Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T18:54:26.719Z Has data issue: false hasContentIssue false

Allostatic load and comorbidities: A mitochondrial, epigenetic, and evolutionary perspective

Published online by Cambridge University Press:  14 October 2016

Robert-Paul Juster*
Affiliation:
Columbia University
Jennifer J. Russell
Affiliation:
McGill University
Daniel Almeida
Affiliation:
McGill University
Martin Picard
Affiliation:
Columbia University
*
Address correspondence and reprint requests to: Robert-Paul Juster, Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, Columbia University, 622 West 168th Street, PH1540G, New York, NY 10032; E-mail: [email protected].

Abstract

Stress-related pathophysiology drives comorbid trajectories that elude precise prediction. Allostatic load algorithms that quantify biological “wear and tear” represent a comprehensive approach to detect multisystemic disease processes of the mind and body. However, the multiple morbidities directly or indirectly related to stress physiology remain enigmatic. Our aim in this article is to propose that biological comorbidities represent discrete pathophysiological processes captured by measuring allostatic load. This has applications in research and clinical settings to predict physical and psychiatric comorbidities alike. The reader will be introduced to the concepts of allostasis, allostasic states, allostatic load, and allostatic overload as they relate to stress-related diseases and the proposed prediction of biological comorbidities that extend rather to understanding psychopathologies. In our transdisciplinary discussion, we will integrate perspectives related to (a) mitochondrial biology as a key player in the allostatic load time course toward diseases that “get under the skin and skull”; (b) epigenetics related to child maltreatment and biological embedding that shapes stress perception throughout lifespan development; and (c) evolutionary drivers of distinct personality profiles and biobehavioral patterns that are linked to dimensions of psychopathology.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadir, P. M., Foster, D. B., Crow, M., Cooke, C. A., Rucker, J. J., Jain, A., et al. (2011). Identification and characterization of a functional mitochondrial angiotensin system. Proceedings for the National Academy of Sciences, 108, 1484914854.Google Scholar
Afifi, T. O., Enns, M. W., Cox, B. J., Asmundson, G. J., Stein, M. B., & Sareen, J. (2008). Population attributable fractions of psychiatric disorders and suicide ideation and attempts associated with adverse childhood experiences. American Journal of Public Health, 98, 946952.Google Scholar
Alden, L. E., Wiggins, J. S., & Pincus, A. L. (1990). Construction of circumplex scales for the Inventory of Interpersonal Problems. Journal of Personality Assessment, 55, 521536.Google Scholar
Andersen, A. M., & Bienvenu, O. J. (2011). Personality and psychopathology. International Review of Psychiatry, 23, 234247.Google Scholar
Anisman, H., & Hayley, S. (2012). Illness comorbidity as a biomarker? Journal of Psychiatry and Neuroscience, 37, 221223.Google Scholar
Appel, K., Schwahn, C., Mahler, J., Schulz, A., Spitzer, C., Fenske, K., et al. (2011). Moderation of adult depression by a polymorphism in the FKBP5 gene and childhood physical abuse in the general population. Neuropsychopharmacology, 36, 19821991.Google Scholar
Arany, Z. (2008). PGC-1 coactivators and skeletal muscle adaptations in health and disease. Current Opinions in Genetics and Development, 18, 426434.Google Scholar
Bakan, D. (1966). The duality of human existence: An essay on psychology and religion. Chicago: Rand McNally.Google Scholar
Balaban, R. S., Nemoto, S., & Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell, 120, 483495.Google Scholar
Barboza Solis, C., Kelly-Irving, M., Fantin, R., Darnaudery, M., Torrisani, J., Lang, T., et al. (2015). Adverse childhood experiences and physiological wear-and-tear in midlife: Findings from the 1958 British birth cohort. Proceedings for the National Academy of Sciences, 112, E738E746.Google Scholar
Bardone, A. M., Moffitt, T. E., Caspi, A., Dickson, N., & Silva, P. A. (1996). Adult mental health and social outcomes of adolescent girls with depression and conduct disorder. Development and Psychopathology, 8, 811829.Google Scholar
Barefoot, J. C., Dahlstrom, W. G., & Williams, R. B. Jr. (1983). Hostility, CHD incidence, and total mortality: A 25-year follow-up study of 255 physicians. Psychosomatic Medicine, 45, 5963.Google Scholar
Beauchaine, T. P. (2015). Future directions in emotion dysregulation and youth psychopathology. Journal of Clinical Child and Adolescent Psychology, 44, 875896.Google Scholar
Beauchaine, T. P., & Gatzke-Kopp, L. M. (2012). Instantiating the multiple levels of analysis perspective in a program of study on externalizing behavior. Development and Psychopathology, 24, 10031018.Google Scholar
Beauchaine, T. P., Klein, D. N., Crowell, S. E., Derbidge, C., & Gatzke-Kopp, L. (2009). Multifinality in the development of personality disorders: A Biology × Sex × Environment interaction model of antisocial and borderline traits. Development and Psychopathology, 21, 735770.Google Scholar
Beauchaine, T. P., & McNulty, T. (2013). Comorbidities and continuities as ontogenic processes: Toward a developmental spectrum model of externalizing psychopathology. Development and Psychopathology, 25, 15051528.Google Scholar
Beauchaine, T. P., Neuhaus, E., Zalewski, M., Crowell, S. E., & Potapova, N. (2011). The effects of allostatic load on neural systems subserving motivation, mood regulation, and social affiliation. Development and Psychopathology, 23, 975999.CrossRefGoogle ScholarPubMed
Beckie, T. M. (2012). A systematic review of allostatic load, health, and health disparities. Biological Research For Nursing, 14, 311346.Google Scholar
Benard, G., Massa, F., Puente, N., Lourenco, J., Bellocchio, L., Soria-Gomez, E., et al. (2012). Mitochondrial CB(1) receptors regulate neuronal energy metabolism. Nature Neuroscience, 15, 558564.Google Scholar
Bienvenu, O. J., Nestadt, G., Samuels, J. F., Costa, P. T., Howard, W. T., & Eaton, W. W. (2001). Phobic, panic, and major depressive disorders and the five-factor model of personality. Journal of Nervous and Mental Disease, 189, 154161.Google Scholar
Binder, E. B., Bradley, R. G., Liu, W., Epstein, M. P., Deveau, T. C., Mercer, K. B., et al. (2008). Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. Journal of the American Medical Association, 299, 12911305.Google Scholar
Bizik, G., Picard, M., Nijjar, R., Tourjman, V., McEwen, B., Lupien, S., et al. (2013). Allostatic load as a tool for monitoring physiological dysregulations and comorbidities in patients afflicted by severe mental illnesses. Harvard Review of Psychiatry, 21, 296313.Google Scholar
Blair, C., Raver, C. C., Granger, D., Mills-Koonce, R., Hibel, L., & Family Life Project Key Investigators. (2011). Allostasis and allostatic load in the context of poverty in early childhood. Development and Psychopathology, 23, 845857.Google Scholar
