Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T03:20:39.209Z Has data issue: false hasContentIssue false

An integrative approach to the neurophysiological substrates of social withdrawal and aggression

Published online by Cambridge University Press:  13 April 2004

NESTOR L. LOPEZ
Affiliation:
University of Michigan
DELIA M. VAZQUEZ
Affiliation:
University of Michigan
SHERYL L. OLSON
Affiliation:
University of Michigan

Abstract

An integrative model of the neurophysiology of aggression and social withdrawal is proposed. A detailed overview of the limbic–hypothalamic–pituitary–adrenal (LHPA) axis is presented first, because we consider it to be a critical system that interacts with a variety of physiological processes to modulate affect-related behaviors. This detailed analysis of the LHPA axis is then used to clarify the research literature that links aggression and social withdrawal to LHPA functioning. We then review the role of amygdala and prefrontal cortex functioning in modulating aggression and social withdrawal. Particular attention is paid to how the amygdala and the prefrontal cortex interact with the LHPA system and the environment to produce specific behavioral tendencies throughout development. A brief overview of the implied methodological and theoretical model is provided. We explain how a detailed understanding of specific physiological processes is essential in order to develop appropriate research protocols. In addition, we suggest that future research should focus on the mapping of distinct integrative biosocial profiles that are related to specific behaviors during different developmental stages.The authors would like to thank Sarah Dunphy–Lelii and Michael MacKenzie for their comments and suggestions during the preparation of this manuscript. This research was partially supported by Research Grants MH59396, HD/DK37431, and MH42251.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adolphs, R., Tranel, D., Hamann, S., Young, A. W., Calder, A. J., Phelps, E. A., Anderson, A., Lee, G. P., & Damasio, A. R. (1999). Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia 37, 11111117.Google Scholar
Afifi, A., & Bergman, R. (1998). Functional neuroanatomy. New York: McGraw–Hill.
Aggleton, J. P., & Passingham, R. E. (1981). Syndrome produced by lesions of the amygdala in monkeys (Macaca mulatta). Journal of Comparative and Physiological Psychology 95, 961977.Google Scholar
Amaral, D. G. (2002). The primate amygdala and the neurobiology of social behavior: Implications for understanding social anxiety. Biological Psychiatry 51, 1117.Google Scholar
Anderson, N. B. (1997). Integrating behavioral and social sciences research at the National Institutes of Health, U.S.A. Social Science and Medicine 44, 10671071.Google Scholar
Anderson, N. B., & Scott, P. A. (1999). Making the case for psychophysiology in an era of molecular biology. Psychophysiology 36, 113.Google Scholar
Anisman, H., Zaharia, M. D., Meaney, M. J., & Merali, Z. (1998). Do early-life events permanently alter behavioral and hormonal responses to stressors? International Journal of Developmental Neuroscience 16, 149164.Google Scholar
Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex 6, 215225.Google Scholar
Bernhardt, P. C. (1997). Influences of serotonin and testosterone in agression and dominance: Convergence with social psychology. Current Directions in Psychological Science 6, 4448.Google Scholar
Booth, A., Carver, K., & Granger, D. A. (2000). Biosocial perspectives on the family. Journal of Marriage and the Family 62, 10181034.Google Scholar
Boucsein, K., Weniger, G., Mursch, K., Steinhoff, B. J., & Irle, E. (2001). Amygdala lesion in temporal lobe epilepsy subjects impairs associative learning of emotional facial expressions. Neuropsychologia 39, 231236.Google Scholar
Bradley, S. J. (2000). Affect regulation and the development of psychopathology. New York: Guilford Press.
