Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T18:26:11.577Z Has data issue: false hasContentIssue false

Brains of a feather flocking together? Peer and individual neurobehavioral risks for substance use across adolescence

Published online by Cambridge University Press:  07 August 2019

Jungmeen Kim-Spoon*
Affiliation:
Department of Psychology, Virginia Tech, Blacksburg, VA, USA
Kirby Deater-Deckard
Affiliation:
Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
Alexis Brieant
Affiliation:
Department of Psychology, Virginia Tech, Blacksburg, VA, USA
Nina Lauharatanahirun
Affiliation:
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, USA
Jacob Lee
Affiliation:
Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
Brooks King-Casas
Affiliation:
Department of Psychology, Virginia Tech, Blacksburg, VA, USA Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
*
Author for Correspondence: Jungmeen Kim-Spoon, Ph.D., Department of Psychology (MC 0436), Virginia Tech, Blacksburg, Virginia, 24061, USA E-mail: [email protected].

Abstract

Adolescence is a period of heightened susceptibility to peer influences, and deviant peer affiliation has well-established implications for the development of psychopathology. However, little is known about the role of brain functions in pathways connecting peer contexts and health risk behaviors. We tested developmental cascade models to evaluate contributions of adolescent risk taking, peer influences, and neurobehavioral variables of risk processing and cognitive control to substance use among 167 adolescents who were assessed annually for four years. Risk taking at Time 1 was related to substance use at Time 4 indirectly through peer substance use at Time 2 and insular activation during risk processing at Time 3. Furthermore, neural cognitive control moderated these effects. Greater insular activation during risk processing was related to higher substance use for those with greater medial prefrontal cortex activation during cognitive control, but it was related to lower substance use among those with lower medial prefrontal cortex activation during cognitive control. Neural processes related to risk processing and cognitive control play a crucial role in the processes linking risk taking, peer substance use, and adolescents’ own substance use.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Indicates equal contribution.