Blatt, S. J. (2008). Polarities of experience: Relatedness and self-definition in personality development, psychopathology, and the therapeutic process. Washington, DC: American Psychological Association.Google Scholar
Bogg, T., & Finn, P. R. (2010). A self-regulatory model of behavioral disinhibition in late adolescence: Integrating personality traits, externalizing psychopathology, and cognitive capacity. Journal of Personality, 78, 441470.Google Scholar
Bowlby, J. (1988). A secure base: Parent–child attachment and healthy human development. New York: Basic Books.Google Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.Google Scholar
Buckwalter, J. G., Castellani, B., McEwen, B. S., Karlamangla, A., Rizzo, A. A., John, B., et al. (2015). Allostatic load as a complex clinical aonstruct: A case-based computational modeling approach. Complexity. Advance online publication.Google Scholar
Campbell, L., Simpson, J. A., Boldry, J., & Kashy, D. A. (2005). Perceptions of conflict and support in romantic relationships: The role of attachment anxiety. Journal of Personality and Social Psychology, 88, 510531.Google Scholar
Cannon, W. B. (1932). Bodily changes in pain, hunger, fear, and rage. New York: Appleton-Century-Crofts.Google Scholar
Cantazaro, A., & Wei, M. (2010). Adult attachment, dependence, self-criticism, and depressive symptoms: A test of a mediational model. Journal of Personality, 78, 11351162.Google Scholar
Carson, R. C. (1969). Interaction concepts of personality. Chicago: Aldine.Google Scholar
Caspi, A. (2000). The child is father of the man: Personality continuities from childhood to adulthood. Journal of Personality and Social Psychology, 78, 158172.Google Scholar
Chan, D. C. (2012). Fusion and fission: Interlinked processes critical for mitochondrial health. Annuaul Review of Genetics, 46, 265287.Google Scholar
Chan, S. R., & Blackburn, E. H. (2004). Telomeres and telomerase. Philosophical Transactions of the Royal Society of London: Series B Biological Sciences, 359, 109121.CrossRefGoogle ScholarPubMed
Chapman, B. P., Khan, A., Harper, M., Stockman, D., Fiscella, K., Walton, J., et al. (2009). Gender, race/ethnicity, personality, and interleukin-6 in urban primary care patients. Brain, Behavior, and Immunity, 23, 636642.Google Scholar
Chida, Y., & Steptoe, A. (2009). Cortisol awakening response and psychosocial factors: A systematic review and meta-analysis. Biological Psychology, 80, 265278.CrossRefGoogle ScholarPubMed
Chorpita, B. F., & Barlow, D. H. (1998). The development of anxiety: The role of control in the early environment. Psychological Bulletin, 124, 321.Google Scholar
Cicchetti, D. (2008). A multiple-levels-of-analysis perspective on research in developmental psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (pp. 2757). Hoboken, NJ: Wiley.Google Scholar
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8, 597600.Google Scholar
Clark, L. A. (2005). Temperament as a unifying basis for personality and psychopathology. Journal of Abnormal Psychology, 114, 505521.Google Scholar
Cook, W. W., & Medley, D. M. (1954). Proposed hostility and pharisaic-virtue scales for the MMPI. Journal of Applied Psychology, 38, 414418.Google Scholar
Costa, P. T., & McCrae, R. R. (1992). Four ways five factors are basic. Personality and Individual Differences, 13, 653665.Google Scholar
Crawford, T. N., Livesley, W. J., Jang, K. L., Shaver, P. R., Cohen, P., & Ganiban, J. (2007). Insecure attachment and personality disorder: A twin study of adults. European Journal of Personality, 21, 191208.Google Scholar
Creed, A. T., & Funder, D. C. (1998). Social anxiety: From the inside and outside. Personality and Individual Differences, 25, 1933.Google Scholar
Cummings, T. E., & Worley, C. G. (2005). Organization development and change. Toronto: Thomson.Google Scholar
Danese, A., & McEwen, B. S. (2012). Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiology & Behavior, 106, 2939.CrossRefGoogle ScholarPubMed
Danese, A., Moffitt, T. E., Pariante, C. M., Ambler, A., Poulton, R., & Caspi, A. (2008). Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Archives of General Psychiatry, 65, 409415.Google Scholar
Darwin, C. (1859). On the origin of species by means of natural selection. London: John Murray.Google Scholar
Darwin, C. (1871). The descent of man and selection in relation to sex. London: John Murray.Google Scholar
Davies, P. T., Sturge-Apple, M. L., & Cicchetti, D. (2011). Interparental aggression and children's adrenocortical reactivity: Testing an evolutionary model of allostatic load. Development and Psychopathology, 23, 801814.CrossRefGoogle ScholarPubMed
De Jager, P. L., Srivastava, G., Lunnon, K., Burgess, J., Schalkwyk, L. C., Yu, L., et al. (2014). Alzheimer's disease: Early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nature Neuroscience, 17, 11561163.Google Scholar
Deuschle, M., Schweiger, U., Weber, B., Gotthardt, U., Korner, A., Schmider, J., et al. (1997). Diurnal activity and pulsatility of the hypothalamus-pituitary-adrenal system in male depressed patients and healthy controls. Journal of Clinical and Endocrinological Metabolism, 82, 234238.Google Scholar
de Wit, H. (2009). Impulsivity as a determinant and consequence of drug use: A review of underlying processes. Addiction Biology, 14, 2231.Google Scholar
Dich, N., Doan, S. N., & Evans, G. W. (2015). Children's emotionality moderates the association between maternal responsiveness and allostatic load: Investigation into differential susceptibility. Child Development, 86, 936944.Google Scholar
Doron, G., Moulding, R., Kyrios, M., Nedeljkovic, M., & Mikulincer, M. (2009). Adult attachment insecurities are related to obsessive compulsive phenomena. Journal of Social and Clinical Psychology, 28, 10221049.Google Scholar
Du, J., Wang, Y., Hunter, R., Wei, Y., Blumenthal, R., Falke, C., et al. (2009). Dynamic regulation of mitochondrial function by glucocorticoids. Proceedings for the National Academy of Sciences, 106, 35433548.CrossRefGoogle ScholarPubMed
Dunbar, R. I., & Shultz, S. (2007). Evolution in the social brain. Science, 317, 13441347.Google Scholar
Du Rocher Schudlich, T., Youngstrom, E. A., Martinez, M., Kogos-Youngstrom, J., Scovil, K., Ross, J., et al. (2015). Physical and sexual abuse and early-onset bipolar disorder in youths receiving outpatient services: Frequent, but not specific. Journal of Abnormal Child Psychology, 43, 453463.Google Scholar
Ehlert, U. (2013). Enduring psychobiological effects of childhood adversity. Psychoneuroendocrinology, 38, 18501857.Google Scholar
Ein-Dor, T., Doron, G., Solomon, Z., Mikulincer, M., & Shaver, P. R. (2010). Together in pain: Attachment-related dyadic processes and posttraumatic stress disorder. Journal of Counseling Psychology, 57, 317327.Google Scholar