Calder, A. J., Young, A. W., Rowland, D., Perrett, D. I., Hodges, J. R., & Etcoff, N. L. (1996). Facial emotion recognition after bilateral amygdala damage: Differentially severe impairment of fear. Cognitive Neuropsychology 13, 699745.Google Scholar
Caldji, C., Francis, D., Sharma, S., Plotsky, P. M., & Meaney, M. J. (2000). The effects of early rearing environment on the development of GABA-sub(A) and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat. Neuropsychopharmacology 22, 219229.Google Scholar
Checkley, S. (1996). The neuroendocrinology of depression. International Review of Psychiatry 8, 373378.Google Scholar
Cicchetti, D., & Rogosch, F. A. (2001a). Diverse patterns of neuroendocrine activity in maltreated children. Development and Psychopathology 13, 677693.Google Scholar
Cicchetti, D., & Rogosch, F. A. (2001b). The impact of child maltreatment and psychopathology on neuroendocrine functioning. Development and Psychopathology 13, 783804.Google Scholar
Cleare, A. J., & Bond, A. J. (1997). Does central serotonergic function correlate inversely with aggression? A study using d-fenfluramine in healthy subjects. Psychiatry Research 69, 8995.Google Scholar
Cleare, A. J., & Bond, A. J. (2000). Ipsapirone challenge in aggressive men shows and inverse correlation between 5-HT-sub(1A) receptor function and aggression. Psychopharmacology 148, 344349.Google Scholar
Cole, P. M., Michel, M. K., & Teti, L. O. (1994). The development of emotion regulation and dysregulation: A clinical perspective. Monographs of the Society for Research in Child Development 59(2–3), 73100.Google Scholar
Dallman, M. F., Akana, S. A., & Scriber, K. A. (1991). Mortyn Jones Memorial Lecture: Stress, feedback and facilitation in the hypothalamo–pituitary–adrenal axis. Journal of Neuroendocrinology 4, 517526.Google Scholar
Davidson, R. J. (1993). Cerebral asymmetry and emotion: Conceptual and methodological conundrums. Cognition and Emotion 7, 115138.Google Scholar
Davidson, R. J., & Fox, N. A. (1989). Frontal brain asymmetry predicts infant's response to maternal separation. Journal of Abnormal Psychology 98, 127131.Google Scholar
Davidson, R. J., Ekman, P., Saron, C., Senulis, J., & Friesen, W. V. (1990). Emotional expression and brain physiology I: Approach/withdrawal and cerebral asymmetry. Journal of Personality and Social Psychology 58, 330341.Google Scholar
Davidson, R. J., & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. Trends in Cognitive Neurosciences 3, 1121.Google Scholar
Davidson, R. J., Jackson, D. C., & Kalin, N. H. (2000). Emotion, plasticity, context, and regulation: Perspectives from affective neuroscience. Psychological Bulletin 126, 890909.Google Scholar
Davis, E. P., Donzella, B., Krueger, W. K., & Gunnar, M. R. (1999). The start of a new school year: Individual differences in salivary cortisol response in relation to child temperament. Developmental Psychobiology 35, 188196.Google Scholar
de Haan, M., Gunnar, M. R., Tout, K., Hart, J., & Stansbury, K. (1998). Familiar and novel contexts yield different associations between cortisol and behavior among 2-year-old children. Developmental Psychobiology 33, 93101.Google Scholar
de Kloet, E. R. (1991). Brain corticosteroid receptor balance and homeostatic control. Frontiers in Neuroendocrinology 12, 95164.Google Scholar
Dettling, A. C., Gunnar, M. R., & Donzella, B. (1999). Cortisol levles of young children in full-day childcare centers: Relations with age and temperament. Psychoneuroendocrinology 24, 519536.Google Scholar
Dodge, K. A., & Coie, J. D. (1987). Social-information-processing factors in reactive and proactive aggression in children's peer groups. Journal of Personality and Social Psychology 53, 11461158.Google Scholar
Dodge, K., Lochman, J., Harnish, J., Bates, J., & Petit, G. (1997). Reactive and proactive aggression in school children and psychiatrically impaired chronically assaultive youth. Journal of Abnormal Psychology 106, 3751.Google Scholar
Donzella, B., Gunnar, M. R., & Krueger, W. K. (2000). Cortisol and vagal tone responses to competitive challenge in preschoolers: Associations with temperament. Developmental Psychobiology 37(4).Google Scholar