References

Albert, D., Chein, J., & Steinberg, L. (2013). The teenage brain: Peer influences on adolescent decision making. Current Directions in Psychological Science, 22, 114120. doi:10.1177/0963721412471347Google Scholar
Allen, J. P., Chango, J., Szwedo, D., Schad, M., & Marston, E. (2012). Predictors of susceptibility to peer influence regarding substance use in adolescence. Child Development, 83, 337350. doi:10.1111/j.1467-8624.2011.01682.xGoogle Scholar
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18, 177185. doi:10.1016/j.tics.2013.12.003Google Scholar
Arrow, K. (1965). Aspects of the theory of risk bearing. Helsinki: Yrjö Jahnssonin Säätiö.Google Scholar
Bach, D. R., Symmonds, M., Barnes, G., & Dolan, R. J. (2017). Whole-brain neural dynamics of probabilistic reward prediction. Journal of Neuroscience, 37, 37893798. doi:10.1523/JNEUROSCI.2943-16.2017Google Scholar
Bechara, A., & Damasio, A. R. (2005). The somatic marker hypothesis: A neural theory of economic decision. Games and Economic Behavior, 52, 336372. doi:10.1016/j.geb.2004.06.010Google Scholar
Blakemore, S.-J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9, 267277. doi:10.1038/nrn2353Google Scholar
Bray, J. H., Adams, G. J., Getz, J. G., & McQueen, A. (2003). Individuation, peers, and adolescent alcohol use: A latent growth analysis. Journal of Consulting and Clinical Psychology, 71, 553564. doi:10.1037/0022-006X.71.3.553Google Scholar
Buchmann, A. F., Schmid, B., Blomeyer, D., Becker, K., Treutlein, J., Zimmermann, U. S., … Laucht, M. (2009). Impact of age at first drink on vulnerability to alcohol-related problems: Testing the marker hypothesis in a prospective study of young adults. Journal of Psychiatric Research, 43, 12051212. doi:10.1016/j.jpsychires.2009.02.006Google Scholar
Bush, G., Shin, L. M., Holmes, J., Rosen, B. R., & Vogt, B. A. (2003). The Multi-Source Interference Task: Validation study with fMRI in individual subjects. Molecular Psychiatry, 8, 6070. doi:10.1038/sj.mp.4001217Google Scholar
Casey, B. J., Durston, S., & Fossella, J. A. (2001). Evidence for a mechanistic model of cognitive control. Clinical Neuroscience Research, 1, 267282. doi:10.1016/S1566-2772(01)00013-5Google Scholar
Casey, B. J., Getz, S., & Galvan, A. (2008). The adolescent brain. Developmental Review, 28, 6277. doi:10.1016/j.dr.2007.08.003Google Scholar
Cavalca, E., Kong, G., Liss, T., Reynolds, E. K., Schepis, T. S., Lejuez, C. W., & Krishnan-Sarin, S. (2013). A preliminary experimental investigation of peer influence on risk-taking among adolescent smokers and non-smokers. Drug and Alcohol Dependence, 129, 163166. doi:10.1016/j.drugalcdep.2012.09.020Google Scholar
Chung, D., Christopoulos, G. I., King-Casas, B., Ball, S. B., & Chiu, P. H. (2015). Social signals of safety and risk confer utility and have asymmetric effects on observers’ choices. Nature Neuroscience, 18, 912916. doi:10.1038/nn.4022Google Scholar
Conger, R. D., Elder, G. H. Jr., Lorenz, F. O., Simons, R. L., & Whitbeck, L. B. (1994). Social institutions and social change. Families in troubled times: Adapting to change in rural America. Hawthorne, NY, US: Aldine de Gruyter.Google Scholar
d'Acremont, M., & Bossaerts, P. (2008). Neurobiological studies of risk assessment: A comparison of expected utility and mean-variance approaches. Cognitive, Affective, & Behavioral Neuroscience, 8, 363374. doi:10.3758/CABN.8.4.363Google Scholar
Deater-Deckard, K. (2001). Annotation: Recent research examining the role of peer relationships in the development of psychopathology. Journal of Child Psychology and Psychiatry, 42, 565579. doi:10.1017/S0021963001007272Google Scholar
Deng, Y., Wang, X., Wang, Y., & Zhou, C. (2018). Neural correlates of interference resolution in the multi-source interference task: a meta-analysis of functional neuroimaging studies. Behavioral and Brain Functions, 1–9. doi:10.1186/s12993-018-0140-0Google Scholar
Dishion, T. J., Capaldi, D., Spracklen, K. M., & Li, F. (1995). Peer ecology of male adolescent drug use. Development and Psychopathology, 7, 803824. doi:10.1017/S0954579400006854Google Scholar
Dishion, T. J., McCord, J., & Poulin, F. (1999). When interventions harm: Peer groups and problem behavior. American Psychologist, 54, 755764. doi:10.1037/0003-066X.54.9.755Google Scholar