Eisenberg, N., Valiente, C., Spinrad, T. L., Liew, J., Zhou, Q., Losoya, S. H., et al. (2009). Longitudinal relations of children's effortful control, impulsivity, and negative emotionality to their externalizing, internalizing, and co-occurring behavior problems. Developmental Psychology, 45, 9881008.Google Scholar
Ellis, B. J., & Boyce, W. T. (2011). Differential susceptibility to the environment: Toward an understanding of sensitivity to developmental experiences and context. Development and Psychopathology, 23, 15.Google Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.Google Scholar
Ellis, B. J., Essex, M. J., & Boyce, W. T. (2005). Biological sensitivity to context: II. Empirical explorations of an evolutionary–developmental theory. Development and Psychopathology, 17, 303328.CrossRefGoogle ScholarPubMed
Elzinga, B. M., Molendijk, M. L., Oude Voshaar, R. C., Bus, B. A., Prickaerts, J., Spinhoven, P., et al. (2011). The impact of childhood abuse and recent stress on serum brain-derived neurotrophic factor and the moderating role of BDNF Val66Met. Psychopharmacology (Berlin), 214, 319328.Google Scholar
Evans, G. W. (2003). A multimethodological analysis of cumulative risk and allostatic load among rural children. Developmental Psychology, 39, 924933.Google Scholar
Evans, G. W., & Fuller-Rowell, T. E. (2013). Childhood poverty, chronic stress, and young adult working memory: The protective role of self-regulatory capacity. Developmental Science, 16, 688696.Google Scholar
Evans, G. W., Kim, P., Ting, A. H., Tesher, H. B., & Shannis, D. (2007). Cumulative risk, maternal responsiveness, and allostatic load among young adolescents. Developmental Psychology, 43, 341351.CrossRefGoogle ScholarPubMed
Evans, G. W., & Schamberg, M. A. (2009). Childhood poverty, chronic stress, and adult working memory. Proceedings for the National Academy of Sciences, 106, 65456549.Google Scholar
Eysenck, H. J., & Eysenck, M. W. (1985). Personality and individual differences: A natural science approach. New York: Plenum Press.Google Scholar
Fernandes, B. S., Gama, C. S., Cereser, K. M., Yatham, L. N., Fries, G. R., Colpo, G., et al. (2011). Brain-derived neurotrophic factor as a state-marker of mood episodes in bipolar disorders: A systematic review and meta-regression analysis. Journal of Psychiatric Research, 45, 9951004.CrossRefGoogle ScholarPubMed
Fonagy, P. (1998). Attachment theory approach to treatment of the difficult patient. Bulletin of the Menninger Clinic, 62, 147169.Google Scholar
Fonagy, P., Gergely, G., & Jurist, E. L. (2002). Affect regulation, mentalization, and the development of the self. London: Karnac Google Scholar
Fonagy, P., Luyten, P., & Strathearn, L. (2011). Borderline personality disorder, mentalization, and the neurobiology of attachment. Infant Mental Health Journal, 32, 4769.Google Scholar
Fox, N. A., Henderson, H. A., Marshall, P. J., Nichols, K. E., & Ghera, M. M. (2005). Behavioral inhibition: Linking biology and behavior within a developmental framework. Annual Review of Psychology, 56, 235262.CrossRefGoogle ScholarPubMed
Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology, 30, 10101016.Google Scholar
Ganzel, B. L., Morris, P. A., & Wethington, E. (2010). Allostasis and the human brain: Integrating models of stress from the social and life sciences. Psychological Reviews, 117, 134174.Google Scholar
George, O., Le Moal, M., & Koob, G. F. (2012). Allostasis and addiction: Role of the dopamine and corticotropin-releasing factor systems. Physiology & Behavior, 106, 5864.Google Scholar
Gianaros, P. J., & Wager, T. D. (2015). Brain-body pathways linking psychological stress and physical health. Current Directions in Psychological Science, 24, 313321.Google Scholar
Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., et al. (1996). Quantitative magnetic resonance imaging of human brain development: Ages 4–18. Cerebral Cortex, 6, 551560.Google Scholar
Gilbert, P., & Trower, P. (2001). Evolution and process in social anxiety. In Crozier, W. R. & Alden, L. E. (Eds.), International handbook of social anxiety: Concepts, research, and interventions relating to the self and shyness (pp. 259279). New York: Wiley.Google Scholar
Giles, R. E., Blanc, H., Cann, H. M., & Wallace, D. C. (1980). Maternal inheritance of human mitochondrial DNA. Proceedings for the National Academy of Sciences, 77, 67156719.Google Scholar
Glancy, B., & Balaban, R. S. (2012). Role of mitochondrial Ca(2+) in the regulation of cellular energetics. Biochemistry, 51, 29592973.CrossRefGoogle ScholarPubMed
Goel, N., Workman, J. L., Lee, T. T., Innala, L., & Viau, V. (2014). Sex differences in the HPA axis. Comprehensive Physiology, 4, 11211155.Google Scholar
Goldstein, D. S., & Kopin, I. J. (2007). Evolution of concepts of stress. Stress, 10, 109120.Google Scholar
Goodwin, R., Cox, B., & Clara, I. (2006). Neuroticism and physical disorders among adults in the community: Results from the National Comorbidity Survey. Journal of Behavioral Medicine, 29, 229238.Google Scholar
Gormley, B., & McNiel, D. E. (2010). Adult attachment orientations, depressive symptoms, anger, and self-directed aggression by psychiatric patients. Cognitive Therapy and Research, 34, 272281.Google Scholar
Goymann, W., & Wingfield, J. C. (2004). Allostatic load, social status and stress hormones: The costs of social status matter. Animal Behaviour, 67, 591602.Google Scholar
Gray, T. S., & Bingaman, E. W. (1996). The amygdala: Corticotropin-releasing factor, steroids, and stress. Critical Reviews in Neurobiology, 10, 155168.Google Scholar
Guha, M., & Avadhani, N. G. (2013). Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion, 13, 577591.Google Scholar
Gut, P., & Verdin, E. (2013). The nexus of chromatin regulation and intermediary metabolism. Nature, 502, 489498.Google Scholar
Hara, Y., Yuk, F., Puri, R., Janssen, W. G., Rapp, P. R., & Morrison, J. H. (2014). Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment. Proceedings for the National Academy of Sciences, 111, 486491.Google Scholar
Hassel, S., McKinnon, M. C., Cusi, A. M., & MacQueen, G. M. (2011). An overview of psychological and neurobiological mechanisms by which early negative experiences increase risk of mood disorders. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 20, 277288.Google Scholar
Hawkley, L. C., Lavelle, L. A., Berntson, G. G., & Cacioppo, J. T. (2011). Mediators of the relationship between socioeconomic status and allostatic load in the Chicago Health, Aging, and Social Relations Study (CHASRS). Psychophysiology, 48, 11341145.Google Scholar
Hayashi, Y., Yoshida, M., Yamato, M., Ide, T., Wu, Z., Ochi-Shindou, M., et al. (2008). Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor a in mice. Journal of Neuroscience, 28, 86248634.Google Scholar
Heim, C., Newport, D. J., Heit, S., Graham, Y. P., Wilcox, M., Bonsall, R., et al. (2000). Pituitary–adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. Journal of the American Medical Association, 284, 592597.Google Scholar