Eisenberg, N., Cumberland, A., Spinrad, T. L., Fabes, R. A., Shepard, S. A., Reiser, M., Murphy, B. C., Losoya, S. H., & Guthrie, I. K. (2001). The relations of regulation and emotionality to children's externalizing and internalizing problem behavior. Child Development 72, 112134.Google Scholar
Engel, S. R., & Grant, K. A. (2001). Neurosteroids and behavior. International Review of Neurobiology 46, 321348.Google Scholar
Feldman, S., Conforti, N., & Siegel, R. A. (1982). Adrenocortical responses following limbic stimulation in rats with hypothalamic deafferentations. Neuroendocrinology 35, 205211.Google Scholar
Feldman, S., Conforti, N., & Weidenfeld, J. (1995). Limbic pathways and hypothalamic neurotransmitters mediating adrenocortical responses to neural stimuli. Neuroscience and Biobehavioral Reviews 19, 235240.Google Scholar
Fox, N. A. (1994). Dynamic cerebral processes underlying emotion regulation. Monographs of the Society for Research in Child Development 59(2–3), 250283.Google Scholar
Fox, N. A., Bell, M. A., & Jones, N. A. (1992). Individual differences in response to stress and cerebral asymmetry. Developmental Neuropsychology 8, 161184.Google Scholar
Fox, N. A., Calkins, S. D., & Bell, M. A. (1994). Neural plasticity and development in the first two years of life: Evidence from cognitive and socioemotional domains of research. Development and Psychopathology 6, 677696.Google Scholar
Fox, N. A., Rubin, K. H., Calkins, S. D., Marshall, T. R., Coplan, R. J., Porges, S. W., & Long, J. (1995). Frontal activation asymmetry and social competence at four years of age: Left frontal hyper and hypo activation as correlates of social behavior in preschool children. Child Development 66, 17701784.Google Scholar
Fox, N. A., Schmidt, L. A., Calkins, S. D., & Rubin, K. H. (1996). The role of frontal activation in the regulation and dysregulation of social behavior during the preschool years. Development and Psychopathology 8, 89102.Google Scholar
Gainotti, G. (1972). Emotional behavior and hemispheric side of the lesion. Cortex 8, 4155.Google Scholar
Gerra, G., Avanzini, P., Zaimovic, A., Sartori, R., Bocchi, C., Timpano, M., Zambelli, U., Delsignore, R., Gardini, F., Talarico, E., & Brambilla, F. (1999). Neurotransmitters, neuroendocrine correlates of sensation-seeking temperament in normal humans. Neuropsychobiology 39, 207213.Google Scholar
Gerra, G., Zaimovic, A., Avanzini, P., Chittolini, B., Giucastro, G., Caccavari, R., Palladino, M., Maestri, D., Monica, C., Delsignore, R., & Brambilla, F. (1997). Neurotransmitter–neuroendocrine responses to experimentally induced aggression in humans: Influence of personality variable. Psychiatry Research 66, 3343.Google Scholar
Gerra, G., Zaimovic, A., Timpano, M., Zambelli, U., Delsignore, R., & Brambilla, F. (2000). Neuroendocrine correlates of temperamental traits in humans. Psychoneuroendocrinology 25, 479496.Google Scholar
Gewirtz, J. C., Falls, W. A., & Davis, M. (1997). Normal conditioning inhibition and extinction of freezing and fear-potentiated startle following electrolytic lesions of medial prefrontal cortex in rats. Behavioral Neuroscience 111, 712726.Google Scholar
Gladue, B. A. (1991). Aggressive behavioral characteristics, hormones, and sexual orientation in men and women. Aggressive Behavior 17, 313326.Google Scholar
Goldstein, L. E., Rasmusson, A. M., Bunney, B. S., & Roth, R. H. (1996). Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. Journal of Neuroscience 16, 47874797.Google Scholar
Guerra, N. G., Nucci, L., & Huesmann, L. R. (1994). Moral cognition and childhood aggression. In L. R. Huesmann (Ed.), Aggressive behavior: Current perspectives (pp. 1333). New York: Plenum Press.
Gunnar, M. R. (1994). Psychoendocrine studies of temperament and stress in early childhood: Expanding current models. In J. E. Bates & T. D. Wachs (Eds.), Temperament: Individual differences at the interface of biology and behavior (pp. 175198). Washington, DC: American Psychological Association.
Gunnar, M. R. (2001). The role of glucocorticoids in anxiety disorders: A critical analysis. In Anonymous (Ed.), The developmental psychopathology of anxiety. New York: Oxford University Press.
