes in cortisol concentrations over the day for young children in childcare. Psychoneuroendocrinology, 25, 819836.CrossRefGoogle ScholarPubMed
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355391.CrossRefGoogle ScholarPubMed
Domes, G., Heinrichs, M., Rimmele, U., Reichwald, U., & Hautzinger, M. (2004). Acute stress impairs recognition for positive words—Association with stress-induced cortisol secretion. Stress, 7, 173181.CrossRefGoogle ScholarPubMed
Dunn, A. J., & Berridge, C. W. (1990). Physiological and behavioral responses to corticotropin-releasing factor administration: Is CRF a mediator of anxiety or stress responses? Brain Research. Brain Research Reviews, 15, 71100.CrossRefGoogle ScholarPubMed
Fairchild, G., Stobbe, Y., van Goozen, S. H., Calder, A. J., & Goodyer, I. M. (2010). Facial expression recognition, fear conditioning, and startle modulation in female subjects with conduct disorder. Biological Psychiatry, 68, 272279.CrossRefGoogle ScholarPubMed
Fairchild, G., Van Goozen, S. H., Stollery, S. J., & Goodyer, I. M. (2008). Fear conditioning and affective modulation of the startle reflex in male adolescents with early-onset or adolescence-onset conduct disorder and healthy control subjects. Biological Psychiatry, 63, 279285.CrossRefGoogle ScholarPubMed
Francis, D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286, 11551158.CrossRefGoogle ScholarPubMed
Gillespie, C. F., Phifer, J., Bradley, B., & Ressler, K. J. (2009). Risk and resilience: Genetic and environmental influences on development of the stress response. Depression and Anxiety, 26, 984992.CrossRefGoogle ScholarPubMed
Goenjian, A. K., Yehuda, R., Pynoos, R. S., Steinberg, A. M., Tashjian, M., Yang, R. K., et al. (1996). Basal cortisol, dexamethasone suppression of cortisol, and MHPG in adolescents after the 1988 earthquake in Armenia. American Journal of Psychiatry, 153, 929934.Google ScholarPubMed
Gold, P. W., Chrousos, G., Kellner, C., Post, R., Roy, A., Augerinos, P., et al. (1984). Psychiatric implications of basic and clinical studies with corticotropin-releasing factor. American Journal of Psychiatry, 141, 619627.Google ScholarPubMed
Gold, P. W., & Chrousos, G. P. (2002). Organization of the stress system and its dysregulation in melancholic and atypical depression: High vs low CRH/NE states. Molecular Psychiatry, 7, 254275.CrossRefGoogle ScholarPubMed
Goldberg, R. T. (1994). Childhood abuse, depression, and chronic pain. Clinical Journal of Pain, 10, 277281.CrossRefGoogle ScholarPubMed
Goodyer, I. M. (2008). Emanuel Miller Lecture: Early onset depressions—Meanings, mechanisms and processes. Journal of Child Psychology and Psychiatry, 49, 12391256.CrossRefGoogle Scholar
Goodyer, I. M., Bacon, A., Ban, M., Croudace, T., & Herbert, J. (2009). Serotonin transporter genotype, morning cortisol and subsequent depression in adolescents. British Journal of Psychiatry, 195, 3945.CrossRefGoogle ScholarPubMed
Goodyer, I. M., Croudace, T., Dudbridge, F., Ban, M., & Herbert, J. (2010). Polymorphisms in BDNF (Val66Met) and 5-HTTLPR, morning cortisol and subsequent depression in at-risk adolescents. British Journal of Psychiatry, 197, 365371.CrossRefGoogle ScholarPubMed
Goodyer, I. M., Dubicka, B., Wilkinson, P., Kelvin, R., Roberts, C., Byford, S., et al. (2007). Selective serotonin reuptake inhibitors (SSRIs) and routine specialist care with and without cognitive behaviour therapy in adolescents with major depression: Randomised controlled trial. British Medical Journal, 335, 142.CrossRefGoogle ScholarPubMed
Goodyer, I. M., Herbert, J., & Altham, P. M. (1998). Adrenal steroid secretion and major depression in 8- to 16-year-olds, III. Influence of cortisol/DHEA ratio at presentation on subsequent rates of disappointing life events and persistent major depression. Psychological Medicine, 28, 265273.CrossRefGoogle ScholarPubMed
Goodyer, I. M., Herbert, J., & Tamplin, A. (2003). Psychoendocrine antecedents of persistent first-episode major depression in adolescents: A community-based longitudinal enquiry. Psychological Medicine, 33, 601610.CrossRefGoogle ScholarPubMed
