Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T19:57:09.148Z Has data issue: false hasContentIssue false

Allostasis and the developing human brain: Explicit consideration of implicit models

Published online by Cambridge University Press:  21 October 2011

Barbara L. Ganzel*
Affiliation:
Cornell University
Pamela A. Morris
Affiliation:
New York University
*
Address correspondence and reprint requests to: Barbara L. Ganzel, Department of Human Development, Cornell University, Ithaca, NY, 14853; E-mail: [email protected].

Abstract

We previously used the theory of allostasis as the foundation for a model of the current stress process. This work highlighted the core emotional systems of the brain as the central mediator of the relationship between stress and health. In this paper, we extend this theoretical approach to consider the role of developmental timing. In doing so, we note that there are strong implicit models that underlie current developmental stress research in the social and life sciences. We endeavor to illustrate these models explicitly as we review the evidence behind each one and discuss their implications. We then extend these models to reflect recent findings from research in life span human neuroscience. The result is a new set of developmental allostatic models that provide fodder for future empirical research, as well as novel perspectives on intervention.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamec, R. E., Blundell, J., & Burton, P. (2005). Neural circuit changes mediating lasting brain and behavioral response to predator stress. Neuroscience & Biobehavioral Reviews, 29, 12251241.CrossRefGoogle ScholarPubMed
Albeck, D. S., McKittrick, C. R., Blanchard, D. C., Blanchard, R. J., Nikulina, J., McEwen, B. S., et al. (1997). Chronic social stress alters expression of corticotropin-releasing factor and arginine vasopressin mRNA expression in rat brain. Journal of Neuroscience, 17, 48954903.CrossRefGoogle ScholarPubMed
Alleva, E., & Santucci, D. (2001). Psychosocial vs. “physical” stress situations in rodents and humans. Physiology & Behavior, 73, 313320.CrossRefGoogle Scholar
Andersen, S. L., & Teicher, M. H. (2008). Stress, sensitive periods and maturational events in adolescent depression. Trends in Neuroscience, 31, 183191.CrossRefGoogle ScholarPubMed
Andersen, S. L., Tomada, A., Vincow, E. S., Valente, E., Polcari, A., & Teicher, M. H. (2008). Preliminary evidence for sensitive periods in the effect of childhood sexual abuse on regional brain development. Journal of Neuropsychiatry and Clinical Neurosciences, 20, 292301.CrossRefGoogle ScholarPubMed
Armony, J. L., & LeDoux, J. (1997). How the brain processes emotion. Annals of the New York Academy of Sciences, 821, 259271.CrossRefGoogle Scholar
Bakermans-Kranenburg, M. J., van IJzendoorn, M., Mesman, J., Alink, L. R. A., & Juffer, F. (2008). Effects of attachment-based intervention on daily cortisol moderated by dopamine receptor D4: A randomized control trial on 1- to 3-year olds screened for externalizing behavior. Development and Psychopathology, 20, 805820.CrossRefGoogle Scholar
Bayer, S. A., Altman, J., Russo, R. J., & Zhang, X. (1993). Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology, 14, 83144.Google ScholarPubMed
Ben-Shlomo, Y., & Kuh, D. (2002). A life course approach to chronic disease epidemiology: Conceptual models, empirical challenges and interdisciplinary perspectives. International Journal of Epidemiology, 31, 285293.CrossRefGoogle ScholarPubMed
Bolhuis, J. J., & Honey, R. C. (1998). Imprinting, learning and development: From behavior to brain and back. Trends in Neurosciences, 21, 306311.CrossRefGoogle ScholarPubMed
Brainard, M. S., & Knudsen, E. I. (1998). Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum. Journal of Neuroscience, 18, 39293942.CrossRefGoogle ScholarPubMed
Bredy, T. W., Diorio, J., Grant, R., Chanpagne, D. L., & Meaney, M. J. (2003). Maternal care influences hippocampal neuron survival in the rat. European Journal of Neuroscience, 18, 29032909.CrossRefGoogle ScholarPubMed
Bredy, T. W., Zhang, T. Y., Grant, R. J., Diorio, J., & Meaney, M. J. (2004). Peripubertal environmental enrichment reverses the effects of maternal care on hippocampal development and glutamate receptor subunit expression. European Journal of Neuroscience, 20, 13551362.CrossRefGoogle ScholarPubMed
Bremner, J. D., Randall, P., Scott, T., Bronen, R., Seibyl, J., Southwick, S.M. et al. (1995). MRI-based measurement of hippocampal volume in patients with posttraumatic stress disorder. American Journal of Psychiatry, 152, 973981.Google ScholarPubMed
Bronfenbrenner, U., & Morris, P. (1998). The ecology of developmental processes. In Damon, W. & Lerner, R. M. (Eds.), Handbook of child psychology: Vol. 1. Theoretical models of human development (5th ed., pp. 9931028). New York: Wiley.Google Scholar
Bronfenbrenner, U., & Morris, P. (2006). The bioecological model of human development. In Lerner, R. M. & Damon, W. (Eds.), Handbook of child psychology: Vol. 1. Theoretical models of human development (6th ed., pp. 793828). New York: Wiley.Google Scholar