Helgeson, V. S., & Fritz, H. L. (1998). A theory of unmitigated communion. Personality and Social Psychology Review, 2, 173183.Google Scholar
Helgeson, V. S., & Fritz, H. L. (2000). The implications of unmitigated agency and unmitigated communion for domains of problem behavior. Journal of Personality, 68, 10311057.Google Scholar
Herman, J. P., Ostrander, M. M., Mueller, N. K., & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: Hypothalamo–pituitary–adrenocortical axis. Progress in Neuropsychopharmacology and Biological Psychiatry, 29, 12011213.Google Scholar
Hernandez-Alvarez, M. I., Paz, J. C., Sebastian, D., Munoz, J. P., Liesa, M., Segales, J., et al. (2013). Glucocorticoid modulation of mitochondrial function in hepatoma cells requires the mitochondrial fission protein Drp1. Antioxidants and Redox Signaling, 19, 366378.Google Scholar
Herpertz, S. C., & Bertsch, K. (2015). A new perspective on the pathophysiology of borderline personality disorder: A model of the role of oxytocin. American Journal of Psychiatry, 172, 840851.Google Scholar
Hirshfeld, D. R., Rosenbaum, J. F., Biederman, J., Bolduc, E. A., Faraone, S. V., Snidman, N., et al. (1992). Stable behavioral inhibition and its association with anxiety disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 31, 103111.Google Scholar
Hirshfeld-Becker, D. R., Micco, J., Henin, A., Bloomfield, A., Biederman, J., & Rosenbaum, J. (2008). Behavioral inhibition. Depression and Anxiety, 25, 357367.Google Scholar
Hopwood, C. J., Ansell, E. B., Pincus, A. L., Wright, A. G. C., Lukowitsky, M. R., & Roche, M. J. (2011). The circumplex structure of interpersonal sensitivities. Journal of Personality, 79, 707740.Google Scholar
Horan, J. M., & Widom, C. S. (2015). From childhood maltreatment to allostatic load in adulthood: The role of social support. Child Maltreatment, 20, 229239.Google Scholar
Hostinar, C. E., Cicchetti, D., & Rogosch, F. A. (2014). Oxytocin receptor gene polymorphism, perceived social support, and psychological symptoms in maltreated adolescents. Development and Psychopathology, 26, 465477.Google Scholar
Illing, V., Tasca, G. A., Balfour, L., & Bissada, H. (2010). Attachment insecurity predicts eating disorder symptoms and treatment outcomes in a clinical sample of women. Journal of Nervous and Mental Disease, 198, 653659.Google Scholar
Irwin, R. W., Yao, J., To, J., Hamilton, R. T., Cadenas, E., & Brinton, R. D. (2012). Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function. Journal of Neuroendocrinology, 24, 236248.Google Scholar
Jangani, M., Poolman, T. M., Matthews, L., Yang, N., Farrow, S. N., Berry, A., et al. (2014). The methyltransferase WBSCR22/Merm1 enhances glucocorticoid receptor function and is regulated in lung inflammation and cancer. Journal of Biological Chemistry, 289, 89318946.Google Scholar
Jones, M. J., Goodman, S. J., & Kobor, M. S. (2015). DNA methylation and healthy human aging. Aging Cell, 14, 924932.Google Scholar
Joynt, K. E., Whellan, D. J., & O'Connor, C. M. (2003). Depression and cardiovascular disease: Mechanisms of interaction. Biological Psychiatry, 54, 248261.Google Scholar
Juster, R. P., Bizik, G., Picard, M., Arsenault-Lapierre, G., Sindi, S., Trepanier, L., et al. (2011). A transdisciplinary perspective of chronic stress in relation to psychopathology throughout life span development. Development and Psychopathology, 23, 725776.Google Scholar
Juster, R. P., Hatzenbuehler, M. L., Mendrek, A., Pfaus, J. G., Smith, N. G., Johnson, P. J., et al. (2015). Sexual orientation modulates endocrine stress reactivity. Biological Psychiatry, 77, 668676.Google Scholar
Juster, R. P., & Lupien, S. J. (2012). Chronic stress and allostatic load. In Schenck-Gustafsson, K., DeCola, P. R., Pfaff, D. W., & Pisetsky, D. S. (Eds.), Handbook of clinical gender medicine (pp. 7081). Basel: Karger AG.Google Scholar
Juster, R. P., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience & Biobehavioral Reviews, 35, 216.Google Scholar
Juster, R. P., Preussner, J. C., Desrochers, A. B., Bourdon, O., Durand, N., Wan, N., et al. (in press). Sex and gender-roles in relation to mental health and allostatic load. Psychosomatic Medicine.Google Scholar
Juster, R. P., Seeman, T., McEwen, B. S., Picard, M., Mahar, I., Mechawar, N., et al. (2016). Social inequalities and the road to allostatic load: From vulnerability to resilience. In Cicchetti, D. (Ed.), Developmental psychopathology handbook. New York: Cambridge University Press.Google Scholar
Juster, R. P., Sindi, S., Marin, M. F., Perna, A., Hashemi, A., Pruessner, J. C., et al. (2011). A clinical allostatic load index is associated with burnout symptoms and hypocortisolemic profiles in healthy workers. Psychoneuroendocrinology, 36, 797805.Google Scholar
Jylhä, P., Melartin, T., & Isometsä, E. (2009). Relationships of neuroticism and extraversion with axis I and II comorbidity among patients with DSM-IV major depressive disorder. Journal of Affective Disorders, 114, 110121.Google Scholar
Kagan, A. R., & Levi, L. (1974). Health and environment—Psychosocial stimuli: A review. Social Science and Medicine, 8, 225241.Google Scholar
Kang, H. J., Kim, J. M., Stewart, R., Kim, S. Y., Bae, K. Y., Kim, S. W., et al. (2013). Association of SLC6A4 methylation with early adversity, characteristics and outcomes in depression. Progress in Neuropsychopharmacology and Biological Psychiatry, 44, 2328.Google Scholar
Karlamangla, A., Tinetti, M., Guralnik, J., Studenski, S., Wetle, T., & Reuben, D. (2007). Comorbidity in older adults: Nosology of impairment, diseases, and conditions. Journals of Gerontology: Series A Biological Science and Medical Science, 62, 296300.Google Scholar
Kasahara, A., & Scorrano, L. (2014). Mitochondria: From cell death executioners to regulators of cell differentiation. Trends in Cell Biology, 24, 761770.Google Scholar
Kenney, M. C., Chwa, M., Atilano, S. R., Falatoonzadeh, P., Ramirez, C., Malik, D., et al. (2014). Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: Implications for population susceptibility to diseases. Biochimica et Biophysica Acta, 1842, 208219.Google Scholar
Khan, A. A., Jacobson, K. C., Gardner, C. O., Prescott, C. A., & Kendler, K. S. (2005). Personality and comorbidity of common psychiatric disorders. British Journal of Psychiatry, 186, 190196.CrossRefGoogle ScholarPubMed
Kiesler, D. J. (1983). The 1982 Interpersonal Circle: A taxonomy for complementarity in human transactions. Psychological Review, 90, 185214.Google Scholar
Kiesler, D. J. (1996). Contemporary interpersonal theory and research: Personality, psychopathology, and psychotherapy. New York: Wiley.Google Scholar
Kim, Y. K., Lee, H. P., Won, S. D., Park, E. Y., Lee, H. Y., Lee, B. H., et al. (2007). Low plasma BDNF is associated with suicidal behavior in major depression. Progress in Neuropsychopharmacology and Biological Psychiatry, 31, 7885.Google Scholar
Klein, D. N., Arnow, B. A., Barkin, J. L., Dowling, F., Kocsis, J. H., Leon, A. C., et al. (2009). Early adversity in chronic depression: Clinical correlates and response to pharmacotherapy. Depression and Anxiety, 26, 701710.Google Scholar
Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., et al. (2013). Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nature Neuroscience, 16, 3341.CrossRefGoogle ScholarPubMed
Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: The mark and its mediators. Trends in Biochemical Science, 31, 8997.Google Scholar
Kogan, A., Saslow, L. R., Impett, E. A., Oveis, C., Keltner, D., & Rodrigues Saturn, S. (2011). Thin-slicing study of the oxytocin receptor (OXTR) gene and the evaluation and expression of the prosocial disposition. Proceedings of the Natational Academies of Sciences, 108, 1918919192.Google Scholar
Koob, G. F. (2015). The dark side of emotion: The addiction perspective. European Journal of Pharmacology, 753, 7387.Google Scholar
Koob, G. F., & Le Moal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24, 97129.Google Scholar
Kopala-Sibley, D. C., Dougherty, L. R., Dyson, M. W., Laptook, R. S., Olino, T. M., Bufferd, S. J., et al. (2015). Early childhood cortisol reactivity moderates the effects of parent-child relationship quality on the development of children's temperament in early childhood. Developmental Science. Advance online publication.Google Scholar
Korte, S. M., Koolhaas, J. M., Wingfield, J. C., & McEwen, B. S. (2005). The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neuroscience & Biobehavioral Reviews, 29, 338.Google Scholar
Krueger, R. F. (2005). Continuity of axes I and II: Toward a unified model of personality, personality disorders, and clinical disorders. Journal of Personality Disorders, 19, 233261.Google Scholar
Krueger, R. F., Hicks, B. M., Patrick, C. J., Carlson, S. R., Iacono, W. G., & McGue, M. (2002). Etiologic connections among substance dependence, antisocial behavior and personality: Modeling the externalizing spectrum. Journal of Abnormal Psychology, 111, 411424.Google Scholar
Krueger, R. F., & Markon, K. E. (2006). Reinterpreting comorbidity: A model-based approach to understanding and classifying psychopathology. Annual Review of Clinical Psychology, 2, 111133.Google Scholar
Krueger, R. F., Markon, K. E., Patrick, C. J., Benning, S. D., & Kramer, M. D. (2007). Linking antisocial behavior, substance use, and personality: An integrative quantitative model of the adult externalizing spectrum. Journal of Abnormal Psychology, 116, 645666.Google Scholar
Krueger, R. F., Markon, K. E., Patrick, C. J., & Iacono, W. G. (2005). Externalizing psychopathology in adulthood: A dimensional-spectrum conceptualization and its implications for DSM-V. Journal of Abnormal Psychology, 114, 537550.Google Scholar
Krueger, R. F., McGue, M., & Iacono, W. G. (2001). The higher-order structure of common DSM mental disorders: Internalization, externalization, and their connections to personality. Personality and Individual Differences, 30, 12451259.Google Scholar
Kubzansky, L. D., Kawachi, I., & Sparrow, D. (1999). Socioeconomic status, hostility, and risk factor clustering in the Normative Aging Study: Any help from the concept of allostatic load? Annals of Behavioral Medicine, 21, 330338.Google Scholar
Labonte, B., Yerko, V., Gross, J., Mechawar, N., Meaney, M. J., Szyf, M., et al. (2012). Differential glucocorticoid receptor exon 1(B), 1(C), and 1(H) expression and methylation in suicide completers with a history of childhood abuse. Biological Psychiatry, 72, 4148.Google Scholar
Lahey, B. B. (2009). Public health significance of neuroticism. American Psychologist, 64, 241256.Google Scholar
Lambert, A. J., & Brand, M. D. (2009). Reactive oxygen species production by mitochondria. Methods in Molecular Biology, 554, 165181.Google Scholar
Lane, N., & Martin, W. (2010). The energetics of genome complexity. Nature, 467, 929934.Google Scholar
Leary, M. R., Knight, P. D., & Johnson, K. A. (1987). Social anxiety and dyadic conversation: A verbal response analysis. Journal of Social and Clinical Psychology, 5, 3450.Google Scholar
Leary, T. (1957). Interpersonal diagnosis of personality: A functional theory and methodology for personality evaluation. New York: Ronald Press.Google Scholar
Le Moal, M. (2007). Historical approach and evolution of the stress concept: A personal account. Psychoneuroendocrinology, 32(Suppl. 1), S3S9.Google Scholar
Liesa, M., & Shirihai, O. S. (2013). Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metabolism, 17, 491506.Google Scholar
Li-Tempel, T., Larra, M. F., Sandt, E., Meriaux, S. B., Schote, A. B., Schachinger, H., et al. (2016). The cardiovascular and hypothalamus-pituitary-adrenal axis response to stress is controlled by glucocorticoid receptor sequence variants and promoter methylation. Clinical Epigenetics, 8, 12.Google Scholar
Livesley, W. J. (1991). Classifying personality disorders: Ideal types, prototypes, or dimensions? Journal of Personality Disorders, 5, 5259.Google Scholar
Locke, K. D. (2000). Circumplex scales of interpersonal values: Reliability, validity, and applicability to interpersonal problems and personality disorders. Journal of Personality Assessment, 75, 249267.Google Scholar
Luijk, M. P., Saridjan, N., Tharner, A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Jadow, V. W., et al. (2010). Attachment, depression, and cortisol: Deviant patterns in insecure-resistant and disorganized infants. Developmental Psychobiology, 52, 441452.Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445.Google Scholar
Lupien, S. J., Ouellet-Morin, I., Herba, C., Juster, R. P., & McEwen, B. S. (2016). From vulnerability to neurotoxicity: A developmental approach to the effects of stress on brain and behavior. In Spengler, D. & Binder, E. (Eds.), Epigenetics and neuroendocrinology, clinical focus on psychiatry. epigenetics and human health (pp. 348). Berlin: Springer.Google Scholar
Lupien, S. J., Ouelle-Morin, I., Hupback, A., Walker, D., Tu, M. T., Buss, C., et al. (2006). Beyond the stress concept: Allostatic load—A developmental biological and cognitive perspective. In Cicchetti, D. (Ed.), Handbook series on developmental psychopathology (pp. 784809). New York: Wiley.Google Scholar
Lutz, P. E., Almeida, D., Fiori, L. M., & Turecki, G. (2015). Childhood maltreatment and stress-related psychopathology: The epigenetic memory hypothesis. Current Pharmeutical Design, 21, 14131417.Google Scholar
Luyten, P., & Blatt, S. J. (2011). Integrating theory-driven and empirically-derived models of personality development and psychopathology: A proposal for DSM V. Clinical Psychology Review, 31, 5268.Google Scholar
Luyten, P., & Blatt, S. J. (2013). Interpersonal relatedness and self-definition in normal and disrupted personality development: Retrospect and prospect. American Psychologist, 68, 172183.Google Scholar
Marchand, A., Juster, R. P., Durand, P., & Lupien, S. J. (2014). Burnout symptom sub-types and cortisol profiles: What's burning most? Psychoneuroendocrinology, 40, 2736.Google Scholar