Dishion, T. J., & Owen, L. D. (2002). A longitudinal analysis of friendships and substance use: Bidirectional influence from adolescence to adulthood. Developmental Psychology, 38, 480491. doi:10.1037/0012-1649.38.4.480Google Scholar
Dishion, T. J., & Patterson, G. R. (2016). The development and ecology of antisocial behavior: Linking etiology, prevention, and treatment. In Cicchetti, D. (Ed.), Developmental psychopathology: Maladaptation and psychopathology (pp. 647678). Hoboken, NJ, US: John Wiley & Sons.Google Scholar
Dishion, T. J., Spracklen, K. M., Andrews, D. W., & Patterson, G. R. (1996). Deviancy training in male adolescent friendships. Behavior Therapy, 27, 373390. doi:10.1016/S0005-7894(96)80023-2Google Scholar
Dishion, T. J., & Tipsord, J. M. (2011). Peer contagion in child and adolescent social and emotional development. Annual Review of Psychology, 62, 189214. doi:10.1146/annurev.psych.093008.100412Google Scholar
Dishion, T. J., Véronneau, M.-H., & Myers, M. W. (2010). Cascading peer dynamics underlying the progression from problem behavior to violence in early to late adolescence. Development and Psychopathology, 22, 603619. doi:10.1017/S0954579410000313Google Scholar
Dodge, K. A., Malone, P. S., Lansford, J. E., Miller, S., Pettit, G. S., Bates, J. E., … Maslowsky, J. (2009). A dynamic cascade model of the development of substance-use onset. Monographs of the Society for Research in Child Development, 74, i–134. doi:10.1111/j.1540-5834.2009.00528.xGoogle Scholar
Ernst, M., Pine, D. S., & Hardin, M. (2006). Triadic model of the neurobiology of motivated behavior in adolescence. Psychological Medicine, 36, 299312. doi:10.1017/S0033291705005891Google Scholar
Farley, J. P., & Kim-Spoon, J. (2015). Longitudinal associations among impulsivity, friend substance use, and adolescent substance use. Journal of Addiction Research & Therapy, 6, 1000220. doi:10.4172/2155-6105.1000220Google Scholar
Farrell, A. D., & Danish, S. J. (1993). Peer drug associations and emotional restraint: Causes or consequences of adolescents’ drug use? Journal of Consulting and Clinical Psychology, 61, 327334.Google Scholar
Farrell, Albert D., Kung, E. M., White, K. S., & Valois, R. F. (2000). The structure of self-reported aggression, drug use, and delinquent behaviors during early adolescence. Journal of Clinical Child Psychology, 29, 282292. doi:10.1207/S15374424jccp2902_13Google Scholar
Foulkes, L., & Blakemore, S. J. (2018). Studying individual differences in human adolescent brain development. Nature Neuroscience, 21, 315323. doi:10.1038/s41593-018-0078-4Google Scholar
Gardner, T. W., Dishion, T. J., & Connell, A. M. (2008). Adolescent self-regulation as resilience: Resistance to antisocial behavior within the deviant peer context. Journal of Abnormal Child Psychology, 36, 273284. doi:10.1007/s10802-007-9176-6Google Scholar
Grant, B. F., & Dawson, D. A. (1997). Age at onset of alcohol use and its association with DSM-IV alcohol abuse and dependence: Results from the national longitudinal alcohol epidemiologic survey. Journal of Substance Abuse, 9, 103110.Google Scholar
Guillaume, B., Hua, X., Thompson, P. M., Waldorp, L., & Nichols, T. E. (2014). Fast and accurate modelling of longitudinal and repeated measures neuroimaging data. NeuroImage, 94, 287302. doi:10.1016/j.neuroimage.2014.03.029Google Scholar
Haller, M., Handley, E., Chassin, L., & Bountress, K. (2010). Developmental cascades: Linking adolescent substance use, affiliation with substance use promoting peers, and academic achievement to adult substance use disorders. Development and Psychopathology, 22, 899916. doi:10.1017/S0954579410000532Google Scholar
Hawkins, J. D., Catalano, R. F., & Miller, J. Y. (1992). Risk and protective factors for alcohol and other drug problems in adolescence and early adulthood: Implications for substance abuse prevention. Psychological Bulletin, 112, 64105. doi:10.1037/0033-2909.112.1.64Google Scholar
Hinnant, J. B., & Forman-Alberti, A. B. (2018). Deviant peer behavior and adolescent delinquency: Protective effects of inhibitory control, planning, or decision making? Journal of Research on Adolescence. Advance online publication. doi:10.1111/jora.12405Google Scholar
Holt, C. A., & Laury, S. K. (2002). Risk aversion and incentive effects. The American Economic Review, 92, 16441655. doi:10.1257/000282802762024700Google Scholar
