Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T19:06:39.561Z Has data issue: false hasContentIssue false

Brain development, infant communication, and empathy disorders: Intrinsic factors in child mental health

Published online by Cambridge University Press:  31 October 2008

Colwyn Trevarthen*
Affiliation:
Edinburgh Centre for Research in Child Development, Department of Psychology, University of Edinburgh
Kenneth J. Aitken
Affiliation:
Edinburgh Centre for Research in Child Development, Department of Psychology, University of Edinburgh Department of Clinical Psychology, Hospital for Sick Children, Edinburgh, Scotland
*
Address correspondence and reprint requests to: Prof. Colwyn Trevarthen, Dept. of Psychology, The University of Edinburgh, 7 George Square, Edinburgh EII8 9JZ, Scotland, UK.

Abstract

Disorders of emotion, communication, and learning in early childhood are considered in light of evidence on human brain growth from embryo stages. We cite microbehavioral evidence indicating that infants are born able to express the internal activity of their brains, including dynamic “motive states” that drive learning. Infant expressions stimulate the development of imitative and reciprocal relations with corresponding dynamic brain states of caregivers. The infant's mind must have an “innate self-with-other representation” of the inter-mind correspondence and reciprocity of feelings that can be generated with an adult.

Primordial motive systems appear in subcortical and limbic systems of the embryo before the cerebral cortex. These are presumed to continue to guide the growth of a child's brain after birth. We propose that an “intrinsic motive formation” is assembled prenatally and is ready at birth to share emotion with caregivers for regulation of the child's cortical development, on which cultural cognition and learning depend.

The intrinsic potentiality for “intersubjectivity” can be disorganized if the epigenetic program for the infant's brain fails. Indeed, many psychological disorders of childhood can be traced to faults in early stages of brain development when core motive systems form.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abvitbol, M., Menini, C., Delezoide, A.-L., Rhyner, T., Vekemans, M., & Mallet, J. (1993). Nucleus basalis magnocellularis and hippocampus are the major sites of FMR-1 expression in the human fetal brain. Nature Genetics, 4, 147153.CrossRefGoogle Scholar
Adamson, L., & Bakeman, R. (1985). Affect and attention: Infants observed with mothers and peers. Child Development, 56, 582593.Google Scholar
Aggleton, J. P. (1993). The contribution of the amygdala to normal and abnormal emotional states. Trends in the Neurosciences, 16, 328333.CrossRefGoogle ScholarPubMed
Ainsworth, M. D. S., & Bell, S. (1970). Attachment, exploration, and separation illustrated by the behavior of one-year-olds in a strange situation. Child Development, 41, 4967.CrossRefGoogle Scholar
Ainsworth, M. D. S., Blehar, M. C., Waters, E., & Wall, S. (1978). Patterns of attachment. Hillsdale, NJ: Earlbaum.Google Scholar
Aitken, K. J. (1991a). An investigation into thebiological perturbations of prematurity. Ph.D. thesis, University of Edinburgh, Edinburgh.Google Scholar
Aitken, K. J. (1991b). Examining the evidence for a common structural basis to autism. Developmental Medicine and Child Neurology, 33, 933938.Google Scholar
Aitken, K. J. (1991c). Diagnostic issues in autism: Are we measuring the emperor for another suit of clothes? Developmental Medicine and Child Neurology, 33, 10151020.Google Scholar
Akbarian, S., Bunney, W. E., Potkin, S.G-, Wigal, S. B., Hagerman, J. O., Sandman, C. A., & Jones, E. G. (1993). Altered distribution of nicotinamideadenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbance of cortical development. Archives of General Psychiatry, 50, 169177.CrossRefGoogle ScholarPubMed
Akbarian, S., Vinuela, A., Kim, J. J., Potkin, S. G., Bunney, W. E., & Jones, E. G. (1993). Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Archives of General Psychiatry, 50, 178187.CrossRefGoogle ScholarPubMed
Als, H., Lawhon, G., Brown, E., Gibes, R., Duffy, F. H., McAnulty, G., & Blickman, J. G. (1986). Individualized behavioral and environmental care for the VLBW preterm infant at high risk for bronco-pulmonary dysplasia: NICU and developmental outcome. Pediatrics, 78, 11231132.Google Scholar
Armstrong, D. (1992). The neuropathology of Rett syndrome. Brain & Development, 14(Suppl.), 89101.Google Scholar
Bachevalier, J. (1994). Medial temporal lobe structures and autism: A review of clinical and experimental findings. Neuropsychologia, 32, 627648.CrossRefGoogle ScholarPubMed
Bakeman, R., & Adamson, L. B. (1984). Coordinating attention to people and objects in mother-infant and peer-infant interaction. Child Development, 55, 12781289.CrossRefGoogle ScholarPubMed
Baron-Cohen, S. (1989). The autistic child's theory of mind: A case of specific developmental delay. Journal of Child Psychology & Psychiatry, 30, 285297.CrossRefGoogle ScholarPubMed
Barrett, M. (1981). The communicative functions of early child language. Linguistics, 19, 273305.Google Scholar
Barth, P. G. (1992). Migrational disorders of the brain. Current Opinion in Neurology & Neurosurgery, 5, 339343.Google Scholar
Bates, E. (1979). The emergence of symbols: Cognition and communication in infancy. New York: Academic Press.Google Scholar
Bateson, M. C. (1979). “The epigenesis of conversational interaction”: A personal account of research and development. In Bullowa, M. (Ed.), Before speech: The beginnings of human communication (pp. 6377). London: Cambridge University Press.Google Scholar
Bauman, M. L., & Kemper, T. L. (Eds.). (1994). The neurobiology of autism. Baltimore, MD: Johns Hopkins Press.Google Scholar
Beal, M. F., Hyman, B. T., & Koroshetz, W. (1993). Do defects in mitochondrial energy metabolism underlie the pathology of neuro-degenerative diseases? Trends in the Neurosciences, 16, 125131.CrossRefGoogle Scholar
Beebe, B., Jaffe, J., Feldstein, S., Mays, K., & Alson, D. (1985). Inter-personal timing: The application of an adult dialogue model to mother-infant vocal and kinesic interactions. In Field, F. M. & Fox, N. (Eds.), Social perception in infants (pp. 217248). Norwood, NJ: Ablex.Google Scholar
Bell, M. A., & Fox, N. A. (1992). The relations between frontal brain electrical activity and cognitive development during infancy. Child Development, 63, 11421163.CrossRefGoogle ScholarPubMed
Berger, J. (1990). Interactions between parents and their infants with Down syndrome. In Cicchetti, D. & Beeghly, M. (Eds.), Children with Down syndrome: A developmental perspective (pp. 101146). Cambridge: Cambridge University Press.Google Scholar
Berthier, M. L., Starkstein, S. E., & Leiguarda, R. (1990). Developmental cortical anomalies in Asperger's syndrome: Neuroradiological findings in two patients. Journal of Neuropsychiatry, 2, 197201.Google Scholar
Bishop, D. V. M., North, T., & Donlan, C. (1994). Genetic basis of specific language impairment: Evidence from a twin study. Developmental Medicine & Child Neurology, 37, 5671.CrossRefGoogle Scholar
Bjorklund, A., Hokfelt, T., & Tohyama, M. (1992). Handbook of chemical neuroanatomy. New York: Elsevier.Google Scholar
Bolton, P., Macdonald, H., Pickles, A., Rios, P., Goode, S., Crowson, M., Bailey, A., & Rutter, M. (1994). A case-control family history study of autism. Journal of Child Psychology & Psychiatry, 35, 877900.CrossRefGoogle ScholarPubMed
Bowlby, J. (1988). Developmental psychiatry comes of age. American Journal of Psychiatry, 145, 110.Google Scholar
Bradshaw, J. L., & Nettleton, N. C. (1983). The nature of hemispheric specialization in man. Behavioral & Brain Sciences, 4, 5191.Google Scholar
Braten, S. (1988). Dialogic mind: The infant and adult in protoconversation. In Cavello, M. (Ed.), Nature cognition and system (pp. 187205). Dordrecht: Klewer Academic Publications.Google Scholar
Brazelton, T. B. (1979). Evidence of communication during neonatal behavioral assessment. In Bullowa, M. (Ed.), Before speech: The beginnings of human communication (pp. 7988). London: Cambridge University Press.Google Scholar