Goodyer, I. M., Herbert, J., Tamplin, A., & Altham, P. M. (2000). Recent life events, cortisol, dehydroepiandrosterone and the onset of major depression in high-risk adolescents. British Journal of Psychiatry, 177, 499504.CrossRefGoogle ScholarPubMed
Goodyer, I. M., Park, R. J., & Herbert, J. (2001). Psychosocial and endocrine features of chronic first-episode major depression in 8–16 year olds. Biological Psychiatry, 50, 351357.CrossRefGoogle ScholarPubMed
Gotlib, I. H., Joormann, J., Minor, K. L., & Hallmayer, J. (2008). HPA axis reactivity: A mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biological Psychiatry, 63, 847851.CrossRefGoogle ScholarPubMed
Green, J. G., McLaughlin, K. A., Berglund, P. A., Gruber, M. J., Sampson, N. A., Zaslavsky, A. M., et al. (2010). Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I: Associations with first onset of DSM-IV disorders. Archives of General Psychiatry, 67, 113123.CrossRefGoogle ScholarPubMed
Guazzo, E. P., Kirkpatrick, P. J., Goodyer, I. M., Shiers, H. M., & Herbert, J. (1996). Cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate in the cerebrospinal fluid of man: Relation to blood levels and the effects of age. Journal of Clinical Endocrinology and Metabolism, 81, 39513960.Google ScholarPubMed
Gunnar, M. (1992). Reactivity of the hypothalamic–pituitary–adrenocortical system to stressors in normal infants and children. Pediatrics, 90(3, Pt. 2), 491497.Google ScholarPubMed
Gunnar, M., & Cheatham, C. (2003). Brain and behaviour interface: Stress and the developing brain. Infant Mental Health Journal, 24, 195211.CrossRefGoogle Scholar
Gunnar, M., & Donzella, B. (2002). Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 27, 199220.CrossRefGoogle ScholarPubMed
Gunnar, M., Fisch, R. O., Korsvik, S., & Donhowe, J. M. (1981). The effects of circumcision on serum cortisol and behavior. Psychoneuroendocrinology, 6, 269275.CrossRefGoogle ScholarPubMed
Gunnar, M., Larson, M. C., Hertsgaard, L., Harris, M. L., & Brodersen, L. (1992). The stressfulness of separation among nine-month-old infants: Effects of social context variables and infant temperament. Child Development, 63, 290303.CrossRefGoogle ScholarPubMed
Gunnar, M., Morison, S. J., Chisholm, K., & Schuder, M. (2001). Salivary cortisol levels in children adopted from romanian orphanages. Development and Psychopathology, 13, 611628.CrossRefGoogle ScholarPubMed
Halligan, S. L., Herbert, J., Goodyer, I. M., & Murray, L. (2004). Exposure to postnatal depression predicts elevated cortisol in adolescent offspring. Biological Psychiatry, 55, 376381.CrossRefGoogle ScholarPubMed
Harris, T. O., Borsanyi, S., Messari, S., Stanford, K., Cleary, S. E., Shiers, H. M., et al. (2000). Morning cortisol as a risk factor for subsequent major depressive disorder in adult women. British Journal of Psychiatry, 177, 505510.CrossRefGoogle ScholarPubMed
Hart, J., Gunnar, M., & Cicchetti, D. (1996). Altered neuroendocrine activity in maltreated children related to symptoms of depression. Development and Psychopathology, 8, 201214.CrossRefGoogle Scholar
Heim, C., Mletzko, T., Purselle, D., Musselman, D. L., & Nemeroff, C. B. (2008). The dexamethasone/corticotropin-releasing factor test in men with major depression: Role of childhood trauma. Biological Psychiatry, 63, 398405.CrossRefGoogle ScholarPubMed
Heim, C., & Nemeroff, C. B. (1999). The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biological Psychiatry, 46, 15091522.CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Bonsall, R., Miller, A. H., & Nemeroff, C. B. (2001). Altered pituitary-adrenal axis responses to provocative challenge tests in adult survivors of childhood abuse. American Journal of Psychiatry, 158, 575581.CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Heit, S., Graham, Y. P., Wilcox, M., Bonsall, R., et al. (2000). Pituitary–adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. Journal of the American Medical Association, 284, 592597.CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2008). The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology, 33, 693710.CrossRefGoogle ScholarPubMed
Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A., & Bird, A. (2001). Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes and Development, 15, 710723.CrossRefGoogle ScholarPubMed
Herbert, J., Goodyer, I. M., Grossman, A. B., Hastings, M. H., de Kloet, E. R., Lightman, S. L., et al. (2006). Do corticosteroids damage the brain? Journal of Neuroendocrinology, 18, 393411.CrossRefGoogle ScholarPubMed
Heuser, I., Bissette, G., Dettling, M., Schweiger, U., Gotthardt, U., Schmider, J., et al. (1998). Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: Response to amitriptyline treatment. Depression and Anxiety, 8, 7179.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Heuser, I., Yassouridis, A., & Holsboer, F. (1994). The combined dexamethasone/CRH test: A refined laboratory test for psychiatric disorders. Journal of Psychiatry Research, 28, 341356.CrossRefGoogle Scholar
Homberg, J. R., & Lesch, K. P. (2011). Looking on the bright side of serotonin transporter gene variation. Biological Psychiatry, 69, 513519.CrossRefGoogle ScholarPubMed
Jahn, A. L., Fox, A. S., Abercrombie, H. C., Shelton, S. E., Oakes, T. R., Davidson, R. J., et al. (2010). Subgenual prefrontal cortex activity predicts individual differences in hypothalamic–pituitary–adrenal activity across different contexts. Biological Psychiatry, 67, 175181.CrossRefGoogle ScholarPubMed
Jahn, H., Schick, M., Kiefer, F., Kellner, M., Yassouridis, A., & Wiedemann, K. (2004). Metyrapone as additive treatment in major depression: A double-blind and placebo-controlled trial. Archives of General Psychiatry, 61, 12351244.CrossRefGoogle ScholarPubMed
Jutapakdeegul, N., Casalotti, S. O., Govitrapong, P., & Kotchabhakdi, N. (2003). Postnatal touch stimulation acutely alters corticosterone levels and glucocorticoid receptor gene expression in the neonatal rat. Developmental Neuroscience, 25, 2633.CrossRefGoogle ScholarPubMed
Kagan, J., Reznick, J. S., & Snidman, N. (1987). The physiology and psychology of behavioral inhibition in children. Child Development, 58, 14591473.CrossRefGoogle ScholarPubMed
Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Archives of General Psychiatry, 68, 444445.CrossRefGoogle ScholarPubMed
Kasckow, J. W., Baker, D., & Geracioti, T. D. Jr. (2001). Corticotropin-releasing hormone in depression and post-traumatic stress disorder. Peptides, 22, 845851.CrossRefGoogle ScholarPubMed
Kaufman, J. (1991). Depressive disorders in maltreated children. Journal of the American Academy of Child & Adolescent Psychiatry, 30, 257265.CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Perel, J., Dahl, R. E., Moreci, P., Nelson, B., et al. . (1997). The corticotropin-releasing hormone challenge in depressed abused, depressed nonabused, and normal control children. Biological Psychiatry, 42, 669679.CrossRefGoogle ScholarPubMed
Kaye, J., Buchanan, F., Kendrick, A., Johnson, P., Lowry, C., Bailey, J., et al. (2004). Acute carbon dioxide exposure in healthy adults: Evaluation of a novel means of investigating the stress response. Journal of Neuroendocrinology, 16, 256264.CrossRefGoogle ScholarPubMed
Keck, M. E., Holsboer, F., & Muller, M. B. (2004). Mouse mutants for the study of corticotropin-releasing hormone receptor function: Development of novel treatment strategies for mood disorders. Annals of the New York Academy of Sciences, 1018, 445457.CrossRefGoogle Scholar
Kendler, K. S., Bulik, C. M., Silberg, J., Hettema, J. M., Myers, J., & Prescott, C. A. (2000). Childhood sexual abuse and adult psychiatric and substance use disorders in women: An epidemiological and cotwin control analysis. Archives of General Psychiatry, 57, 953959.CrossRefGoogle ScholarPubMed
Kendler, K. S., Gardner, C. O., & Prescott, C. A. (2002). Toward a comprehensive developmental model for major depression in women. American Journal of Psychiatry, 159, 11331145.CrossRefGoogle Scholar
Kendler, K. S., Gardner, C. O., & Prescott, C. A. (2006). Toward a comprehensive developmental model for major depression in men. American Journal of Psychiatry, 163, 115124.CrossRefGoogle Scholar