Hussong, A. M. (2002). Differentiating peer contexts and risk for adolescent substance use. Journal of Youth and Adolescence, 31, 207220. doi:10.1023/A:1015085203097Google Scholar
Kandel, D. B. (1978). Homophily, selection, and socialization in adolescent friendships. American Journal of Sociology, 84, 427436.Google Scholar
Kann, L., Kinchen, S., Shanklin, S. L., Flint, K. H., Hawkins, J., Harris, W. A., … Zaza, S. (2014). Youth risk behavior surveillance—United States, 2013. Morbidity and Mortality Weekly Report: Surveillance Summaries, 63, 1168.Google Scholar
Kann, L., McManus, T., Harris, W. A., Shanklin, S. L., Flint, K. H., Hawkins, J., … Zaza, S. (2016). Youth risk behavior surveillance-United States, 2015. Morbidity and Mortality Weekly Report: Surveillance Summaries, 65, 1174.Google Scholar
Kim-Spoon, J., Deater-Deckard, K., Holmes, C. J., Lee, J., Chiu, P., & King-Casas, B. (2016). Behavioral and neural inhibitory control moderates the effects of reward sensitivity on adolescent substance use. Neuropsychologia, 91, 318326. doi:10.1016/j.jep.2015.07.033Google Scholar
Kim-Spoon, J., Deater-Deckard, K., Lauharatanahirun, N., Farley, J. P., Chiu, P. H., Bickel, W. K., & King-Casas, B. (2016). Neural interaction between risk sensitivity and cognitive control predicting health risk behaviors among late adolescents. Journal of Research on Adolescence, 27, 674682. doi:10.1111/jora.12295Google Scholar
Kim-Spoon, J., Maciejewski, D., Lee, J., Deater-Deckard, K., & King-Casas, B. (2017). Longitudinal associations among family environment, neural cognitive control, and social competence among adolescents. Developmental Cognitive Neuroscience, 26, 6976. doi:10.1016/j.dcn.2017.04.009Google Scholar
Kuhnen, C. M., & Knutson, B. (2005). The neural basis of financial risk taking. Neuron, 47, 763770. doi:10.1016/j.neuron.2005.08.008Google Scholar
Martel, M. M., Pierce, L., Nigg, J. T., Jester, J. M., Adams, K., Puttler, L. I., … Zucker, R. A. (2008). Temperament pathways to childhood disruptive behavior and adolescent substance abuse: Testing a cascade model. Journal of Abnormal Child Psychology, 37, 363373. doi:10.1007/s10802-008-9269-xGoogle Scholar
Maslowsky, J., Keating, D. P., Monk, C. S., & Schulenberg, J. (2011). Planned versus unplanned risks: Neurocognitive predictors of subtypes of adolescents’ risk behavior. International Journal of Behavioral Development, 35, 152160. doi:10.1177/0165025410378069Google Scholar
Mohr, P. N. C., Biele, G., & Heekeren, H. R. (2010). Neural processing of risk. Journal of Neuroscience, 30, 66136619. doi:10.1523/JNEUROSCI.0003-10.2010Google Scholar
Muthén, L. K., & Muthén, B. O. (1998). Mplus User's Guide. Seventh Edition. Los Angeles, CA: Muthén & Muthén.Google Scholar
Nigg, J. (2017). Annual Research Review: On the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology. Journal of Child Psychology and Psychiatry, 58, 361383. doi:10.1111/jcpp.12675Google Scholar
Otten, R., Mun, C. J., & Dishion, T. J. (2017). The social exigencies of the gateway progression to the use of illicit drugs from adolescence into adulthood. Addictive Behaviors, 73, 144150. doi:10.1016/j.addbeh.2017.05.011Google Scholar
Paulsen, D., Carter, R. M., Platt, M., Huettel, S. A., & Brannon, E. M. (2012). Neurocognitive development of risk aversion from early childhood to adulthood. Frontiers in Human Neuroscience, 5. doi:10.3389/fnhum.2011.00178Google Scholar
Paulus, M. P., Rogalsky, C., Simmons, A., Feinstein, J. S., & Stein, M. B. (2003). Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. NeuroImage, 19, 14391448. doi:10.1016/S1053-8119(03)00251-9Google Scholar
Peake, S. J., Dishion, T. J., Stormshak, E. A., Moore, W. E., & Pfeifer, J. H. (2013). Risk-taking and social exclusion in adolescence: Neural mechanisms underlying peer influences on decision-making. NeuroImage, 82, 2334. doi:10.1016/j.neuroimage.2013.05.061Google Scholar
Piehler, T., Véronneau, M.-H., & Dishion, T. (2012). Substance use progression from adolescence to early adulthood: Effortful control in the context of friendship influence and early-onset use. Journal of Abnormal Child Psychology, 40, 10451058. doi:10.1007/s10802-012-9626-7Google Scholar
Platt, M. L., & Huettel, S. A. (2008). Risky business: the neuroeconomics of decision making under uncertainty. Nature Neuroscience, 11, 398403. doi:10.1038/nn2062Google Scholar