Brazelton, T. B. (1993). Touchpoints: Your child's emotional and behavioral development. New York: Viking.Google Scholar
Bretherton, I., & Bates, E. (1979). The emergence of intentional communication. In Uzgiris, I. C. (Ed.), New directions for child development (Vol. 4). San Francisco: Jossey-Bass.Google Scholar
Brodtkorb, E., Nilson, G., Smevic, O., & Rinck, P. A. (1992). Epilepsy and anomalies of neural migration: MRI and clinical aspects. Acta Neurological Scandinavica, 86, 2432.Google Scholar
Brown, W. T., Jenkins, E. C., Cohen, I. L., Fisch, G. S., Wolf-Schen, E. G., Gross, A., Waterhouse, L., Fein, D., Mason-Brothers, A., Ritvo, E., Ruttenberg, B. A., Bentley, W., & Castells, S. (1986). Fragile-X and autism: A nulticenter survey. American Journal of Medical Genetics, 23, 341352.Google Scholar
Bruner, J. S. (1983). Child's talk. Learning to use language. New York: Norton.Google Scholar
Bucher, K., Myers, R. E., & Southwich, C. (1970). Anterior temporal cortex and maternal behavior in the monkey. Neurology, 20, 415.Google Scholar
Buck, R. (1984). The communication of emotion. New York: Guilford Press.Google Scholar
Buck, R. (1993). Spontaneous communication and the foundation of the interpersonal self. In Neisser, U. (Ed.), The perceived self: Ecological and interpersonal sources of self-knowledge (pp. 216236). New York: Cambridge University Press.Google Scholar
Burford, B. (1992). Communicating through movement and posture. In MacGillivray, W., Fraser, W. I., & Green, A. (Eds.), Hallos' caring for people with mental handicap (pp. 94102). London: Butterworth-Heinemann.Google Scholar
Butterworth, G. E. (1991). The ontogeny and phylogeny of joint visual attention. In Whiten, A. (Ed.), Natural theories of mind (pp. 223232). Oxford: Basil Black well.Google Scholar
Changeux, J.-P. (1985). Neuronal man: The biology of mind. New York: Pantheon.Google Scholar
Changeux, J.-P., Heidmann, T., & Patter, P. (1984). Learning by selection. In Marler, P. & Terrace, H. S. (Eds.), The biology oj'learning (pp. 115133). Dahlem Konferenzem. Life Sciences Research Report 29. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Chisaka, O., Musci, T. S., & Capecchi, M. R. (1993). Developmental defects of the ear, cranial nerves and hindbrain resulting from targetted disruption of the mouse homeobox gene Hox 1.6. Nature (London), 355, 516520.Google Scholar
Cicchetti, D. (1987). Developmental psychopathology in infancy: Illustration from the study of maltreated youngsters. Journal of Consulting & Clinical Psychology, 55, 837845.CrossRefGoogle Scholar
Cicchetti, D. (1993). Developmental psychopathology: Reactions, reflections, projections. Developmental Review, 13, 471502.CrossRefGoogle Scholar
Cicchetti, D., & Garmezy, N. (Eds.). (1993). Milestones in the development of resilience [Special issue]. Development & Psychopathology, 5(4).Google Scholar
Cicchetti, D., Rogosch, F. A., Lynch, M., & Holt, K. D. (1993). Resilience in maltreated children: Processes leading to adaptive outcome. Development & Psychopathology, 5, 629647.CrossRefGoogle Scholar
Cicchetti, D., & Sroufe, L. A. (1978). An organizational view of affect: Illustration from the study of Down's syndrome infants. In Lewis, M. & Rosenblum, L. A. (Eds.), The development of affect (pp. 309350). New York: Plenum.CrossRefGoogle Scholar
Cioni, G., & Castellaci, A. M. (1990). Development of fetal and neonatal motor activity: Implications for neurology. In Block, H. & Bertenthal, B. (Eds.), Sensory-motor organizaion and development in infancy and early childhood. Dordrecht: Kluwer.Google Scholar
Clark, A. S., & Goldman-Rakic, P. S. (1989). Gonadal hormones influence the emergence of cortical function in non-human primates. Behavioral Neuroscience, 103, 12871295.Google Scholar
Cohn, J. F., Campbell, S. B., & Ross, S. (1991). Infant response in the still face paradigm at 6 months predicts avoidant and secure attachment at 12 months. Development & Psychopathology, 3, 367376.Google Scholar
Comings, D. E. (1986). The genetics of Rett syndrome: The consequences of a disorder where every case is a new mutation. American Journal of Medical Genetics, 24, 383388.Google Scholar
Courchense, E. (1989). Neuroanatomical substems involved in infantile autism. The implications of cerebellar abnormalities. In Dawson, G. (Ed.), Autism: Nature, diagnosis and treatment (pp. 119143). New York: Guilford Press.Google Scholar
Courchense, E., Townsend, J., & Saito, O. (1993). The brain in infantile autism: Posterior fossa structures are abnormal. Neurology, 44, 214223.Google Scholar
Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50, 873880.Google Scholar
Damasio, A. R., & Maurer, R. G. (1978). A neurological model for childhood autism. Archives of Neurology, 35, 777786.Google Scholar
Darwin, C. (1872). The expression of emotions in man and animals. London: Murray.Google Scholar
Davidson, R. J., & Fox, N. A. (1982). Asymmetric brain activity discriminates between positive and negative affective stimuli in human infants. Science, 218, 12351237.Google Scholar
Dawson, G., Grofer Klinger, L., Panagiotides, H., Spieker, S., & Frey, K. (1992). Infants of mothers with depressive symptoms: Electroencephalographic and behavioural findings related to attachment status. Development & Psychopathology, 4, 6780.CrossRefGoogle Scholar
Dawson, G., Phillips, S., Galpert, L., & Finley, C. (1986). Hemispheric specialization and the language abilities of autistic children. Child Development, 57, 14401453.Google Scholar
De Casper, A. J., & Carstens, A. A. (1981). Contingencies of stimulation; effects on learning and emotion in neonates. Infant Behavior & Development, 4, 1935.Google Scholar
De Casper, A. J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mother's voices. Science, 208, 11741176.Google Scholar
De Casper, A. J., & Spence, M. J. (1986). Prenatal maternal speech influences newborns' perception of speech sounds. Infant Behavior & Development, 9, 133150.Google Scholar
de Vries, J. I. P., Visser, G. H. A., & Prechtl, H. F. R. (1984). Fetal motility in the first half of pregnancy. In Prechtl, H. F. R. (Ed.), Continuity of neural functions from prenatal to postnatal life (pp. 4664). Oxford: Blackwell.Google Scholar
de Wied, D. (1987). Neuropeptides and behavior. In Adelman, G. (Ed.), Encyclopedia of neuroscience (Vol. 11, pp. 839841). Cambridge, MA: Birk-hauser Boston.Google Scholar
Diamond, A., & Goldman-Rakic, P. S. (1985). Evidence for involvement of prefrontal cortex in cognitive changes during the first year of life: Comparison of human infants and rhesus monkeys on a detour task with transparent barrier. Society of Neurosciences Abstracts (Part II), 11, 832.Google Scholar
Diamond, M. C. (1987). Asymmetry in the cerebral cortex: Development, estrogen receptors, neuron/glial ratios, immune deficiency and enrichment/overcrowding. In Ottoson, D. (Ed.), Duality and unity of the brain (pp. 3752). Wenner-Gren International Symposium Series, No. 47, London: Macmillan.Google Scholar
Dore, J. (1983). Feeling, form and intention in the baby's transition to language. In Golinkoff, R. (Ed.), The transition from pre-linguistic communication. Hillsdale, NJ: Erlbaum.Google Scholar
Echelard, Y., Epstein, D. J., St-Jaques, B., Shen, L., Mohler, J., McMahon, J. A., & McMahon, A. P. (1993). Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell, 75, 14171430.CrossRefGoogle ScholarPubMed
Edelman, G. M. (1984, 04). Cell-adhesion molecules: A molecular basis for animal form. Scientific American, 250, 8091.Google Scholar
Eimas, P. D., Siqueland, E. R., Jusczyk, P., & Vigorito, J. (1971). Speech perception in infants. Science, 171, 303306.Google Scholar
Ekman, P. (1993). Facial expression & emotion. American Psychologist, 48, 384392.Google Scholar
Emde, R. N. (1988). Development terminable & interminable. I. Innate & motivational factors from infancy. International Journal of Psychoanalysis, 69, 2342.Google Scholar
Emde, R. N., Biringen, Z., Clyman, R. B., & Oppenheim, D. (1991). The moral self in infancy: Affective core and procedural knowledge. Developmental Review, 11, 251270.Google Scholar