Kennard, B. D., Silva, S. G., Tonev, S., Rohde, P., Hughes, J. L., Vitiello, B., et al. (2009). Remission and recovery in the Treatment for Adolescents with Depression Study (TADS): Acute and long-term outcomes. Journal of the American Academy of Child & Adolescent Psychiatry, 48, 186195.CrossRefGoogle ScholarPubMed
Kessler, R. C., Ormel, J., Petukhova, M., McLaughlin, K. A., Green, J. G., Russo, L. J., et al. (2010). Development of lifetime comorbidity in the world health organization world mental health surveys. Archives of General Psychiatry, 68, 90100.CrossRefGoogle Scholar
Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The “Trier Social Stress Test”—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 7681.CrossRefGoogle Scholar
Kuhlmann, S., & Wolf, O. T. (2005). Cortisol and memory retrieval in women: Influence of menstrual cycle and oral contraceptives. Psychopharmacology (Berlin), 183, 6571.CrossRefGoogle ScholarPubMed
Kunzel, H. E., Zobel, A. W., Nickel, T., Ackl, N., Uhr, M., Sonntag, A., et al. (2003). Treatment of depression with the CRH-1-receptor antagonist R121919: Endocrine changes and side effects. Journal of Psychiatry Research, 37, 525533.CrossRefGoogle ScholarPubMed
Lee, R., Geracioti, T. D. Jr., Kasckow, J. W., & Coccaro, E. F. (2005). Childhood trauma and personality disorder: Positive correlation with adult CSF corticotropin-releasing factor concentrations. American Journal of Psychiatry, 162, 995997.CrossRefGoogle ScholarPubMed
Lee, R., Gollan, J., Kasckow, J., Geracioti, T., & Coccaro, E. F. (2006). CSF corticotropin-releasing factor in personality disorder: Relationship with self-reported parental care. Neuropsychopharmacology, 31, 22892295.CrossRefGoogle ScholarPubMed
Levine, S. (1993). The influence of social factors on the response to stress. Psychotherapy and Psychosomatics, 60, 3338.CrossRefGoogle ScholarPubMed
Levine, S., & Mody, T. (2003). The long-term psychobiological consequences of intermittent postnatal separation in the squirrel monkey. Neuroscience and Biobehavioral Reviews, 27, 8389.CrossRefGoogle ScholarPubMed
Levine, S., & Wiener, S. G. (1988). Psychoendocrine aspects of mother–infant relationships in nonhuman primates. Psychoneuroendocrinology, 13, 143154.CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science, 277, 16591662.CrossRefGoogle ScholarPubMed
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2000). Child's stress hormone levels correlate with mother's socioeconomic status and depressive state. Biological Psychiatry, 48, 976980.CrossRefGoogle ScholarPubMed
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2001). Can poverty get under your skin? Basal cortisol levels and cognitive function in children from low and high socioeconomic status. Development and Psychopathology, 13, 653676.CrossRefGoogle ScholarPubMed
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445.CrossRefGoogle ScholarPubMed
Lyons, D. M., Martel, F. L., Levine, S., Risch, N. J., & Schatzberg, A. F. (1999). Postnatal experiences and genetic effects on squirrel monkey social affinities and emotional distress. Hormones and Behavior, 36, 266275.CrossRefGoogle ScholarPubMed
Lyons, D. M., Yang, C., Mobley, B. W., Nickerson, J. T., & Schatzberg, A. F. (2000). Early environmental regulation of glucocorticoid feedback sensitivity in young adult monkeys. Journal of Neuroendocrinology, 12, 723728.CrossRefGoogle ScholarPubMed
MacMillan, H. L., Georgiades, K., Duku, E. K., Shea, A., Steiner, M., Niec, A., et al. (2009). Cortisol response to stress in female youths exposed to childhood maltreatment: Results of the youth mood project. Biological Psychiatry, 66, 6268.CrossRefGoogle ScholarPubMed
Maestripieri, D. (1998). Parenting styles of abusive mothers in group-living rhesus macaques. Animal Behaviour, 55, 111.CrossRefGoogle ScholarPubMed
Mannie, Z. N., Harmer, C. J., & Cowen, P. J. (2007). Increased waking salivary cortisol levels in young people at familial risk of depression. American Journal of Psychiatry, 164, 617621.CrossRefGoogle ScholarPubMed