Gunnar, M. R., Tout, K., de Haan, M., & Pierce, S. (1997). Temperament, social competence, and adrenocortical activity in preschoolers. Developmental Psychobiology 31, 6585.Google Scholar
Hamann, S. B., & Adolphs, R. (1999). Normal recognition of emotional similarity between facial expressions following bilateral amygdala damage. Neuropsychologia 37, 11351141.Google Scholar
Heim, C., Newport, D. J., Bonsall, R., Miller, A. H., & Nemeroff, C. B. (2001). Altered pituitary–adrenal axis responses to provocative challenge tests in adult survivors of childhood abuse. American Journal of Psychiatry 158, 575581.Google Scholar
Heim, C., Newport, D. J., Heit, S., Graham, Y. P., Wilcox, M., Bonsall, R., Miller, A. H., & Nemeroff, C. B. (2000). Pituitary–adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. Journal of the American Medical Association 284, 592597.Google Scholar
Heim, C., Ehlert, U., & Hellhammer, D. H. (2000). The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology 25, 135.Google Scholar
Heuser, I., Deuschle, M., Weber, B., Stalla, G. K., & Holsboer, F. (2000). Increased activity of the hypothalamus–pituitary–adrenal system after treatment with mineralocorticoid receptor antagonist spironolactone. Psychoneuroendocrinology 25, 513518.Google Scholar
Huot, R. L., Thrivikraman, K. V., Meaney, M. J., & Plotsky, P. M. (2001). Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in Long Evans rats and reversal with antidepressant treatment. Psychopharmacology 158, 366373.Google Scholar
Johnson, E. O., Kamilaris, T. C., Chrousos, G. P., & Gold, P. W. (1992). Mechanisms of stress: A dynamic overview of hormonal and behavioral homeostasis. Neuroscience and Biobehavioral Reviews 16, 115130.Google Scholar
Kabbaj, M., Devine, D. P., Savage, V. R., & Akil, H. (2000). Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: Differential expression of stress-related molecules. Journal of Neuroscience 20, 69836988.Google Scholar
Kabbaj, M., Piazza, P., Le Moal, M., & Maccari, S. (1996). Individual differences in the noradrenergic regulation of hippocampal corticosteroid receptors. Society for Neuroscience Abstracts, 22, 18.Google Scholar
Kagan, J. (1989). Temperamental contributions to social behavior. American Psychologist 44, 668674.Google Scholar
Kagan, J. (1994). On the nature of emotion. Monographs of the Society for Research in Child Development 59(2–3), 250283.Google Scholar
Kagan, J., Reznick, J. S., & Snidman, N. (1988). The physiology and psychology of behavioral inhibition in children. Annual Progress in Child Psychiatry and Child Development viii(686), 102127.Google Scholar
Kagan, J., Reznick, J. S., Snidman, N., & Gibbons, J. (1988). Childhood derivatives of inhibition and lack of inhibition to the unfamiliar. Child Development 59, 15801589.Google Scholar
Kalin, N. H. (1999a). Primate models and aggression. Journal of Clinical Psychiatry Monograph Series 17(2), 2224.Google Scholar
Kalin, N. H. (1999b). Primate models to understand human aggression. Journal of Clinical Psychiatry 60(15), 2932.Google Scholar
Kalin, N. H., Larson, C., Shelton, S. E., & Davidson, R. J. (1998). Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behavioral Neuroscience 112, 286292.Google Scholar
Kalin, N. H., Shelton, S. E., Davidson, R. J., & Kelley, A. E. (2001). The primate amygdala mediates acute fear but not the behavioral and physiological components of anxious temperament. Journal of Neuroscience 21, 20672074.Google Scholar
Kochanska, G. (1993). Toward a synthesis of parental socialization and child temperament in early development of conscience. Child Development 64, 325347.Google Scholar
Kochanska, G. (1994). Beyond cognition: Expanding the search for the early roots of internalization and conscience. Developmental Psychology 30, 2022.Google Scholar
Kochanska, G. (1995). Children's temperament, mother's discipline, and security of attachment: Multiple pathways to emerging internalization. Child Development 66, 597615.Google Scholar