Etcoff, N. L. (1984). Perceptual and conceptual organization of facial emotions: Hemispheric differences. Brain & Cognition, 3, 385412.Google Scholar
Fernald, A. (1989). Intonation and communicative interest in mother's speech to infants: Is the melody the message? Child Development, 60, 14971510.Google Scholar
Fernald, A., Taeschner, T., Dunn, J., Papousek, M., Boysson-Bardies, B. de, & Fukui, I. (1989). A cross-language study of prosodic modifications in mothers' and fathers' speech to preverbal infants. Journal of Child Language, 16, 477501.Google Scholar
Field, T. M. (1977). Effect of early separation, interactive deficits and experimental manipulations on infant-mother face-to-face interactions. Child Development, 48, 763771.Google Scholar
Field, T. M. (1981). Infant arousal, attention, and affect during early interactions. In Lipsitt, L. (Ed.), Advances in infant development (Vol. 1). Nor-wood, NJ: Ablex.Google Scholar
Field, T. M. (1985). Neonatal perception of people: Maturational and individual differences. In Field, T. M. & Fox, N. (Eds.), Social perceptions in infants (pp. 3152). Norwood, NJ: Ablex.Google Scholar
Field, T. M. (1992). Infants of depressed mothers. Development & Psychopathology, 4, 4966.Google Scholar
Field, T. M., Healy, B., Goldstein, S., Perry, S., Bendall, D., Schanberg, S., Zimmerman, E., & Kuhn, C. (1988). Infants of depressed mothers show “depressed” behavior even with non-depressed adults. Child Development, 59, 15691579.CrossRefGoogle Scholar
Field, T. M., Woodson, R., Greenberg, R., & Cohen, D. (1982). Discrimination and imitation of facial expressions by neonates. Science, 218, 179181.CrossRefGoogle ScholarPubMed
Fish, B., Marcus, J., Hans, S. L., Auerbach, J. G., & Perdue, S. (1992). Infants at risk for schizophrenia: Sequelae of a genetic neurointegrative defect. Archives of General Psychiatry, 49, 221235.Google Scholar
Fonagy, P., Steele, M., Steele, H., Higgitt, A., & Target, M. (1994). The Emanuel Miller Memorial Lecture 1992. The theory and practice of resilience. Journal of Child Psychology & Psychiatry, 35, 231257.Google Scholar
Fonagy, P., Steele, M., Steele, N., Moran, G. S., & Higgitt, A. C. (1991). The capacity for understanding mental states: The reflective self in parent and child and its significance for security of attachment. Infant Mental Health Journal, 12(3), 201218.Google Scholar
Fox, N. A., & Davidson, R. J. (Eds.). (1984). The psychology of affective development. Hillsdale, NJ: Erlbaum.Google Scholar
Fraiberg, S. (1979). Blind infants and their mothers: An examination of the sign system. In Bullowa, M. (Ed.), Beforespeech (pp. 149169). London: Cambridge University Press.Google Scholar
Fraiberg, S. (1980). Clinical studies in infant mental health: The first year of life. London: Tavistock.Google Scholar
Franco, F., & Wishart, J. G. (in press). The use of pointing and other gestures by young children with Down syndrome. The American Journal on Mental Retardation.Google Scholar
Franzen, E. A., & Myers, R. E. (1973). Neural control of social behavior: Prefrontal and anterior cortex lesions. Neuropsychologia, 11, 141157.Google Scholar
Frith, U. (1989). Autism: Explaining the enigma. Ox-ford: Basil Blackwell.Google Scholar
Gainotti, G. (1987). Disorders of emotional behavior and of automatic arousal resulting form unilateral brain damage. In Ottoson, D. (Ed.), Duality and unity of the brain (pp. 161179). Wenner-Gren International Symposium Series, No. 47. London: Macmillan.Google Scholar
Gainotti, G., Caltagirone, C., & Zoccolotti, P. (1993). Left/right and cortical/subcortical dichotomies in the neuropsychological study of human emotions. Cognition & Emotion, 7, 7193.Google Scholar
Galaburda, A. M. (1992). Neurology of developmental dyslexia. Current Opinion in Neurology & Neuro-surgery, 5, 7176.Google ScholarPubMed
Gardner, R. L., & Stern, C. D. (1993). Integration in development. In Boyd, C. A. R. & Noble, D. (Eds.), The logic of life: The challenge of integrative physiology (pp. 6388). Oxford: Oxford University Press.Google Scholar
Gerendai, I. (1987). Laterality and the neuroendocrine system. In Ottoson, D. (Ed.), Duality and unity of the brain (pp. 1728). Wenner-Gren International Symposium Series, No. 47. London: Macmillan.Google Scholar
Geschwind, N., & Galaburda, A. S. (1985). Cerebral lateralization —Biological mechanisms, associations and pathology: I, II, III: A hypothesis and program for research. Archives of Neurology, 42, 428459, 521562, 635654.Google Scholar
Geschwind, N., & Galaburda, A. S. (Eds.). (1987). Cerebral lateralization. Cambridge, MA: MIT Press.Google Scholar
Gillberg, C. (1991). The Emanuel Miller Memorial Lecture: Autism and autistic-like conditions: Subclasses among disorders of empathy. Journal of Child Psychology & Psychiatry, 33, 813842.Google Scholar
Gillberg, C., & Coleman, M. (1992). The biology of the autistic syndromes (2nd ed. Clinics in Developmental Medicine, 126). London: MacKeith Press.Google Scholar
Gold, J. M., & Weinberger, D. R. (1991). Frontal lobe structure, function and connectivity in schizophrenia. In Kerwin, R., Dawbarn, D., McCulloch, J., & Tamminga, C. (Eds.), Neurobiology & psychiatry (Vol. 1, pp. 3960). Cambridge: Cambridge University Press.Google Scholar
Goldman-Rakic, P. S. (1981). Development and plasticity of primate association cortex. In Schmitt, F. O., Worden, F., Adelman, G., & Dennis, S. (Eds.), The organization of the cerebral cortex (pp. 6997). Cambridge: MIT Press.Google Scholar
Goldman-Rakic, P. S. (1987). Development of cortical circuitry and cognitive function. Child Development, 58, 601622.Google Scholar
Goldman-Rakic, P. S. (1992). Dopamine mediated mechanisms of the prefrontal cortex. Seminars in the Neurosciences, 4, 149160.Google Scholar
Goldman-Rakic, P. S., & Brown, R. M. (1982). Post-natal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys. Developmental Brain Research, 4, 339349.Google Scholar
Goodman, R. (1989a). Infantile autism: A syndrome of multiple primary deficits? Journal of Autism & Developmental Disorders, 19, 409424.CrossRefGoogle ScholarPubMed
Goodman, R. (1989b). Neural misconnection and psychiatric disorder. British Journal of Psychiatry, 154, 292299.Google Scholar
Goodman, R. (1991). Developmental disorders and structural brain development. In Rutter, M. & Casaer, P. (Eds.), Biological risk factors for psychosocial disorders (pp. 2049). Cambridge: Cambridge University Press.Google Scholar
Grieser, D. L., & Kuhl, P. K. (1988). Maternal speech to infants to a tonal language: Support for universal prosodic features in motherese. Developmental Psychology, 24, 1420.Google Scholar
Grigsby, J. P., Kemper, M. B., & Hagerman, R. J. (1987). Developmental Gerstmann syndrome without aphasia in fragile-X syndrome. Neuropsychologia, 25, 881891.Google Scholar
Grossman, K. E., & Grossman, K. (1991). Attachment quality as an organizer of emotional and behavioral responses in a longitudinal perspective. In Parkes, C. M., Stevenson-Hinde, J., & Marris, P. (Eds.), Attachment across the life cycle (pp. 93114). London: Tavistock.Google Scholar
Hagberg, B. (Ed.). (1993). Rett syndrome—Clinical and biological aspects (Clinics in Developmental Medicine, No. 127). London: MacKeith Press.Google Scholar
Hagberg, B., & Gillberg, C. (1993). Rett variantsRettoid phenotypes. In Hagberg, B. (Ed.), Rett syndrome—Clinical and biological aspects (Clinics in Developmental Medicine, No. 127, pp. 4060). London: MacKeith Press.Google Scholar
Hagberg, B., Naidu, S., & Percy, A. K. (1992). Tokyo symposium on Rett syndrome; neurobiological approach. Brain and Development 74(Suppl.), S151-S153.Google Scholar
Hagerman, R. J., & McKenzie, P. (Eds.). (1992, 06). International Fragile X Conference Proceedings.Spectra, CO.Google Scholar
Hagger, C., Bachevalier, J., & Bercu, B. B. (1986). The effects of perinatal testosterone on the development of habit formation in infant monkeys. Society for Neuroscience Abstracts, 12, 23.Google Scholar
Halliday, M. A. K. (1975). Learning how to mean: Explorations in the development of language. London: Arnold.Google Scholar
Happé, F. G. E. (1994). Current psychological theories of autism. Journal of Child Psychology & Psychiatry, 55, 215229.Google Scholar