Mathew, S. J., Coplan, J. D., Smith, E. L., Scharf, B. A., Owens, M. J., Nemeroff, C. B., et al. (2002). Cerebrospinal fluid concentrations of biogenic amines and corticotropin-releasing factor in adolescent non-human primates as a function of the timing of adverse early rearing. Stress, 5, 185193.CrossRefGoogle ScholarPubMed
McCormack, K., Newman, T. K., Higley, J. D., Maestripieri, D., & Sanchez, M. M. (2009). Serotonin transporter gene variation, infant abuse, and responsiveness to stress in rhesus macaque mothers and infants. Hormones and Behavior, 55, 538547.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171179.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Gianaros, P. J. (2010). Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease. Annals of the New York Academy of Sciences, 1186, 190222.CrossRefGoogle ScholarPubMed
McGowan, P. O., Sasaki, A., D'Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348.CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Green, J. G., Gruber, M. J., Sampson, N. A., Zaslavsky, A. M., & Kessler, R. C. (2010). Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication II: Associations with persistence of DSM-IV disorders. Archives of General Psychiatry, 67, 124132.CrossRefGoogle ScholarPubMed
Meaney, M. J. (2010). Epigenetics and the biological definition of Gene × Environment interactions. Child Development, 81, 4179.CrossRefGoogle Scholar
Meaney, M. J., & Ferguson-Smith, A. C. (2010). Epigenetic regulation of the neural transcriptome: The meaning of the marks. Nature Neuroscience, 13, 13131318.CrossRefGoogle ScholarPubMed
Merali, Z., Du, L., Hrdina, P., Palkovits, M., Faludi, G., Poulter, M. O., et al. (2004). Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region. Journal of Neuroscience, 24, 14781485.CrossRefGoogle ScholarPubMed
Nelson, J. C., & Davis, J. M. (1997). DST studies in psychotic depression: A meta-analysis. American Journal of Psychiatry, 154, 14971503.CrossRefGoogle ScholarPubMed
Nemeroff, C. B., Bissette, G., Akil, H., & Fink, M. (1991). Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated with electroconvulsive therapy. Corticotrophin-releasing factor, beta-endorphin and somatostatin. British Journal of Psychiatry, 158, 5963.CrossRefGoogle ScholarPubMed
Nemeroff, C. B., Heim, C. M., Thase, M. E., Klein, D. N., Rush, A. J., Schatzberg, A. F., et al. (2003). Differential responses to psychotherapy versus pharmacotherapy in patients with chronic forms of major depression and childhood trauma. Proceedings of the National Academy of Sciences of the United States of America, 100, 1429314296.CrossRefGoogle ScholarPubMed
Nemeroff, C. B., Owens, M. J., Bissette, G., Andorn, A. C., & Stanley, M. (1988). Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Archives of General Psychiatry, 45, 577579.CrossRefGoogle ScholarPubMed
Nemeroff, C. B., Widerlov, E., Bissette, G., Walleus, H., Karlsson, I., Eklund, K., et al. (1984). Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science, 226, 13421344.CrossRefGoogle ScholarPubMed
Nolen-Hoeksema, S. (2004). The response styles theory. In Papageorgiou, C., & Wells, A. (Eds.), Depressive rumination. Nature, theory and treatment (pp. 107123). Chichester: Wiley.Google Scholar
Nolen-Hoeksema, S., & Morrow, J. (1991). A prospective study of depression and posttraumatic stress symptoms after a natural disaster: The 1989 Loma Prieta earthquake. Journal of Personality and Social Psychology, 61, 115121.CrossRefGoogle ScholarPubMed
O'Hara, R., Schroder, C. M., Mahadevan, R., Schatzberg, A. F., Lindley, S., Fox, S., et al. (2007). Serotonin transporter polymorphism, memory and hippocampal volume in the elderly: Association and interaction with cortisol. Molecular Psychiatry, 12, 544555.CrossRefGoogle ScholarPubMed
Ollikainen, M., Smith, K. R., Joo, E. J., Ng, H. K., Andronikos, R., Novakovic, B., et al. (2010). DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Human Molecular Genetics, 19, 41764188.CrossRefGoogle ScholarPubMed