Margulis, L., & Bermudes, D. (1985). Symbiosis as a mechanism of evolution: status of cell symbiosis theory. Symbiosis, 1, 101124.Google Scholar
Martin-Blanco, A., Ferrer, M., Soler, J., Salazar, J., Vega, D., Andion, O., et al. (2014). Association between methylation of the glucocorticoid receptor gene, childhood maltreatment, and clinical severity in borderline personality disorder. Journal of Psychiatric Research, 57, 3440.CrossRefGoogle ScholarPubMed
Mayes, L. C. (2000). A developmental perspective on the regulation of arousal states. Seminars in Perinatology, 24, 267279.Google Scholar
Mayes, L. C. (2006). Arousal regulation, emotional flexibility, medial amygdala function, and the impact of early experience. Annals of the New York Academy of Sciences, 1094, 178192.Google Scholar
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171179.Google Scholar
McEwen, B. S. (2004). Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Annals of the New York Academy of Science, 1032, 17.Google Scholar
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87, 873904.Google Scholar
McEwen, B. S. (2008). Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology, 583, 174185.Google Scholar
McEwen, B. S. (2009). The brain is the central organ of stress and adaptation. NeuroImage, 47, 911913.Google Scholar
McEwen, B. S., & Seeman, T. (1999). Protective and damaging effects of mediators of stress: Elaborating and testing the concepts of allostasis and allostatic load. Annals of the New York Academy of Science, 896, 3047.Google Scholar
McEwen, B. S., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153, 20932101.CrossRefGoogle ScholarPubMed
McEwen, B. S., Weiss, J. M., & Schwartz, L. S. (1968). Selective retention of corticosterone by limbic structures in rat brain. Nature, 220, 911912.Google Scholar
McEwen, B. S., & Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior, 43, 215.Google Scholar
McGowan, P. O., Sasaki, A., D'Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348.Google Scholar
McLaughlin, K. A., Green, J. G., Gruber, M. J., Sampson, N. A., Zaslavsky, A. M., & Kessler, R. C. (2010). Childhood adversities and adult psychopathology in the National Comorbidity Survey Replication (NCS-R): III. Associations with functional impairment related to DSM-IV disorders. Psychological Medicine, 40, 847859.Google Scholar
McNeil, T. F., Cantor-Graae, E., & Weinberger, D. R. (2000). Relationship of obstetric complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia. American Journal of Psychiatry, 157, 203212.Google Scholar
Mello, M. F., Faria, A. A., Mello, A. F., Carpenter, L. L., Tyrka, A. R., & Price, L. H. (2009). Childhood maltreatment and adult psychopathology: Pathways to hypothalamic-pituitary-adrenal axis dysfunction. Revista Brasileira de Psiquiatria, 31(Suppl. 2), S41S48.Google Scholar
Meyer, B., & Pilkonis, P. A. (2005). An attachment model of personality disorders. In Lenzenweger, M. F. & Clarkin, J. F. (Eds.), Major theories of personality disorder (pp. 231281). New York: Guilford Press.Google Scholar
Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews Neuroscience, 12, 524538.Google Scholar
Mikulincer, M., & Shaver, P. R. (2007). Attachment in adulthood: Structure, dynamics, and change. New York: Guilford Press.Google Scholar
Mikulincer, M., & Shaver, P. R. (2012). An attachment perspective on psychopathology. World Psychiatry, 11, 1115.Google Scholar
Miller, G. E., Chen, E., Sze, J., Marin, T., Arevalo, J. M., Doll, R., et al. (2008). A functional genomic fingerprint of chronic stress in humans: Blunted glucocorticoid and increased NF-kappaB signaling. Biological Psychiatry, 64, 266272.CrossRefGoogle ScholarPubMed
Miller, G. E., Cohen, S., Rabin, B. S., Skoner, D. P., & Doyle, W. J. (1999). Personality and tonic cardiovascular, neuroendocrine, and immune parameters. Brain, Behavior, and Immunity, 13, 109123.Google Scholar
Mitchell, P., & Moyle, J. (1967). Chemiosmotic hypothesis of oxidative phosphorylation. Nature, 213, 137139.Google Scholar
Moller-Leimkuhler, A. M. (2010). Higher comorbidity of depression and cardiovascular disease in women: A biopsychosocial perspective. World Journal of Biological Psychiatry, 11, 922933.Google Scholar
Moskowitz, D. S. (1994). Cross-situational generality and the interpersonal circumplex. Journal of Personality and Social Psychology, 66, 921933.Google Scholar
Moskowitz, D. S., & Zuroff, D. C. (2004). Flux, pulse, and spin: Dynamic additions to the personality lexicon. Journal of Personality and Social Psychology, 86, 880893.Google Scholar
Muhtz, C., Zyriax, B. C., Klahn, T., Windler, E., & Otte, C. (2009). Depressive symptoms and metabolic risk: Effects of cortisol and gender. Psychoneuroendocrinology, 34, 10041011.Google Scholar
Nolte, T., Guiney, J., Fonagy, P., Mayes, L. C., & Luyten, P. (2011). Interpersonal stress regulation and the development of anxiety disorders: An attachment-based developmental framework. Frontiers in Behavioral Neuroscience, 5, 121.Google Scholar
Norrholm, S. D., & Ressler, K. J. (2009). Genetics of anxiety and trauma-related disorders. Neuroscience, 164, 272287.Google Scholar
Oakman, J., Gifford, S., & Chlebowsky, N. (2003). A multilevel analysis of the interpersonal behavior of socially anxious people. Journal of Personality, 71, 397434.Google Scholar
Öhman, A., & Mineka, S. (2003). The malicious serpent: Snakes as a prototypical stimulus for an evolved module of fear. Current Direcitons in Psychological Science, 12, 59.Google Scholar
Olff, M., Frijling, J. L., Kubzansky, L. D., Bradley, B., Ellenbogen, M. A., Cardoso, C., et al. (2013). The role of oxytocin in social bonding, stress regulation and mental health: An update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology, 38, 18831894.Google Scholar
Olson, S. L., Schilling, E. M., & Bates, J. E. (1999). Measurement of impulsivity: Construct coherence, longitudinal stability, and relationship with externalizing problems in middle childhood and adolescence. Journal of Abnormal Child Psychology, 27, 151165.Google Scholar
Pacak, K., & Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses: Implications for stress-related disorders. Endocrine Reviews, 22, 502548.Google Scholar
Papadopoulos, V., & Miller, W. L. (2012). Role of mitochondria in steroidogenesis. Best Practices and Research in Clinical and Endocrinological Metabolism, 26, 771790.Google Scholar
Passos, J. F., Saretzki, G., Ahmed, S., Nelson, G., Richter, T., Peters, H., et al. (2007). Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLOS Biology, 5, e110.Google Scholar
Perroud, N., Paoloni-Giacobino, A., Prada, P., Olie, E., Salzmann, A., Nicastro, R., et al. (2011). Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: A link with the severity and type of trauma. Translational Psychiatry, 1, e59.Google Scholar
Petronis, A. (2006). Epigenetics and twins: Three variations on the theme. Trends in Genetics, 22, 347350.Google Scholar
Picard, M. (2015). Mitochondrial synapses: Intracellular communication and signal integration. Trends in Neuroscience, 38, 468474.Google Scholar