Harris, P. L. (1994). The child's understanding of emotion: Developmental change and family environment. Journal of Child Psychology & Psychiatry, 35, 328.Google Scholar
Hasselmo, M. E., Rolls, E. T., & Bayliss, G. C. (1989). The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behavioral Brain Research, 32, 203218.CrossRefGoogle ScholarPubMed
Hay, D. F. (1994). Prosocial development. Journal of Child Psychology & Psychiatry, 35, 2972.Google Scholar
Haydon, P. G., McCobb, D. P., & Kater, S. B. (1984). Serotonin selectively inhibits growth-cone mobility and synaptogenesis of specific identified neurons. Science, 226, 561564.Google Scholar
Hebb, D. O. (1949). The organization of behavior. New York: Wiley.Google Scholar
Heilman, K. M., & Satz, P. (Eds.). (1983). Neuropsychology of human emotion. London: Guilford Press.Google Scholar
Heilman, K. M., Schwartz, H., & Watson, R. T. (1977). Hypoarousal in patients with neglect syndrome and emotional indifference. Neurology, 38, 229232.Google Scholar
Heimann, M., & Schaller, J. (1985). Imitative reactions among 14–-221-day-old infants. Infant Mental Health Journal, 5(1), 3139.Google Scholar
Hellige, J. B. (1993). Hemispheric asymmetry: What's right and what's left. Cambridge, MA: Harvard University Press.Google Scholar
Herman, B. H., & Panksepp, J. (1978). Evidence for opiate mediation of social affect. Pharmacological Biochemistry & Behavior, 9, 213220.Google Scholar
Hess, W. R. (1954). Diencephalon: Autonomicandextrapyramidal functions. Orlando, FL: Grune and Stratton.Google Scholar
Hobson, R. P. (1993). Autism and the development of mind. Hillsdale, NJ: Erlbaum.Google Scholar
Hofer, M. A. (1990). Early symbiotic processes: Hard evidence from a soft place. In Click, R. A. & Bone, S. (Eds.), Pleasure beyond the pleasure principle (pp. 5578). New Haven, CT: Yale University Press.Google Scholar
Hoffman, H. S. (1987). Imprinting and the critical period for social attachments: Some laboratory investigations. In Bornstein, M. (Ed.), Sensitive periods in development, interdisciplinary studies (pp. 99121). Hillsdale, NJ: Erlbaum.Google Scholar
Hubley, P., & Trevarthen, C. (1979). Sharing a task in infancy. In Uzgiris, I. (Ed.), Social interaction during infancy, new directions for child development (Vol. 4, pp. 5780). San Francisco: Jossey-Bass.Google Scholar
Hundeide, K. (1991). Helping disadvantaged children. London: Jessika Kingsley.Google Scholar
Hunt, R. K., & Cowan, W. M. (1990). The chemoaffinity hypothesis: An appreciation of Roger W. Sperry's contributions to developmental biology. In Trevarthen, C. (Ed.), Brain circuits and functions of the mind: Essays in honour of Roger W. Sperry (pp. 1974). New York: Cambridge University Press.Google Scholar
Innocenti, G. M. (1983). Exuberant callosal projections between the developing hemispheres. In Villani, R., Papo, I., Giovanelli, M., Gaini, S. M., & Tomei, G. (Eds.), Advances in neurotraumatology (pp. 510). Amsterdam: Excerpta Medica.Google Scholar
Innocenti, G. M. (1986). General organization of the callosal connections in the cerebral cortex. In Jones, E. G. & Peters, A. (Eds.), Cerebral cortex (Vol. 5, pp. 291353). New York: Plenum Press.Google Scholar
Iverson, L. L. (1987). Neurotransmitters. In Adelman, G. (Ed.), Encyclopedia of neuroscience (Vol. 11, pp. 856858). Cambridge, MA: Birkhauser Boston.Google Scholar
Johnson, M. H., & Morton, J. (1991). Biology and cognitive development: The case of face recognition. Oxford: Basil Blackwell.Google Scholar
Johnston, M. V. (1985). Neurotransmitters. In Wiggins, R. C., McCandless, D. W., & Enna, S. J. (Eds.), Developmental neurochemistry (pp. 193224). Austin: University of Texas Press.Google Scholar
Joseph, R. (1982). The right cerebral hemisphere: Emotion, music, visuo-spatial skills, body-image, dreams and awareness. Journal of Clinical Psychology, 44, 630673.Google Scholar
Jürgens, U. (1979). Neural control of vocalization in non-human primates. In Steklis, H. D. & Raleigh, M. J. (Eds.), Neurobiology of social communication in primates: An evolutionary perspective (pp. 1144). New York: Academic Press.Google Scholar
Kagan, J. (1982). The emergence of self. Journal of Child Psychology & Psychiatry, 23, 363381.Google Scholar
Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217250.Google Scholar
Kasari, C., Sigman, M., Mundy, P., & Yirmiya, N. (1990). Affective sharing in the context of joint attention interactions of normal, autistic and mentally retarded children. Journal of Autism & Developmental Disorders, 20, 87101.Google Scholar
Kimura, D. (1982). Left-hemisphere control of oral and brachial movements and their relation to communication. Philosophical Transactions of the Royal Society, London, Series B, 298, 135149.Google Scholar
Kimura, D. (1992). Sex differences in the brain. Scientific American, 267, 119125.Google Scholar
Klaus, M. H., & Kennell, J. H. (1976). Maternal-infant bonding: The impact of early separation or loss on family development. St. Louis, MO: C. V. Mosby.Google Scholar
Kraemer, G. W. (1992). A psychobiological theory of attachment. Behavioral & Brain Sciences, 15(3), 493541.Google Scholar
Kugiumutzakis, G. (1993). Intersubjective vocal imitation in early mother-infant interaction. In Nadel, J. & Camaioni, L. (Eds.), New perspectives in early communicative development. London: Routledge.Google Scholar
Kuypers, H. G. J. M. (1958). Corticobulbar connections to the pons and lower brain stem in man. Brain, 81, 364388.Google Scholar
Langlois, J. H., Roggman, L. A., & Rieser-Danner, L. A. (1990). Infant's differential social responses to attractive and unattractive faces. Developmental Psychology, 26, 153159.Google Scholar
Larroche, J.-C., Privat, A., & Jardin, L. (1981). Some fine structures in the human fetal brain. In Monset-Couchard, M. & Minkowski, A. (Eds.), Physiological and biochemical basis for perinatal medicine (pp. 350358). Basel: Karger.Google Scholar
Lauder, J. M., & Krebs, H. (1986). Do neurotransmitters, neurohumors, and hormones specify critical periods? In Greenough, W. T. & Juraska, J. M. (Eds.), Developmental neuropsychobiology (pp. 119174). Orlando, FL: Academic Press.Google Scholar
Lecours, A. R. (1982). Correlates of developmental behavior in brain maturation. In Bever, T. G. (Ed.), Regressions in mental development: Basic phenomena and theories (pp. 267298). Hillsdale, NJ: Erlbaum.Google Scholar
LeDoux, J. E. (1992). Brain mechanisms of emotion and emotional learning. Current Opinion in Neurobiology, 2, 191197.Google Scholar
Leslie, A. M. (1987). Pretence and representation: The origins of “theory of mind.” Psychological Review, 94, 412426.Google Scholar
Levitt, P., Rakic, P., & Goldman-Rakic, P. (1984). Region-specific distribution of chatecholamine afferents in primate cerebral cortex: A flourescence histochemical analysis. Journal of Comparative Neurology, 227, 2336.Google Scholar
Lewis, D. A., & Morrison, J. H. (1989). Noradrenergic innervation of the monkey prefrontal cortex: A dopamine-beta-hydroxylase immunohistochemical study. Journal of Comparative Neurology, 282, 317330.Google Scholar
Lewis, M., Feiring, C., McGuffog, C., & Jaskir, J. (1984). Predicting psychopathology in six-year-olds from early social relations. Child Development, 55, 123136.Google Scholar
Liddle, P. F. (1992). PET scanning and schizophrenia: What progress? Psychological Medicine, 22, 557560.Google Scholar
Lindsley, D. B. (1958). The reticular system and perceptual discrimination. In Jasper, H. H., Proctor, L. D., Kingston, R. S., Noshay, W. C., & Costello, R. T. (Eds.), The reticular formation of the brain (pp. 513534). Boston, MA: Little, Brown.Google Scholar
Locke, J. L. (1993). The child's path to spoken language. Cambridge, MA: Harvard University Press.Google Scholar
Lyon, G., & Gadisseux, J.-F. (1991). Structural abnormalities of the brain in developmental disorders. In Rutter, M. & Casaer, P. (Eds.), Biological risk factors for psychosocial disorders (pp. 119). Cambridge: Cambridge University Press.Google Scholar