Kochanska, G. (1997). Multiple pathways to conscience for children with different temperaments: From toddlerhood to age 5. Developmental Psychology 33, 228240.Google Scholar
Kolb, B., Gibb, R., & Gorny, G. (2001). Cortical plasticity and the development of behavior after early frontal cortical injury. Developmental Neuropsychology 18, 423444.Google Scholar
Kruesi, M. J., Schmidt, M. E., Donnelly, M., Hibbs, E. D., & Hamburger, H. D. (1989). Urinary free cortisol output and disruptive behavior in children. Journal of the American Academy of Child and Adolescent Psychiatry 28, 441443.Google Scholar
Maccari, S., Piazza, P. V., Deminiere, J. M., & Angelucci, L. (1991). Hippocampal type I and type II corticosteroid receptor affinities are reduced in rats predisposed to develop amphetamine self-administration. Brain Research 548, 305309.Google Scholar
McBurnett, K., Lahey, B. B., Frick, P. J., Risch, C., Loeber, R., Hart, E. L., Christ, M. A. G., & Hanson, K. S. (1991). Anxiety, inhibition, and conduct disorder in children: II. Relation to salivary cortisol. Journal of the American Academy of Child and Adolescent Psychiatry 30, 197201.Google Scholar
McBurnett, K., Lahey, B. B., Rathouz, P. J., & Loeber, R. (2000). Low salivary cortisol and persistent aggression in boys referred for disruptive behavior. Archives of General Psychiatry 57, 3843.Google Scholar
Meaney, M. J. (1985a). Early postnatal handling alters glucocorticoid receptor concentrations in selected brain regions. Behavioral Neuroscience 99, 765770.Google Scholar
Meaney, M. J. (1985b). The effects of postnatal handling on the development of the glucocorticoid receptor systems and stress recovery in the rat. Progress in Neuro-Psychopharmacology and Biological Psychiatry 9, 731734.Google Scholar
Meaney, M. J., & Stewart, J. (1981). A descriptive study of social development in the rat (Rattus norvegicus). Animal Behaviour 29, 3445.Google Scholar
Morgan, M. A., Romanski, L. M., & LeDoux, J. E. (1993). Extinction of emotional learning: Contribution of medial prefrontal cortex. Neuroscience Letters 163, 109113.Google Scholar
Morris, J. S., Frith, C. D., Perrett, D. I., & Rowland, D. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383(6603), 812815.Google Scholar
Morris, P. L. P., Robinson, R. G., Raphael, B., & Hopwood, M. J. (1996). Lesion location and poststroke depression. Journal of Neuropsychiatry and Clinical Neurosciences 8, 399403.Google Scholar
Oitzl, M. S., van Haarst, A. D., & de Kloet, E. R. (1997). Behavioral and neuroendocrine responses controlled by the concerted action of central mineralocorticoid (MRs) and glucocorticoid receptors (GRs). Psychoneuroendocrinology 22, s87s93.Google Scholar
Phillips, M. L., Young, A. W., Senior, C., Brammer, M., Andrews, C., Calder, A. J., Bullmore, E. T., Perrett, D. I., Rowland, D., Williams, S. C. R., Gray, J. A., & David, A. S. (1997). A specific neural substrate for perceiving facial expressions of disgust. Nature 389(6650), 495498.Google Scholar
Piazza, P. V., Deroche, V., Deminiere, J. M., Maccari, S., Le Moal, M., & Simon, H. (1993). Cortisosterone in the range of stress induced levels possess reinforcing properties: Implications for sensation seeking behaviors. Proceedings of the National Academy of Sciences 90, 1173811742.Google Scholar
Rauch, S. L., van der Kolk, B. A., Fisler, R. E., & Alpert, N. M. (1996). A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Archives of General Psychiatry 53, 380387.Google Scholar
Robinson, J. L., Kagan, J., Reznick, J. S., & Corley, R. (1992). The heritability of inhibited and uninhibited behavior: A twin study. Developmental Psychology 28, 10301037.Google Scholar
Rosen, J. B., Hamerman, E., Sitcoske, M., Glowa, J. R., & Schulkin, J. (1996). Hyperexcitability: Exaggerated fear-potentiated startle produced by partial amygdala kindling. Behavioral Neuroscience 110, 4350.Google Scholar