Picard, M., Juster, R. P., & McEwen, B. S. (2014). Mitochondrial allostatic load puts the “gluc” back in glucocorticoids. Nature Reviews Endocrinology, 10, 303310.Google Scholar
Picard, M., & McEwen, B. S. (2014). Mitochondria impact brain function and cognition. Proceedings from the National Academy of Sciences, 111, 78.Google Scholar
Picard, M., Shirihai, O. S., Gentil, B. J., & Burelle, Y. (2013). Mitochondrial morphology transitions and functions: Implications for retrograde signaling? American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 304, R393R406.Google Scholar
Picard, M., & Turnbull, D. M. (2013). Linking the metabolic state and mitochondrial DNA in chronic disease, health, and aging. Diabetes, 62, 672678.Google Scholar
Picard, M., Zhang, J., Hancock, S., Derbeneva, O., Golhar, R., Golik, P., et al. (2014). Progressive increase in mtDNA 3243A > G heteroplasmy causes abrupt transcriptional reprogramming. Proceedings from the National Academy of Sciences, 111, E4033E4042.Google Scholar
Pillai, A., Kale, A., Joshi, S., Naphade, N., Raju, M. S., Nasrallah, H., et al. (2010). Decreased BDNF levels in CSF of drug-naive first-episode psychotic subjects: correlation with plasma BDNF and psychopathology. International Journal of Neuropsychopharmacology, 13, 535539.Google Scholar
Pincus, A. L. (2005). A contemporary integrative interpersonal theory of personality disoders. In Lenzenweger, M. F. & Clarkin, J. F. (Eds.), Major theories of personality disorder (pp. 282–231). New York: Guilford Press.Google Scholar
Pincus, A. L., & Gurtman, M. B. (2006). Interpersonal theory and the interpersonal circumplex: Evolving perspectives on normal and abnormal personality. In Strack, S. (Ed.), Differentiating normal and abnormal personality. New York: Springer.Google Scholar
Powers, S. I., Pietromonaco, P. R., Gunlicks, M., & Sayer, A. (2006). Dating couples’ attachment styles and patterns of cortisol reactivity and recovery in response to a relationship conflict. Journal of Personality and Social Psychology, 90, 613628.Google Scholar
Psarra, A. M., & Sekeris, C. E. (2011). Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: Role of the mitochondrial glucocorticoid receptor. Biochimica et Biophysica Acta, 1813, 18141821.Google Scholar
Psarra, A. M., Solakidi, S., & Sekeris, C. E. (2006). The mitochondrion as a primary site of action of steroid and thyroid hormones: Presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells. Molecular and Cellular Endocrinology, 246, 2133.Google Scholar
Rapee, R. M., & Coplan, R. J. (2010). Conceptual relations between anxiety disorder and fearful temperament. New Directions for Child and Adolescent Development, 2010, 1731.Google Scholar
Reul, J. M., & de Kloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology, 117, 25052511.Google Scholar
Roth, T. L., & Sweatt, J. D. (2011). Annual Research Review: Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. Journal of Child Psychology and Psychiatry, 52, 398408.Google Scholar
Roy, A., Gorodetsky, E., Yuan, Q., Goldman, D., & Enoch, M. A. (2010). Interaction of FKBP5, a stress-related gene, with childhood trauma increases the risk for attempting suicide. Neuropsychopharmacology, 35, 16741683.Google Scholar
Russell, J. J., Moskowitz, D. S., Zuroff, D. C., Bleau, P., Pinard, G., & Young, S. N. (2011). Anxiety, emotional security and the interpersonal behavior of individuals with social anxiety disorder. Psychological Medicine, 41, 545554.Google Scholar
Russell, J. J., Moskowitz, D. S., Zuroff, D. C., Sookman, D., & Paris, J. (2007). Stability and variability of affective experience and interpersonal behavior in borderline personality disorder. Journal of Abnormal Psychology, 116, 578588.Google Scholar
Salminen, A., Kaarniranta, K., Hiltunen, M., & Kauppinen, A. (2014). Krebs cycle dysfunction shapes epigenetic landscape of chromatin: Novel insights into mitochondrial regulation of aging process. Cell Signalling, 26, 15981603.Google Scholar
Sanchez, M. M., Young, L. J., Plotsky, P. M., & Insel, T. R. (2000). Distribution of corticosteroid receptors in the rhesus brain: Relative absence of glucocorticoid receptors in the hippocampal formation. Journal of Neuroscience, 20, 46574668.Google Scholar
Sapolsky, R. M. (2004). Why zebras don't get ulcers: The acclaimed guide to stress, stress related disease, and coping New York: Henry Holt.Google Scholar
Sapolsky, R. M. (2005). The influence of social hierarchy on primate health. Science, 308, 648652.Google Scholar
Schulkin, J. (2003). Allostasis: A neural behavioral perspective. Hormones and Behavior, 43, 2127.Google Scholar
Schulkin, J. (2011). Social allostasis: Anticipatory regulation of the internal milieu. Frontiers in Evolutionary Neuroscience, 2, 111.Google Scholar
Seeman, E., Singer, B. H., Rowe, J., Horwitz, R. I., & McEwen, B. (1997). Price of adaptation—Allostatic load and its health consequences. Archives of Internal Medicine, 157, 22592268.Google Scholar
Seplaki, C. L., Goldman, N., Glei, D., & Weinstein, M. (2005). A comparative analysis of measurement approaches for physiological dysregulation in an older population. Experimental Gerontology, 40, 438449.Google Scholar
Shiner, R. L., Masten, A. S., & Roberts, J. M. (2003). Childhood personality foreshadows adult personality and life outcomes two decades later. Journal of Personality, 71, 11451170.Google Scholar
Sinha, R., & Jastreboff, A. M. (2013). Stress as a common risk factor for obesity and addiction. Biological Psychiatry, 73, 827835.Google Scholar
Smoller, J. W., Yamaki, L. H., Fagerness, J. A., Biederman, J., Racette, S., Laird, N. M., et al. (2005). The corticotropin-releasing hormone gene and behavioral inhibition in children at risk for panic disorder. Biological Psychiatry, 57, 14851492.Google Scholar
Stanley, B., & Siever, L. J. (2010). The interpersonal dimension of borderline personality disorder: Toward a neuropeptide model. American Journal of Psychiatry, 167, 2439.Google Scholar
Stephan, Y., Sutin, A. R., Luchetti, M., & Terracciano, A. (2015). Allostatic load and personality: A 4-year longitudinal study. Psychosomatic Medicine. Advance online publication.Google Scholar
Sterling, P., & Eyer, J. (1988). Allostasis: A new paradigm to explain arousal pathology. In Fisher, S. & Reason, J. (Eds.), Handbook of life stress, cognition and health (pp. 629649). New York: Wiley.Google Scholar
Su, S., Xiao, Z., Lin, Z., Qiu, Y., Jin, Y., & Wang, Z. (2015). Plasma brain-derived neurotrophic factor levels in patients suffering from post-traumatic stress disorder. Psychiatry Research, 229, 365369.Google Scholar
Sun, T., Qiao, H., Pan, P. Y., Chen, Y., & Sheng, Z. H. (2013). Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Reports, 15, 413419.Google Scholar
Takashio, S., Sugiyama, S., Yamamuro, M., Takahama, H., Hayashi, T., Sugano, Y., et al. (2015). Significance of low plasma levels of brain-derived neurotrophic factor in patients with heart failure. American Journal of Cardiology, 116, 243249.Google Scholar