MacKain, K. S., Studdert-Kennedy, M., Spieker, S., & Stern, D. N. (1983). Infant intermodal speech perception is a left hemisphere function. Science, 219, 13471349.Google Scholar
Mackinnon, P. C. B., & Greenstein, B. (1985). Sexual differentiation of the brain. In Falkner, F. & Tanner, J. M. (Eds.), Human growth. A comprehensive treatise: Vol. 2. Postnatal growth: Neurobiology. New York: Plenum Press.Google Scholar
MacLean, P. D. (1970). The triune brain, emotion and scientific bias. In Schmitt, F. O. (Ed.), The neuro-sciences second study program (pp. 336349). New York: Rockefeller University Press.Google Scholar
MacLean, P. D. (1972). Cerebral evolution and emotional processes: New findings on the striatal complex. Annals of the New York Academy of Sciences, 193, 137149.Google Scholar
MacNeilage, P. F., Studdert-Kennedy, M. G., & Lindblom, B. (1987). Primate handedness reconsidered. Behavioral & Brain Science, 10, 247303.Google Scholar
Mahler, M., Pine, F., & Bergman, A. (1975). The psychological birth of the human infant. New York: Basic Books.Google Scholar
Mahoney, G., Fors, S., & Wood, S. (1990). Maternal directive behavioral revisited. American Journal of Mental Retardation, 94, 398406.Google Scholar
Main, M. (1991). Metacognitive knowledge, metacognitive monitoring, and singular (coherent) vs multiple (incoherent) models of attachment. In Murray-Parkes, C., Stevenson-Hinde, J., & Marris, P. (Eds.), Attachment across the life cycle (pp. 127159). London: Tavistock/Routledge.Google Scholar
Main, M., & Goldwyn, R. (1984). Predicting rejection of her infants from mother's representation of her own experience. Implications for the abused-abusing intergenerational cycle. International Journal of Child Abuse & Neglect, 8, 203217.Google Scholar
Main, M., Kaplan, N., & Cassidy, J. (1985). Security in infancy, childhood and adulthood: A move to the level of representation. In Bretherton, I. & Waters, E. (Eds.), Growing points in attachment theory and research. Monographs of the Society for Research in Child Development, 50 (1–2, Serial No. 209). Chicago: University of Chicago Press.Google Scholar
Maratos, O. (1973). The origin and development of imitation in the first six months of life. Ph.D. thesis, University of Geneva, Geneva.Google Scholar
Maratos, O. (1982). Trends in development of imitation in early infancy. In Bever, T. G. (Ed.), Regressions in mental development: Basis phenomena and theories (pp. 81101). Hillsdale, NJ: Erlbaum.Google Scholar
Marin-Padilla, M. (1987). Neocortex, mammalian, origins of. In Adelman, G. (Ed.), Encyclopedia of neuroscience (Vol. 1, pp. 740741). Boston: Birkhauser.Google Scholar
Martin, J. B. (1993). Molecular genetics in neurology. Annals of Neurology, 34, 757773.Google Scholar
Mayer, N. K., & Tronick, E. Z. (1985). Mothers' turngiving signals and infant turntaking in mother-infant interaction. In Field, F. M. & Fox, N. (Eds.), Social perception in infants (pp. 199216). Norwood, NJ: Ablex.Google Scholar
Meltzoff, A. N., & Moore, M. H. (1977). Imitation of facial and manual gestures by human neonates. Science, 198, 7578.Google Scholar
Meltzoff, A. N., & Moore, M. K. (1992). Early imitation within a functional framework: The importance of personal identity, movement and development. Infant Behavior & Development, 15, 479505.Google Scholar
Mesulam, M.-M. (1987). Cholinergic neurons, pathways, diseases. In Adelman, G. (Ed.), Encyclopedia of neuroscience (Vol. 1, pp. 233235). Boston: Birkhauser.Google Scholar
Moore, R. Y. (1982). Catecholamine neuron systems in the brain. Annals of Neurology, 12, 321327.Google Scholar
Morecraft, R. J., Geula, C., & Mesulam, M.-M. (1993). Architecture of connectivity within a cingulo-fronto-paraietal neurocognitive network for directed attention. Archives of Neurology, 50, 279284.Google Scholar
Müller, F., & O'Rahilly, R. (1990a). The human brain at stages 18–20, including the choroid plexuses and the amygdaloid and septal nuclei. Anatomy & Embryology, 182, 285306.Google Scholar
Müller, F., & O'Rahilly, R. (1990b). The human brain at stages 21–23, with particular reference to the cerebral cortical plate and to the development of the cerebellum. Anatomy & Embryology, 182, 375400.Google Scholar
Mundy, P., Kasari, C., & Sigman, M. (1992). Nonverbal communication, affecting sharing, and inter-subjectivity. Infant Behavior & Development, 15, 377381.Google Scholar
Mundy, P., Sigman, M., Ungerer, J., & Sherman, T. (1986). Defining the social deficits of autism. The contribution of non-verbal communication measures. Journal of Child Psychology & Psychiatry, 27, 657669.Google Scholar
Murray, L. (1988). Effects of post-natal depression on infant development: Direct studies of early mother-infant interactions. In Brockington, I. & Kumar, R. (Eds.), Motherhood and mental illness (Vol. 2, pp. 159190). Bristol: John Wright.Google Scholar
Murray, L. (1992). The Impact Of Postnatal Depression On Infant Development. Journal of Child Psychology & Psychiatry, 33(3), 543561.Google Scholar
Murray, L., Kempton, C., Woolgar, M., & Hooper, R. (1993). Depressed mothers' speech to their infants and its relation to infant gender and cognitive development. Journal of Child Psychology & Psychiatry, 34(1), 10831101.Google Scholar
Murray, L., & Trevarthen, C. (1985). Emotional regulation of interactions between two-month-olds and their mothers. In Field, T. M. & Fox, N. A. (Eds.), Social perception in infants (pp. 177198). Norwood, NJ: Erlbaum.Google Scholar
Murray, L., & Trevarthen, C. (1986). The infant's role in mother-infant communication. Journal of Child Language, 13, 1529.Google Scholar
Nakano, S. (1994, 06-07). Developmental changes in young children's understanding of their mothers' play intentions during playful teasing. Paper presented at the 13th biennial meeting of the International Society for the Study of Behavioral Development,Amsterdam.Google Scholar
Nakano, S., & Kanaya, Y. (1993). The effects of mothers' teasing: Do Japanese infants read their mothers' play intention in teasing? Early Development & Parenting, 2, 717.Google Scholar
Nauta, W. J. H., & Domesick, V. B. (1982). Neural associations of the limbic system. In Beckman, A. L. (Ed.), The neural basis of behavior (pp. 175206). New York: SP Medical and Scientific Books.Google Scholar
Neisser, U. (1993). The self perceived. In Neisser, U. (Ed.), The perceived self': Ecological and interpersonal sources of self-knowledge (pp. 324). New York: Cambridge University Press.Google Scholar
Nielsen, J. B., Friberg, L., Lou, H., Lassen, N. A., & Sam, I. L. (1990). Immature pattern of brain activity in Rett syndrome. Archives of Neurology, 47, 982986.Google Scholar
Nomura, Y., Segawa, M., & Higurashi, M. (1985). Rett syndrome —An early catecholamine and indolamine deficient disorder? Brain & Development, 7(3), 334341.Google Scholar
Nordeen, D. J., & Yahr, P. (1982). Hemispheric asymmetries in the behavioral and sexual differentiation in the mammal brain. Science, 218, 391394.Google Scholar
Ojemann, G., Fried, I., & Mateer, C. (1980). Organization of visual function in human nondominant cortex. Neuroscience Abstracts, 6, 418.Google Scholar
Oke, A., Keller, R., Mefford, I., & Adams, R. N. (1978). Lateralization of norepinephrine in human thalamus. Science, 200, 14111413.Google Scholar
Oliverio, A., Castellano, C., & Puglisi-Allegra, S. (1984). Psychobiology of opioids. International Review of Neurobiology, 25, 277337.Google Scholar
Oppenheim, R. W. (1984). Cellular interactions and the survival and maintenance of neurons during development. In Sharma, S. C. (Ed.), Organizing principles of neural development (pp. 4980). New York: Plenum Press.Google Scholar
O'Rahilly, R., & Müller, F. (1987). Developmental stages in human embryos (Publication 637). Washington, DC: Carnegie Institute of Washington.Google Scholar
O'Rahilly, R., & Müller, F. (1994). The embryonic human brain: An atlas of developmental stages. New York: Wiley-Liss.Google Scholar
O'Rahilly, R., Muller, F., Hutchins, G. M., & Moore, G. W. (1984). Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first five weeks of development. The American Journal of Anatomy, 171, 243257.Google Scholar