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59, 21422154. doi:10.1016/j.neuroimage.2011.10.018Google Scholar
Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica, 32, 122136. doi: 10.1016/B978-0-12-214850-7.50010-3Google Scholar
Preuschoff, K., Quartz, S. R., & Bossaerts, P. (2008). Human insula activation reflects risk prediction errors as well as risk. Journal of Neuroscience, 28, 27452752. doi:10.1523/JNEUROSCI.4286-07.2008Google Scholar
Reyna, V. F., & Farley, F. (2006). Risk and rationality in adolescent decision making: implications for theory, practice, and public policy. Psychological Science in the Public Interest, 7, 144. doi:10.1111/j.1529-1006.2006.00026.xGoogle Scholar
Richards, J. M., Plate, R. C., & Ernst, M. (2013). A systematic review of fMRI reward paradigms used in studies of adolescents vs. adults: The impact of task design and implications for understanding neurodevelopment. Neuroscience & Biobehavioral Reviews, 37, 976991. doi:10.1016/j.neubiorev.2013.03.004Google Scholar
Rogosch, F. A., Oshri, A., & Cicchetti, D. (2010). From child maltreatment to adolescent cannabis abuse and dependence: A developmental cascade model. Development and Psychopathology, 22, 883897. doi:10.1017/S0954579410000520Google Scholar
Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., … Gur, R. E. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth. NeuroImage, 60, 623632. doi:10.1016/j.neuroimage.2011.12.063Google Scholar
Saxbe, D., Del Piero, L., Immordino-Yang, M. H., Kaplan, J., & Margolin, G. (2015). Neural correlates of adolescents’ viewing of parents’ and peers’ emotions: Associations with risk-taking behavior and risky peer affiliations. Social Neuroscience, 10, 592604. doi:10.1080/17470919.2015.1022216Google Scholar
Schriber, R. A., & Guyer, A. E. (2016). Adolescent neurobiological susceptibility to social context. Developmental Cognitive Neuroscience, 19, 118. doi:10.1016/j.dcn.2015.12.009Google Scholar
Siegel, J. S., Power, J. D., Dubis, J. W., Vogel, A. C., Church, J. A., Schlaggar, B. L., & Petersen, S. E. (2014). Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points. Human Brain Mapping, 35, 19811996. doi:10.1002/hbm.22307Google Scholar
Simons-Morton, B., & Chen, R. S. (2006). Over time relationships between early adolescent and peer substance use. Addictive Behaviors, 31, 12111223. doi:10.1016/j.addbeh.2005.09.006Google Scholar
Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28, 78106. doi:10.1016/j.dr.2007.08.002Google Scholar
Stride, C. B., Gardner, S., Catley, N., & Thomas, F. (2015). Mplus code for the mediation, moderation, and moderated mediation model templates from Andrew Hayes’ PROCESS analysis examples. Retrieved from http://www.offbeat.group.shef.ac.uk/FIO/mplusmedmod.htmGoogle Scholar
van den Bos, W., Vahl, P., Güroğlu, B., van Nunspeet, F., Colins, O., Markus, M., … Crone, E. A. (2014). Neural correlates of social decision-making in severely antisocial adolescents. Social Cognitive and Affective Neuroscience, 9, 20592066. doi:10.1093/scan/nsu003Google Scholar
van Duijvenvoorde, A. C. K., Huizenga, H. M., Somerville, L. H., Delgado, M. R., Powers, A., Weeda, W. D., … Figner, B. (2015). Neural correlates of expected risks and returns in risky choice across development. Journal of Neuroscience, 35, 15491560. doi:10.1523/JNEUROSCI.1924-14.2015Google Scholar
Van Ryzin, M. J., & Dishion, T. J. (2013). From antisocial behavior to violence: a model for the amplifying role of coercive joining in adolescent friendships: Coercive joining and young adult violence. Journal of Child Psychology and Psychiatry, 54, 661669. doi:10.1111/jcpp.12017Google Scholar
Van Ryzin, M. J., Fosco, G. M., & Dishion, T. J. (2012). Family and peer predictors of substance use from early adolescence to early adulthood: An 11-year prospective analysis. Addictive Behaviors, 37, 13141324. doi:10.1016/j.addbeh.2012.06.020Google Scholar
Weber, E. U., Shafir, S., & Blais, A.-R. (2004). Predicting risk sensitivity in humans and lower animals: Risk as variance or coefficient of variation. Psychological Review, 111, 430445. doi:10.1037/0033-295X.111.2.430Google Scholar
Supplementary material: File

Kim-Spoon et al. supplementary material

Appendices A-F

Download Kim-Spoon et al. supplementary material(File)
File 67.7 KB