Owen, D., Andrews, M. H., & Matthews, S. G. (2005). Maternal adversity, glucocorticoids and programming of neuroendocrine function and behaviour. Neuroscience and Biobehavioral Reviews, 29, 209226.CrossRefGoogle ScholarPubMed
Park, R. J., Goodyer, I. M., & Teasdale, J. D. (2004). Effects of induced rumination and distraction on mood and overgeneral autobiographical memory in adolescent Major Depressive disorder and controls. Journal of Child Psychology and Psychiatry, 45, 9961006.CrossRefGoogle ScholarPubMed
Parker, G. (1979). Parental characteristics in relation to depressive disorders. British Journal of Psychiatry, 134, 138147.CrossRefGoogle ScholarPubMed
Pfohl, B., Sherman, B., Schlechte, J., & Stone, R. (1985). Pituitary–adrenal axis rhythm disturbances in psychiatric depression. Archives of General Psychiatry, 42, 897903.CrossRefGoogle ScholarPubMed
Plomin, R., Emde, R. N., Braungart, J. M., Campos, J., Corley, R., Fulker, D. W., et al. (1993). Genetic change and continuity from fourteen to twenty months: The MacArthur Longitudinal Twin Study. Child Development, 64, 13541376.CrossRefGoogle ScholarPubMed
Plotsky, P. M., Thrivikraman, K. V., Nemeroff, C. B., Caldji, C., Sharma, S., & Meaney, M. J. (2005). Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology, 30, 21922204.CrossRefGoogle ScholarPubMed
Polanczyk, G., Caspi, A., Williams, B., Price, T. S., Danese, A., Sugden, K., et al. (2009). Protective effect of CRHR1 gene variants on the development of adult depression following childhood maltreatment: Replication and extension. Archives of General Psychiatry, 66, 978985.CrossRefGoogle ScholarPubMed
Poland, R. E., Rubin, R. T., Lesser, I. M., Lane, L. A., & Hart, P. J. (1987). Neuroendocrine aspects of primary endogenous depression: II. Serum dexamethasone concentrations and hypothalamic–pituitary–adrenal cortical activity as determinants of the dexamethasone suppression test response. Archives of General Psychiatry, 44, 790795.CrossRefGoogle ScholarPubMed
Posener, J. A., DeBattista, C., Williams, G. H., Chmura Kraemer, H., Kalehzan, B. M., & Schatzberg, A. F. (2000). 24-Hour monitoring of cortisol and corticotropin secretion in psychotic and nonpsychotic major depression. Archives of General Psychiatry, 57, 755760.CrossRefGoogle ScholarPubMed
Price, D. A., Close, G. C., & Fielding, B. A. (1983). Age of appearance of circadian rhythm in salivary cortisol values in infancy. Archives of Disease in Childhood, 58, 454456.CrossRefGoogle ScholarPubMed
Raadsheer, F. C., Hoogendijk, W. J., Stam, F. C., Tilders, F. J., & Swaab, D. F. (1994). Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology, 60, 436444.CrossRefGoogle ScholarPubMed
Rautanen, A., Eriksson, J. G., Kere, J., Andersson, S., Osmond, C., Tienari, P., et al. (2006). Associations of body size at birth with late-life cortisol concentrations and glucose tolerance are modified by haplotypes of the glucocorticoid receptor gene. Journal of Clinical Endocrinology and Metabolism, 91, 45444551.CrossRefGoogle ScholarPubMed
Rinne, T., de Kloet, E. R., Wouters, L., Goekoop, J. G., DeRijk, R. H., & van den Brink, W. (2002). Hyperresponsiveness of hypothalamic–pituitary–adrenal axis to combined dexamethasone/corticotropin-releasing hormone challenge in female borderline personality disorder subjects with a history of sustained childhood abuse. Biological Psychiatry, 52, 11021112.CrossRefGoogle ScholarPubMed
Rosenblum, L. A., & Andrews, M. W. (1994). Influences of environmental demand on maternal behavior and infant development. Acta Paediatrica, 397(Suppl.), 5763.CrossRefGoogle ScholarPubMed
Rosmond, R., Chagnon, Y. C., Chagnon, M., Perusse, L., Bouchard, C., & Bjorntorp, P. (2000). A polymorphism of the 5′-flanking region of the glucocorticoid receptor gene locus is associated with basal cortisol secretion in men. Metabolism, 49, 11971199.CrossRefGoogle ScholarPubMed
Rubin, R. T., Poland, R. E., Lesser, I. M., Winston, R. A., & Blodgett, A. L. (1987). Neuroendocrine aspects of primary endogenous depression. I. Cortisol secretory dynamics in patients and matched controls. Archives of General Psychiatry, 44, 328336.CrossRefGoogle ScholarPubMed