O'Rahilly, R., Müller, F., Hutchins, G. M., & Moore, G. W. (1987). Computer ranking of the sequence of appearance of 73 features of the brain and related structures in staged human embryos during the sixth week of development. The American Journal of Anatomy, 150, 6986.Google Scholar
Ornitz, E. M. (1983). The functional anatomy of infantile autism. International Journal of Neuroscience, 19, 85124.Google Scholar
Osofsky, J. D., & Danzger, B. (1974). Relationship between neonatal characteristics and mother-infant interaction. Developmental Psychology, 10, 11241130.Google Scholar
Pandya, D. N., Seltzer, B., & Barbas, H. (1988). Input-output organization of the primate cerebral cortex. In Comparative primate biology: Vol. IV. Neurosciences (pp. 3980). New York: Allen Ardis.Google Scholar
Pandya, D. N., & Yeterian, E. H. (1985). Architecture and connections of the cortical association areas. In Peters, A. & Jones, E. G. (Eds.), Cerebral cortex: Vol. 4. Association and auditory cortices. New York: Plenum Press.Google Scholar
Panksepp, J. (1992). A critical role for “affective neuroscience” in resolving what is basic about basic emotions. Psychological Review, 99, 554560.Google Scholar
Papousek, M., & Papousek, H. (1981). Musical elements in the infants vocalization: Their significance for communication, cognition and creativity. In Lipsitt, L. P. & Rovee-Collier, C. K. (Eds.), Advances in infancy research (Vol. 1, pp. 163224). Norwood, NJ: Ablex.Google Scholar
Papousek, M., Papousek, H., & Bornstein, M. H. (1985). The naturalistic vocal environment of young infants: On the significance of homogeneity and variability in parental speech. In Field, T. M. & Fox, N. (Eds.), Social perception in infants (pp. 269298). Norwood, NJ: Ablex.Google Scholar
Perett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurons responsive to faces in the monkey temporal cortex. Experimental Brain Research, 47, 329342.Google Scholar
Piontelli, A. (1992). From fetus to child. London: Routledge.Google Scholar
Ploog, D. (1979). Phonation, emotion, cognition, with reference to the brain mechanisms involved. In Wohlstenholme, G. and O'Connor, M. (Eds.), Brain and mind (pp. 7998). Ciba Foundation Symposium, 69, New Series. Amsterdam: Excerpta Medica.Google Scholar
Ploog, D. (1992). Neuroethological perspectives on the human brain: From the expression of emotions to intentional signing and speech. In Harrington, A. (Ed.), So human a brain (pp. 313). Boston: Birkhauser.Google Scholar
Prechtl, H. F. R. (1984). Continuity and change in early human development. In Prechtl, H. F. R. (Ed.), Continuity of neural functions from prenatal to postnatal life. Oxford: Blackwell.Google Scholar
Radke-Yarrow, M., Cummings, E. M., Kuczynski, L., & Chapman, M. (1985). Patterns of attachment in two- and three-year-olds in normal families and families with parental depression. Child Development, 56, 884893.Google Scholar
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170176.Google Scholar
Rakic, P. (1991). Development of the primate cerebral cortex. In Lewis, M. (Ed.), Child and adolescent psychiatry: A comprehensive textbook (pp. 1128). Baltimore, MD: Williams & Wilkins.Google Scholar
Reddy, V. (1991). Playing with others' expectations; teasing and mucking about in the first year. In Whiten, A. (Ed.), Natural theories of mind (pp. 143158). Oxford: Blackwell.Google Scholar
Reddy, V. (1994a, 03). The origins of self-consciousness in consciousness of other. Paper presented at the symposium on “Self as Process” at the annual conference of the British Psychological Society,Brighton.Google Scholar
Reddy, V. (1994b). The point of pointing: Sharing perceptions or controlling behaviour? Manuscript submitted for publication.Google Scholar
Rheingold, H., Hay, D., & West, M. (1976). Sharing in the second year of life. Child Development, 83, 898913.Google Scholar
Riddle, R. D., Johnson, R. L., Laufer, E., & Tabin, C. (1993). Sonic hedgehog mediates the polarizing activity of the ZPA. Cell, 75, 14011418.Google Scholar
Rijt-Plooij, H. H. C. van de, & Plooij, F. X. (1993). Distinct periods of mother-infant conflict in normal development: Sources of progress and germs of pathology. Journal of Child Psychology & Psychiatry, 34, 229245.Google Scholar
Rimland, B. (1964). Infantile autism. New York: Appleton-Century-Crofts.Google Scholar
Robinson, R. J. (1991). Causes and associations of severe and persistent specific speech and language disorders in children. Developmental Medicine & Child Neurology, 33, 943962.Google Scholar
Robson, K. S. (1967). The role of eye-to-eye contact in maternal-infant attachment. Journal of Child Psychology and Psychiatry, 8, 1325.Google Scholar
Rogers, S. J., Ozonoff, S., & Maslin-Cole, C. (1993). Developmental aspects of attachment behaviour in young children with pervasive developmental disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 32, 12741282.Google Scholar
Rogers, S. J., & Pennington, B. F. (1991). A theoretical approach to the deficits in infantile autism. Development & Psychopathology, 3, 137163.Google Scholar
Rolls, E. T. (1990). A theory of emotion, and its application to understanding the neural basis of emotion. Cognition and Emotion, 4, 161190.Google Scholar
Rosen, G. D., & Galaburda, A. M. (1985). Development of language: A question of asymmetry and deviation. In Mehler, J. & Fox, R. (Eds.), Neonate cognition: Beyond the blooming, buzzing confusion (pp. 307326). Hillsdale, NJ: Erlbaum.Google Scholar
Rosen, G. D., Sherman, G. F., & Galaburda, A. M. (1989). Interhemispheric connections differ between symmetrical and asymmetrical brain regions. Neuroscience, 33, 525533.Google Scholar
Ross, C. A., McLnnis, M. G., Margolis, R. L., & Li, S.-H. (1993). Genes with triplet repeats: Candidate mediators of neuropsychiatric disorders. Trends in the Neurosciences, 16, 254260.Google Scholar
Ross, E. D. (1993). Nonverbal aspects of language. Neurologic Clinics, 11, 923.Google Scholar
Rutter, M. (1991). Autism as a genetic disorder. In McGuffin, P. & Murray, R. (Eds.), The new genetics of mental illness. Oxford: Butterworth-Heinemann.Google Scholar
Rutter, M., & Rutter, M. (1992). Developing minds: Challenge and continuity across the life span. Harmondsworth: Penguin Books.Google Scholar
Schanberg, S. M., & Field, T. M. (1987). Sensory deprivation, stress and supplemental stimulation in the rat pup and preterm human neonate. Child Development, 58, 14311447.Google Scholar
Scheibel, A. B. (1984). The brain stem reticular core and sensory function. In Geiger, S. R. (Exec. Ed.), Brookhart, J. M. & Mountcastle, V. B. (Sect. Eds.), Darian-Smith, I. (Vol. Ed.), Handbook of physiology: Sect. I. The nervous system: Vol. 3. Sensory processes: Part 1 (pp. 213256). Washington: American Physiological Society.Google Scholar
Schore, A. N. (1994). Affect regulation and the origin of the self: The neurobiology of emotional development. Hillsdale, NJ: Erlbaum.Google Scholar
Segawa, M. (1992). Possible lesions in Rett syndrome: Opinions of contributors. Brain & Development, 14(Suppl.), S149S150.Google Scholar
Sherman, G. F., Galaburda, A. M., & Geschwind, N. (1982). Neuroanatomical asymmetries in nonhuman species. Trends in Neuroscience, 2, 429431.Google Scholar
Singer, W. (1978). Central core control of visual cortex function. In Schmitt, F. O. & Worden, F. (Eds.), The neurosciences, fourth study program (pp. 10931110). Cambridge MA: MIT Press.Google Scholar
Singer, W. (1986). The brain as a self-organizing system. European Archives of Psychiatry and Neurological Sciences, 236, 49.Google Scholar
Singer, W. (1987). Activity-dependent self-organization of synaptic connections as a substrate of learning. In Changeux, J.-P. & Konishi, M. (Eds.), The neural and molecular bases of learning (pp. 301336). New York: Wiley.Google Scholar
Singer, W. (1990). The search for coherence: A basic principle of cortical self-organization. Concepts in Neuroscience, 1, 126.Google Scholar
Singer, W., Tretter, F., & Yinon, W. (1982). Central gating of developmental plasticity in kitten visual cortex. Journal of Physiology, 324, 221237.Google Scholar
Smalley, S. L., Tanguay, P. E., Smith, M., & Guitierrez, G. (1992). Autism and tuberous sclerosis. Journal of Autism & Developmental Disorders, 22, 339355.Google Scholar