Rubin, K. H., Coplan, R. J., Fox, N. A., & Calkins, S. D. (1995). Emotionality, emotion regulation, and preschoolers' social adaptation. Development and Psychopathology 7, 4962.Google Scholar
Schmidt, L. A., Fox, N. A., Rubin, K. H., & Sternberg, E. M. (1997). Behavioral and neuroendocrine responses in shy children. Developmental Psychobiology 30, 127140.Google Scholar
Schmidt, L. A., Fox, N. A., Schulkin, J., & Gold, P. W. (1999). Behavioral and psychophysiological correlates of self-presentation in temperamentally shy children. Developmental Psychobiology 35, 119135.Google Scholar
Schmidt, L. A., Fox, N. A., Sternberg, E. M., Gold, P. W., Smith, C. C., & Schulkin, J. (1999). Adrenocortical reactivity and social competence in seven year-olds. Personality and Individual Differences 26, 977985.Google Scholar
Schulz, K., Halperin, J. M., Newcorn, J. H., Sharma, V., & Gabriel, S. (1997). Plasma cortisol and aggression in boys with ADHD. Journal of the American Academy of Child and Adolescent Psychiatry 36, 605609.Google Scholar
Scott, S. K., Young, A. W., Calder, A. J., Hellawell, D. J., Agglenton, J. P., & Johnsons, M. (1997). Impaired auditory recognition of fear and anger following bilateral amygdala lesions. Nature 385, 254257.Google Scholar
Shields, A., & Cicchetti, D. (2001). Parental maltreatment and emotion dysregulation as risk factors for bullying and victimization in middle childhood. Journal of Clinical Child Psychology 30, 349363.Google Scholar
Strohle, A., Poettig, M., Barden, N., Holsboer, F., & Montkowski, A. (1998). Age and stimulus-dependent changes in anxiety-related behavior of transgenic mice with GR dysfunction. NeuroReport 9, 20992102.Google Scholar
Tennes, K., Downey, K., & Vernadakis, A. (1997). Urinary cortisol excretion rates and anxiety in normal 1-year-old infants. Psychosomatic Medicine 39, 178187.Google Scholar
Tennes, K., & Kreye, M. (1985). Children's adrenocortical responses to classroom activities and tests in elementary school. Psychosomatic Medicine 47, 451460.Google Scholar
Tennes, K., Kreye, M., Avitable, N., & Wells, R. (1986). Behavioral correlates of excreted catecholamines and cortisol in second-grade children. Journal of the American Academy of Child Psychiatry 25, 764770.Google Scholar
Thompson, R. A. (1994). Emotion regulation: A theme in search of definition. Monographs of the Society for Research in Child Development 59(2–3), 250283.Google Scholar
Tobin, J. P. (2001). Post traumatic stress disorder and the adrenal gland. Irish Journal of Psychological Medicine 18, 2729.Google Scholar
Van de Kar, L., Piechowski, R. A., Rittenhouse, P. A., & Gray, T. S. (1991). Amygdaloid lesions: Differential effect on conditioned stress and immobilization-induced increases in corticosterine and renin secretion. Neuroendocrinology 54, 8995.Google Scholar
Van Goozen, S., Frijda, N., & Van de Poll, N. (1994). Anger and aggression in women: Influence of sports choice and testosterone administration. Aggressive Behavior 20, 213222.Google Scholar
Van Goozen, S. H. M., Matthys, W., Cohen–Kettenis, P. T., Thijssen, J. H. H., & van Engeland, H. (1998). Adrenal androgens and aggression in conduct disorder prepubertal boys and normal controls. Biological Psychiatry 43, 156158.Google Scholar
Vanyukov, M. M., Moss, H. B., Plail, J. A., Blackson, T. B., Mezzich, A. C., & Tarter, R. E. (1993). Antisocial symptoms in preadolescent boys and in their parents: Associations with cortisol. Psychiatry Research 46, 917.Google Scholar
Vazquez, D. M. (1998). Stress and the developing limbic–hypothalamic–pituitary–adrenal axis. Psychoneuroendocrinology 23, 663700.Google Scholar
ver Ellen, P., & Van Kammen, D. P. (1990). The biological findings in post-traumatic stress disorder: A review. Journal of Applied Social Psychology 20, 17891821.Google Scholar
Wittling, W., & Genzel, S. (1995). Brain asymmetries in cerebral regulation of cortisol secretion. Homeostasis in Health and Disease 36, 15.Google Scholar