Rybakowski, J. K., & Twardowska, K. (1999). The dexamethasone/corticotropin-releasing hormone test in depression in bipolar and unipolar affective illness. Journal of Psychiatry Research, 33, 363370.CrossRefGoogle ScholarPubMed
Sanchez, M. M. (2006). The impact of early adverse care on HPA axis development: Nonhuman primate models. Hormones and Behavior, 50, 623631.CrossRefGoogle ScholarPubMed
Sanchez, M. M., Ladd, C. O., & Plotsky, P. M. (2001). Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Development and Psychopathology, 13, 419449.CrossRefGoogle ScholarPubMed
Sanchez, M. M., McCormack, K., Grand, A. P., Fulks, R., Graff, A., & Maestripieri, D. (2010). Effects of sex and early maternal abuse on adrenocorticotropin hormone and cortisol responses to the corticotropin-releasing hormone challenge during the first 3 years of life in group-living rhesus monkeys. Development and Psychopathology, 22, 4553.CrossRefGoogle Scholar
Sanchez, M. M., Noble, P. M., Lyon, C. K., Plotsky, P. M., Davis, M., Nemeroff, C. B., et al. (2005). Alterations in diurnal cortisol rhythm and acoustic startle response in nonhuman primates with adverse rearing. Biological Psychiatry, 57, 373381.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21, 5589.Google ScholarPubMed
Schmidt, P. J., Daly, R. C., Bloch, M., Smith, M. J., Danaceau, M. A., St Clair, L. S., et al. (2005). Dehydroepiandrosterone monotherapy in midlife-onset major and minor depression. Archives of General Psychiatry, 62, 154162.CrossRefGoogle ScholarPubMed
Spasojevic, J., & Alloy, L. B. (2001). Rumination as a common mechanism relating depressive risk factors to depression. Emotion, 1, 2537.CrossRefGoogle ScholarPubMed
Stanton, M. E., Gutierrez, Y. R., & Levine, S. (1988). Maternal deprivation potentiates pituitary–adrenal stress responses in infant rats. Behavioral Neuroscience, 102, 692700.CrossRefGoogle ScholarPubMed
Sterling, P., & Eyer, J. (1988). Allostasis: A new paradigm to arrange arousal pathology. In Fisher, S., & Reason, J. (Eds.), Handbook of life stress, cognition and health. New York: Wiley.Google Scholar
Stetler, C., & Miller, G. E. (2011). Depression and hypothalamic–pituitary–adrenal activation: A quantitative summary of four decades of research. Psychosomatic Medicine, 73, 114126.CrossRefGoogle ScholarPubMed
Surtees, P. G., Wainwright, N. W., Willis-Owen, S. A., Luben, R., Day, N. E., & Flint, J. (2006). Social adversity, the serotonin transporter (5-HTTLPR) polymorphism and major depressive disorder. Biological Psychiatry, 59, 224229.CrossRefGoogle ScholarPubMed
Tout, K., de Haan, M., Campbell, E. K., & Gunnar, M. R. (1998). Social behavior correlates of cortisol activity in child care: Gender differences and time-of-day effects. Child Development, 69, 12471262.Google ScholarPubMed
Trickett, P. K., Noll, J. G., Susman, E. J., Shenk, C. E., & Putnam, F. W. (2010). Attenuation of cortisol across development for victims of sexual abuse. Development and Psychopathology, 22, 165175.CrossRefGoogle ScholarPubMed
Tyrka, A. R., Price, L. H., Gelernter, J., Schepker, C., Anderson, G. M., & Carpenter, L. L. (2009). Interaction of childhood maltreatment with the corticotropin-releasing hormone receptor gene: Effects on hypothalamic–pituitary–adrenal axis reactivity. Biological Psychiatry, 66, 681685.CrossRefGoogle ScholarPubMed
Tyrka, A. R., Wier, L., Price, L. H., Ross, N., Anderson, G. M., Wilkinson, C. W., et al. (2008). Childhood parental loss and adult hypothalamic–pituitary–adrenal function. Biological Psychiatry, 63, 11471154.CrossRefGoogle ScholarPubMed
Uher, R., & McGuffin, P. (2010). The moderation by the serotonin transporter gene of environmental adversity in the etiology of depression: 2009 update. Molecular Psychiatry, 15, 1822.CrossRefGoogle ScholarPubMed
Vallee, M., Mayo, W., Dellu, F., Le Moal, M., Simon, H., & Maccari, S. (1997). Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: Correlation with stress-induced corticosterone secretion. Journal of Neuroscience, 17, 26262636.CrossRefGoogle ScholarPubMed