Sperry, R. W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proceedings of the National Academy of Sciences,USA, 50, 703710.Google Scholar
Sperry, R. W. (1965). Embryogenesis of behavioral nerve nets. In Dehaan, R. L. & Ursprung, H. (Eds.), Organogenesis (pp. 161185). New York: Holt, Rinehart & Winston.Google Scholar
Sperry, R. W. (1982). Some effects of disconnecting the cerebral hemispheres (Nobel lecture). Science, 217, 12231226.Google Scholar
Sroufe, L. A., & Fleeson, J. (1986). Attachment and construction of relationships. In Hartup, W. & Rubin, Z. (Eds.), The nature and development of relationships (pp. 5171). Hillsdale, NJ: Erlbaum.Google Scholar
Sroufe, L. A., Fox, N. E., & Pancake, V. R. (1983). Attachment and dependency in developmental perspective. Child Development, 54, 16151627.Google Scholar
Sroufe, L. A., & Rutter, M. (1984). The domain of developmental psychopathology. Child Development, 55, 1729.Google Scholar
Sroufe, L. A., & Waters, E. (1976). The ontogenesis of smiling and laughter: A perspective on the organization of development in infancy. Psychological Reviews, 83, 173189.Google Scholar
Startzl, T. E., Taylor, C. W., & Magoun, H. W. (1951). Collateral afferent excitation of reticular formation of brain stem. Journal of Neurophysiology, 14, 479496.Google Scholar
Stern, C. D., & Keyes, R. J. (1988). Spatial patterns of homeobox gene expression in the developing mammalian CNS. Trends in theNeurosciences, 11, 190192.Google Scholar
Stern, D. N. (1985). The interpersonal world of the infant. New York: Basic Books.Google Scholar
Stern, D. N. (1990). Joy and satisfaction in infancy. In Click, R. A. & Bone, S. (Eds.), Pleasure beyond the pleasure principle (pp. 1325). New Haven: Yale University Press.Google Scholar
Stern, D. N. (1992). The “pre-narrative envelope”: An alternative view of “unconsciousness phantasy” in infancy. Anna Freud Centre Bulletin. London: Anna Freud Centre.Google Scholar
Stern, D. N. (1993). The role of feelings for an interpersonal self. In Neisser, U. (Ed.), The perceived self Ecological and interpersonal sources of self-knowledge. New York: Cambridge University Press.Google Scholar
Stern, D. N., Beebe, B., Jaffe, J., & Bennett, S. L. (1977). The infant's stimulus world during social interaction: A study of caregiver behaviors with particular reference to repetition and timing. In Schaffer, H. R. (Ed.), Studies in mother-infant interaction. New York: Academic Press.Google Scholar
Stern, D. N., & Gibbon, J. (1980). Temporal expectancies of social behaviors in mother-infant play. In Thoman, E. (Ed.), Origins of infant social responsiveness. New York: Erlbaum.Google Scholar
Stern, D. N., Hofer, L., Haft, W., & Dore, J. (1985). Affect attunement: The sharing of feeling states between mother and infant by means of inter-modal fluency. In Field, T. M. & Fox, N. A. (Eds.), Social perception in infants (pp. 249268). Norwood, NJ: Ablex.Google Scholar
Stern, D. N., Spieker, S., & MacKain, K. (1982). Intonation contours as signals in maternal speech to prelinguistic infants. Developmental Psychology, 18, 727735.Google Scholar
Strauss, E., Kosaka, B., & Wada, J. (1983). The neurobiological basis of lateralized cerebral function: A review. Human Neurobiology, 2, 115127.Google Scholar
Szentagothai, J. (1948). The representation of the face and scalp muscles in the facial nucleus. Journal of Comparative Neurology, 88, 207220.Google Scholar
Taylor, G. (1987). Psychosomatic medicine and contemporary psychoanalysis. Madison, CT: International Universities Press.Google Scholar
Thatcher, R. W., Walker, R. A., & Giudice, S. (1987). Human cerebral hemispheres develop at different rates and ages. Science, 236, 11101113.Google Scholar
Thompson, R. A. (1990). Emotion and self-regulation. In Nebraska Symposium on Motivation (pp. 367467). Lincoln: University of Nebraska Press.Google Scholar
Thorpe, S. J., Rolls, E. T., & Maddison, S. (1983). The orbitofrontal cortex: Neuronal activity in the behaving monkey. Experimental Brain Research, 49, 93115.Google Scholar
Toigo, D. (1992). Autism: Integrating a personal perspective with music therapy practice. Music Therapy Perspectives, 10, 1320.Google Scholar
Tomasello, M. (1988). The role of joint attentional processes in early language development. Language Sciences, 10, 6988.Google Scholar
Tomasello, M. (1993). On the interpersonal origins of self-concept. In Neisser, U. (Ed.), The perceived self: Ecological and interpersonal sources of self-knowledge. New York: Cambridge University Press.Google Scholar
Tomasello, M., & Farrar, M. J. (1986). Joint attention and early language. Child Development, 57, 14541463.Google Scholar
Tomasello, M., Kruger, A. C., & Ratner, H. H. (1993). Cultural learning. Behavioral & Brain Sciences, 16(3), 495552.Google Scholar
Trehub, S. E. (1990). The perception of musical patterns by human infants: The provision of similar patterns by their parents. In Berkeley, M. A. & Stebbins, W. C. (Eds.), Comparative perception: Vol.1. Mechanisms (pp. 429459). New York: Wiley.Google Scholar
Trehub, S. E., Trainer, L. J., & Unyk, A. M. (1993). Music and speech processing in the first year of life. Advances in Child Development & Behaviour, 24, 135.Google Scholar
Trevarthen, C. (1974). The psychobiology of speech development. In Lenneberg, E. H. (Ed.), Language and brain: Developmental aspects. Neurosciences Research Program Bulletin, 12, 570585. Boston: Neurosciences Research Program.Google Scholar
Trevarthen, C. (1977). Descriptive analyses of infant communication behaviour. In Schaffer, H. R. (Ed.), Studies in mother-infant interaction: The Loch Lomond Symposium (pp. 227270). London: Academic Press.Google Scholar
Trevarthen, C. (1978). Modes of perceiving and modes of acting. In Pick, J. H. (Ed.), Psychological modes of perceiving and processing information (pp. 99136). Hillsdale, NJ: Erlbaum.Google Scholar
Trevarthen, C. (1979). Communication and cooperation in early infancy. A description of primary intersubjectivity. In Bullowa, M. (Ed.), Before speech: The beginnings of human communication (pp. 321348). London: Cambridge University Press.Google Scholar
Trevarthen, C. (1980). Functional organization of the human brain. In Wittrock, M. C. (Ed.), The brain and psychology. New York: Academic Press.Google Scholar
Trevarthen, C. (1982). The primary motives for cooperative understanding. In Butterworth, G. & Light, P. (Eds.), Social cognition: Studies of the development of understanding (pp. 77109). Brighton: Harvester Press.Google Scholar
Trevarthen, C. (1984a). Emotions in infancy: Regulators of contacts and relationships with persons. In Scherer, K. & Ekman, P. (Eds.), Apporaches to emotion. Hillsdale, NJ: Erlbaum.Google Scholar
Trevarthen, C. (1984b). Hemispheric specialization. In Geiger, S. R. (Exec. Ed.), Brookhart, J. M. & Mountcastle, V. B. (Sect. Eds.), Darian-Smith, I. (Vol. Ed.), Handbook of physiology: Sect. 1. The nervous system: Vol. 3. Sensory processes: Part 2 (pp. 11291190). Washington: American Physiological Society.Google Scholar
Trevarthen, C. (1985a). Facial expressions of emotion in mother-infant interaction. Human Neurobiology, 4, 2132.Google Scholar
Trevarthen, C. (1985b). Neuroembryology and the development of perceptual mechanisms. In Falkner, F. & Tanner, J. M. (Eds.), Human growth (2nd ed., pp. 301383). New York: Plenum Press.Google Scholar
Trevarthen, C. (1986a). Development of intersubjective motor control in infants. In Wade, M. G. & Whiting, H. T. A. (Eds.), Motor development in children: Aspects of coordination and control (pp. 209261). Dordrecht: Martinus Nijhof.Google Scholar
Trevarthen, C. (1986b). Form, significance and psychological potential of hand gestures of infants. In Nespoulous, J.-L., Perron, P., & Lecours, A. R. (Eds.), The biological foundation of gestures: Motor and semiotic aspects (pp. 149202). Hillsdale, NJ: Erlbaum.Google Scholar
Trevarthen, C. (1987a). Sharing makes sense: Inter-subjectivity and the making of an infant's meaning. In Steele, R. & Threadgold, T. (Eds.), Language topics: Essays in honour of Michael Halliday (pp. 177199). Amsterdam: John Benjamins.Google Scholar