Talens, R. P., Boomsma, D. I., Tobi, E. W., Kremer, D., Jukema, J. W., Willemsen, G., et al. (2010). Variation, patterns, and temporal stability of DNA methylation: Considerations for epigenetic epidemiology. Federation of American Societies for Experimental Biology, 24, 31353144.Google Scholar
Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A., & Updegraff, J. A. (2000). Biobehavioral responses to stress in females: Tend-and-befriend, not fight-or-flight. Psychological Review, 107, 411429.Google Scholar
Taylor, S. E., Way, B. M., & Seeman, T. E. (2011). Early adversity and adult health outcomes. Development and Psychopathology, 23, 939954.Google Scholar
Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33, 8188.Google Scholar
Thaler, L., Gauvin, L., Joober, R., Groleau, P., de Guzman, R., Ambalavanan, A., et al. (2014). Methylation of BDNF in women with bulimic eating syndromes: Associations with childhood abuse and borderline personality disorder. Progress in Neuropsychopharmacology and Biological Psychiatry, 54, 4349.Google Scholar
Tomasdottir, M. O., Sigurdsson, J. A., Petursson, H., Kirkengen, A. L., Krokstad, S., McEwen, B., et al. (2015). Self-reported childhood difficulties, adult multimorbidity and allostatic load: A cross-sectional analysis of the Norwegian HUNT Study. PLOS ONE, 10, e0130591.Google Scholar
Tost, H., Kolachana, B., Hakimi, S., Lemaitre, H., Verchinski, B. A., Mattay, V. S., et al. (2010). A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic–limbic structure and function. Proceedings from the National Academy of Sciences, 107, 1393613941.Google Scholar
Trobst, K. K. (2000). An interpersonal conceptualization and quantification of social support transactions. Personality and Social Psychology Bulletin, 26, 971986.Google Scholar
Tunnard, C., Rane, L. J., Wooderson, S. C., Markopoulou, K., Poon, L., Fekadu, A., et al. (2014). The impact of childhood adversity on suicidality and clinical course in treatment-resistant depression. Journal of Affective Disorders, 152–154, 122130.Google Scholar
Turecki, G. (2014). The molecular bases of the suicidal brain. Nature Reviews Neuroscience, 15, 802816.Google Scholar
Turecki, G., & Meaney, M. J. (2016). Effects of the social environment and stress on glucocorticoid receptor gene methylation: A systematic review. Biological Psychiatry, 79, 8796.Google Scholar
Tyrka, A. R., Burgers, D. E., Philip, N. S., Price, L. H., & Carpenter, L. L. (2013). The neurobiological correlates of childhood adversity and implications for treatment. Acta Psychiatrica Scandinavia, 128, 434447.Google Scholar
Valderas, J. M., Starfield, B., Sibbald, B., Salisbury, C., & Roland, M. (2009). Defining comorbidity: Implications for understanding health and health services. Annals of Family Medicine, 7, 357363.Google Scholar
Valdez, G. R., & Koob, G. F. (2004). Allostasis and dysregulation of corticotropin-releasing factor and neuropeptide Y systems: Implications for the development of alcoholism. Pharmacology Biochemistry and Behavior, 79, 671689.Google Scholar
van Erp, T. G., Saleh, P. A., Huttunen, M., Lonnqvist, J., Kaprio, J., Salonen, O., et al. (2004). Hippocampal volumes in schizophrenic twins. Archives of General Psychiatry, 61, 346353.Google Scholar
van Haren, N. E., Picchioni, M. M., McDonald, C., Marshall, N., Davis, N., Ribchester, T., et al. (2004). A controlled study of brain structure in monozygotic twins concordant and discordant for schizophrenia. Biological Psychiatry, 56, 454461.Google Scholar
Vaughn, B. E., & Bost, K. K. (1999). Attachment and temperament: Redundant, independent, or interacting influences on interpersonal adaptation and personality development? In Cassidy, J. & Shaver, P. (Eds.), Handbook of attachment (pp. 198225). New York: Guilford Press.Google Scholar
Vaughn, B. E., Bost, K. K., & van IJzendoorn, M. H. (2008). Attachment and temperament: Additive and interactive influences on behavior, affect, and cognition during infancy and childhood. In Cassidy, J. & Shaver, P. (Eds.), Handbook of attachment. New York: Guilford Press.Google Scholar
Velarde, M. C., Flynn, J. M., Day, N. U., Melov, S., & Campisi, J. (2012). Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging, 4, 312.Google Scholar
Viau, V. (2002). Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. Journal of Neuroendocrinology, 14, 506513.Google Scholar
Wallace, D. C. (2010). Bioenergetics, the origins of complexity, and the ascent of man. Proceedings from the Natational Academy of Sciences, 107(Suppl. 2), 89478953.Google Scholar
Wallace, D. C. (2013). A mitochondrial bioenergetic etiology of disease. Journal of Clinical Investigation, 123, 14051412.Google Scholar
Wallace, D. C., & Chalkia, D. (2013). Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harbor Perspectives in Medicine, 3, a021220.Google Scholar
Weinstock, L. M., & Whisman, M. A. (2006). Neuroticism as a common feature of the depressive and anxiety disorders: A test of the revised integrative hierarchical model in a national sample. Journal of Abnormal Psychology, 115, 6874.Google Scholar
World Health Organization. (2002). Toward a common language of functioning, disability, and health. Geneva: Author.Google Scholar
Widom, C. S., Horan, J., & Brzustowicz, L. (2015). Childhood maltreatment predicts allostatic load in adulthood. Child Abuse and Neglect, 47, 5969.Google Scholar
Wiggins, J. S. (1979). A psychological taxonomy of trait-descriptive terms: The interpersonal domain. Journal of Personality and Social Psychology, 37, 395412.Google Scholar
Wiggins, J. S. (1982). Circumplex models of interpersonal behavior in clinical psychology In Kendall, P. C. & Butcher, J. N. (Eds.), Handbook of research methods in clinical psychology (pp. 183221). New York: Wiley.Google Scholar
Wiggins, J. S. (1991). Agency and communion as conceptual coordinates for the understanding and measurement of interpersonal behavior. In Cicchetti, D. & Grove, W. M. (Eds.), Thinking clearly about psychology: Essays in honor of Paul E. Meehl: Vol. 2. Personality and psychopathology (pp. 89113). Minneapolis, MN: University of Minnesota Press.Google Scholar
Wiggins, J. S. (1995). Interpersonal adjective scales: Professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Wingfield, J. C., Maney, D. L., Breuner, C. W., Jacobs, J. D., Lynn, S., Ramenofsky, M., et al. (1998). Ecological bases of hormone-behavior interactions: The emergency life-history stage. American Zoologist, 38, 191206.Google Scholar
Yakovlev, P. L. (1967). Regional development of the brain in early life. Oxford: Blackwell.Google Scholar
Yancik, R., Ganz, P. A., Varricchio, C. G., & Conley, B. (2001). Perspectives on comorbidity and cancer in older patients: Approaches to expand the knowledge base. Journal of Clinical Oncology, 19, 11471151.Google Scholar
Yu, T., Sheu, S. S., Robotham, J. L., & Yoon, Y. (2008). Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovascular Research, 79, 341351.Google Scholar