van Oers, H. J., de Kloet, E. R., Whelan, T., & Levine, S. (1998). Maternal deprivation effect on the infant's neural stress markers is reversed by tactile stimulation and feeding but not by suppressing corticosterone. Journal of Neuroscience, 18, 1017110179.CrossRefGoogle Scholar
van Rossum, E. F., Binder, E. B., Majer, M., Koper, J. W., Ising, M., Modell, S., et al. (2006). Polymorphisms of the glucocorticoid receptor gene and major depression. Biological Psychiatry, 59, 681688.CrossRefGoogle ScholarPubMed
van Rossum, E. F., Koper, J. W., Huizenga, N. A., Uitterlinden, A. G., Janssen, J. A., Brinkmann, A. O., et al. (2002). A polymorphism in the glucocorticoid receptor gene, which decreases sensitivity to glucocorticoids in vivo, is associated with low insulin and cholesterol levels. Diabetes, 51, 31283134.CrossRefGoogle ScholarPubMed
van West, D., Van Den Eede, F., Del-Favero, J., Souery, D., Norrback, K. F., Van Duijn, C., et al. (2006). Glucocorticoid receptor gene-based SNP analysis in patients with recurrent major depression. Neuropsychopharmacology, 31, 620627.CrossRefGoogle ScholarPubMed
Vythilingam, M., Heim, C., Newport, J., Miller, A. H., Anderson, E., Bronen, R., et al. (2002). Childhood trauma associated with smaller hippocampal volume in women with major depression. American Journal of Psychiatry, 159, 20722080.CrossRefGoogle ScholarPubMed
Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.CrossRefGoogle ScholarPubMed
Weaver, I. C., D'Alessio, A. C., Brown, S. E., Hellstrom, I. C., Dymov, S., Sharma, S., et al. (2007). The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: Altering epigenetic marks by immediate-early genes. Journal of Neuroscience, 27 17561768.CrossRefGoogle ScholarPubMed
Widom, C. S., DuMont, K., & Czaja, S. J. (2007). A prospective investigation of major depressive disorder and comorbidity in abused and neglected children grown up. Archives of General Psychiatry, 64, 4956.CrossRefGoogle ScholarPubMed
Williams, J. M., Barnhofer, T., Crane, C., Herman, D., Raes, F., Watkins, E., et al. (2007). Autobiographical memory specificity and emotional disorder. Psychological Bulletin, 133, 122148.CrossRefGoogle ScholarPubMed
Wolf, O. T. (2008). The influence of stress hormones on emotional memory: Relevance for psychopathology. Acta Psychologica (Amsterdam), 127, 513531.CrossRefGoogle ScholarPubMed
Wolkowitz, O. M., Reus, V. I., Keebler, A., Nelson, N., Friedland, M., Brizendine, L., et al. (1999). Double-blind treatment of major depression with dehydroepiandrosterone. American Journal of Psychiatry, 156, 646649.CrossRefGoogle ScholarPubMed
Wust, S., Van Rossum, E. F., Federenko, I. S., Koper, J. W., Kumsta, R., & Hellhammer, D. H. (2004). Common polymorphisms in the glucocorticoid receptor gene are associated with adrenocortical responses to psychosocial stress. Journal of Clinical Endocrinology and Metabolism, 89, 565573.CrossRefGoogle ScholarPubMed
Young, A. H., Gallagher, P., & Porter, R. J. (2002). Elevation of the cortisol–dehydroepiandrosterone ratio in drug-free depressed patients. American Journal of Psychiatry, 159, 12371239.CrossRefGoogle ScholarPubMed
Young, A. H., Gallagher, P., Watson, S., Del-Estal, D., Owen, B. M., & Ferrier, I. N. (2004). Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology, 29, 15381545.CrossRefGoogle ScholarPubMed
Zobel, A., Jessen, F., von Widdern, O., Schuhmacher, A., Hofels, S., Metten, M., et al. (2008). Unipolar depression and hippocampal volume: Impact of DNA sequence variants of the glucocorticoid receptor gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B, 836843.CrossRefGoogle ScholarPubMed
Zobel, A., Schuhmacher, A., Jessen, F., Hofels, S., von Widdern, O., Metten, M., et al. (2010). DNA sequence variants of the FKBP5 gene are associated with unipolar depression. International Journal of Neuropsychopharmacology, 13, 649660.CrossRefGoogle ScholarPubMed
Zobel, A. W., Nickel, T., Kunzel, H. E., Ackl, N., Sonntag, A., Ising, M., et al. (2000). Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. Journal of Psychiatry Research, 34, 171181.CrossRefGoogle ScholarPubMed