Trevarthen, C. (1987b). Sub-cortical influences on cortical processing in “split” brains. In Ottoson, D. (Ed.), Duality and unity of the brain (pp. 382415). Wenner-Gren International Symposium Series, Vol. 47. Basingstoke, Hampshire: Macmillan.Google Scholar
Trevarthen, C. (1989a). Development of early social interactions and the affective regulation of brain growth. In von Euler, C., Forssberg, H., & Lagercrantz, H. (Eds.), Neurobiology of early infant behaviour (pp. 191216). Wenner-Gren International Symposium Series, Vol. 55. Basingstoke, Hampshire: Macmillan/New York: Stockton Press.Google Scholar
Trevarthen, C. (1989b). Les relations entre autisme et développement socioculturel normal: Arguments en faveur d'un trouble primaire de la régulation du développement cognitif par les émotions. In Lelord, G., Muh, J. P., Petit, M., & Sauvage, D. (Eds.), Autisme et troubles du développement global de l'enfant (pp. 5680). Paris: Expansion Scientifique Française.Google Scholar
Trevarthen, C. (1990a). Integrative functions of the cerebral commissures. In Boiler, F. & Grafman, J. (Eds.), Handbook of neuropsychology (Vol. 4, pp. 4983). Amsterdam: Elsevier Science Publishers BV (Biomedical Division).Google Scholar
Trevarthen, C. (1990b). Grasping from the inside. In Goodale, M. A. (Ed.), Vision and action: The control of grasping (pp. 181203). Norwood, NJ: Ablex.Google Scholar
Trevarthen, C. (1990c). Growth and education of the hemispheres. In Trevarthen, C. (Ed.), Brain circuits and functions of the mind: Essays in honour of Roger W. Sperry. New York: Cambridge University Press.Google Scholar
Trevarthen, C. (1992). An infant's motives for speaking and thinking in the culture. In Wold, A. H. (Ed.), The dialogical alternative (Festschrift for Ragnar Rommetveit). Oslo/Oxford: Scandanavian University Press/Oxford University Press.Google Scholar
Trevarthen, C. (1993a). The function of emotions in early infant communication and development. In Nadel, J. & Camaioni, L. (Eds.), New perspectives in early communicative development. London: Routledge.Google Scholar
Trevarthen, C. (1993b). The self born in intersubjectivity: An infant communicating. In Neisser, U. (Ed.), The perceived self: Ecological and interpersonal sources of self-knowledge. New York: Cambridge University Press.Google Scholar
Trevarthen, C., & Hubley, P. (1978). Secondary inter-subjectivity: Confidence, confiding and acts of meaning in the first year. In Lock, A. (Ed.), Action, gesture and symbol. London: Academic Press.Google Scholar
Trevarthen, C., & Logotheti, K. (1987). First symbols and the nature of human knowledge. In Montangero, J., Tryphon, A., & Dionnet, S. (Eds.), Symbolisme et connaissance [Symbolism and knowledge] (pp. 6592). Cahier No. 8, Jean Piaget Archives Fondation. Geneva: Jean Piaget Archives Fondation.Google Scholar
Trevarthen, C., & Marwick, H. (1986). Signs of motivation for speech in infants, and the nature of a mother's support for development of language. In Lindblom, B. & Zetterstrom, R. (Eds.), Precursors of early speech (pp. 279308). Basingstoke, Hampshire: Macmillan.Google Scholar
Trevarthen, C., Murray, L., & Hubley, P. (1981). Psychology of infants. In Davis, J. & Dobbing, J. (Eds.), Scientific foundations of clinical paediatrics (2nd ed., pp. 235250). London: W. Heinemann Medical Books.Google Scholar
Tronick, E. Z., Als, H., Adamson, L., Wise, S., & Brazelton, T. B. (1978). The infant's response to entrapment between contradictory messages in face-to-face interaction. Journal of the American Academy of Child Psychiatry, 17, 113.Google Scholar
Tronick, E. Z., & Cohn, J. F. (1989). Infant-mother face-to-face interaction: Age and gender differences in coordination and occurrence of miscoordination. Child Development, 60, 8592.Google Scholar
Tronick, E. Z., & Field, T. (Eds.). (1986). Maternal depression and infant disturbance. New directions for child development (No. 34). San Francisco: Jossey Bass.Google Scholar
Tucker, D. M. (1992). Developing emotions and cortical networks. In Gunnar, M. R. & Nelson, C. A. (Eds.), Minnesota Symposium on Child Psychology: Vol. 24. Developmental behavioral neuroscience (pp. 75128). Hillsdale, NJ: Erlbaum.Google Scholar
Tucker, D. M., & Frederick, S. L. (1987). Emotion and brain lateralization. In Wagner, H. & Manstead, T. (Eds.), Handbook of Psychophysiology: Emotion and social behavior. New York: Wiley.Google Scholar
Tucker, D. M., & Williamson, P. A. (1984). Asymmetric neural control systems in human self-regulation. Psychological Reviews, 91, 185215.Google Scholar
van Rees, S., & de Leeuw, R. (1987). Born too early: The kangaroo method with premature babies. Video by Stichting Lichaamstaal, Scheyvenhofweg 12, 6093 PR, Heythuysen, The Netherlands.Google Scholar
Walker, E. F., Grimes, K. E., Davis, D. M., & Smith, A. J. (1993). Childhood precursors of schizophrenia: Facial expressions of emotion. American Journal of Psychiatry, 150, 16541660.Google Scholar
Wang, P. P., & Bellugi, U. (1993). Williams syndrome, Down syndrome, and cognitive neuroscience. American Journal of Diseases of Children, 147, 12461251.Google Scholar
Watson, J. S. (1977). Perception of contingency as a determinant of social responsiveness. In Thoman, E. B. (Ed.), Origins of the infant's social responsiveness (pp. 3363). Hillsdale, NJ: Erlbaum.Google Scholar
Weinberger, D. R. (1987). Implications of normal development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660669.Google Scholar
Weinberger, D. R., Luchins, D. J., Morihisa, J., & Wyatt, R. J. (1982). Asymmetrical volumes of right and left frontal and occipital regions of the human brain. Annals of Neurology, 11, 97100.Google Scholar
Weis, S., Haug, H., Holoubek, B., & Orun, H. (1989). The cerebral dominances: Quantitative morphology of the human cerebral cortex. International Journal of Neuroscience, 47, 165168.Google Scholar
Widmayer, S. J., & Field, T. M. (1981). Effects of Brazelton demonstrations for mothers on the development of preterm infants. Pediatrics, 67, 711714.Google Scholar
Wierman, M. E., & Crowley, W. F. (1985). Neuroendocrine control of the onset of puberty. In Falkner, F. & Tanner, J. M. (Eds.), Human growth. A comprehensive treatise: Vol. 2. Postnatal growth; neurobiology (pp. 225242). New York: Plenum Press.Google Scholar
Winnicott, D. W. (1960). The theory of the parent-infant relationship. International Journal of Psychoanalysis, 41, 585595. (Republished in The maturational process and the facilitating environment. London: The Institute of Psychoanalysis/Karnak Books, 1990)Google Scholar
Wishart, J. G. (1991). Taking the initiative in learning; a developmental investigation of infants with Down syndrome. International Journal of Disability, Development & Education, 38, 2744.Google Scholar
Witelson, S. F. (1985). On hemispheric specialization and cerebral plasticity from birth. Mark III. In Best, C. (Ed.), Hemispheric function and collaboration in the child (pp. 3385). New York: Academic Press.Google Scholar
Witelson, S. F. (1987). Brain asymmetry, functional aspects. In Adelman, G. (Ed.), Encyclopedia of neuroscience (pp. 152156). Cambridge, MA: Birkhauser Boston.Google Scholar
Witelson, S. F., & Kigar, D. L. (1987). Neuroanatomical aspects of hemisphere specialization in humans. In Ottoson, D. (Ed.), Duality and unity of the brain (pp. 466496). Wenner-Gren International Symposium Series, Vol. 47. Basingstoke, Hampshire: Macmillan.Google Scholar
Wittling, W., & Pfluger, M. (1990). Neuroendocrine hemisphere asymmetries: Salivary cortisol secretion during lateralized viewing of emotion-related and neutral films. Brain & Cognition, 14, 243265.Google Scholar
Wolff, P. H., Garner, J., Paccia, J., & Lappen, J. (1989). The greeting behaviour of fragile X males. American Journal of Mental Retardation, 93, 406411.Google Scholar
Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In Minkowski, A. (Ed.), Regional development of the brain in early life (pp. 364). Oxford: Blackwell.Google Scholar
Yogman, M. W. (1981). Fathers' games and mothers' play with their infants. Infant Mental Health Journal, 4, 241248.Google Scholar