Burke, R. J. (2010). Workplace stress and well-being across cultures: Research and practice. Cross Cultural Management, 17, 59.CrossRefGoogle Scholar
Caldji, C., Diorio, J., & Meaney, M. J. (2000). Variations in maternal care in infancy regulate the development of stress reactivity. Biological Psychiatry, 48, 11641174.CrossRefGoogle ScholarPubMed
Cannon, W. B. (1932). The wisdom of the body. New York: Norton.CrossRefGoogle Scholar
Carlson, M., & Earls, F. (1997). Psychological and neuroendocrinological sequelae of early social deprivation in institutionalized children in Romania. Annals of the New York Academy of Sciences, 807, 419428.CrossRefGoogle ScholarPubMed
Caviness, V. S., & Takahashi, T. (1995). Proliferative events in the cerebral ventricular zone. Brain Development, 21, 289295.Google Scholar
Cerqueira, J. J., Mailliet, F., Almeida, O. F., Jay, T. M., & Sousa, N. (2007). The prefrontal cortex as a key target of the maladaptive response to stress. Journal of Neuroscience, 27, 27812787.CrossRefGoogle ScholarPubMed
Cerqueira, J. J., Pego, J. M., Taipa, R., Bessa, J. M., Almeida, O. F. X., & Sousa, N. (2005). Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. Journal of Neuroscience, 25, 77927800.CrossRefGoogle ScholarPubMed
Champagne, F. A. (2010). Early adversity and developmental outcomes: Interaction between genetics, epigenetics, and social experiences across the lifespan. Perspectives on Psychological Sciences, 5, 564574.CrossRefGoogle Scholar
Chapillon, P., Patin, V., Roy, V., Vincent, A., & Caston, J. (2002). Effects of pre- and postnatal stimulation on developmental, emotional, and cognitive aspects in rodents: A review. Developmental Psychobiology, 41, 373387.CrossRefGoogle ScholarPubMed
Charney, D., Grillon, C., & Bremner, J. D. (1998). The neurobiological basis of anxiety and fear: Circuits, mechanisms, and neurochemical interactions (Part I). Neuroscientist, 4, 3544.CrossRefGoogle Scholar
Cicchetti, D., & Curtis, W. J. (2006). The developing brain and neural plasticity: Implications for normality, psychopathology, and resilience. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental Psychopathology: Vol. 2. Developmental neuroscience (2nd ed., pp. 164). New York: Wiley.Google Scholar
Cicchetti, D., & Gunnar, M. R. (2008). Integrating biological processes into the design and evaluation of preventive interventions. Development and Psychopathology, 20, 737743.CrossRefGoogle Scholar
Cicchetti, D., Rogosch, F. A., Gunnar, M. R., & Toth, S. L. (2010). The differential impacts of early abuse on internalizing problems and diurnal cortisol activity in school-aged children. Child Development, 25, 252269.CrossRefGoogle Scholar
Cicchetti, D., Rogosch, F., Toth, S. L., & Sturge-Apple, M. L. (2011). Normalizing the development of cortisol regulation in maltreated infants through preventive interventions. Development and Psychopathology, 23, 789800.CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F. A., & Toth, S. L. (2011). The effects of child maltreatment and polymorphisms of the serotonin transporter and dopamine D4 receptor genes on infant attachment and intervention efficacy. Development and Psychopathology, 23, 357372.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Tucker, D. (1994). Development and self-regulatory structures of the mind. Development and Psychopathology, 6, 533549.CrossRefGoogle Scholar
Cicchetti, D., & Valentino, K. (2006). An ecological-transactional perspective on child maltreatment: Failure of the average expectable environment and its influence upon child development. In Cicchetti & Cohen, D. J. (Eds.), Developmental psychopathology (Vol. 3, 2nd ed., pp. 129201). New York: Wiley.Google Scholar
Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N.J., et al. (2003). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America, 101, 33163321.CrossRefGoogle Scholar
Coplan, J. D., Smith, E. L. P., Altemus, M., Scharf, B. A., Owens, Nemeroff C. B., et al. (2001). Variable foraging demand rearing: sustained elevations in cisternal cerebrospinal fluid corticotropin-releasing factor concentrations in adult primates. Biological Psychiatry, 50, 3, 200204.CrossRefGoogle ScholarPubMed
Davis, M., Walker, D., & Lee, Y. (1997). Roles of the amygdala and bed nucleus of the stria terminalis in fear and anxiety measured with the acoustic startle reflex: Possible relevance to PTSD. New York Academy of Sciences, 821, 305331.CrossRefGoogle ScholarPubMed
De Bellis, M.D., Baum, A., Birmaher, B., Keshavan, M. S., & Ryan, N. D. (1999). Developmental traumatology: Part I: Biological stress systems. Biological Psychiatry, 45, 12591270.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Keshavan, M., Clark, D. B., Casey, B. J., Giedd, J., Boring, A. M., et al. (1999). Developmental traumatology, Part II. Brain development. Biological Psychiatry, 45, 12711284.CrossRefGoogle ScholarPubMed
De Kloet, E. R., Rosenfeld, P., Van Eekelen, A. M., Sutanto, W., & Levine, S. (1988). Stress, glucocorticoids, and development. Progress in Brain Research, 73, 101120.CrossRefGoogle ScholarPubMed
Dettling, A. C., Gunnar, M. R., & Donzella, B. (1999). Cortisol levels of young children in full-day childcare centers: Relations with age and temperament. Psychoneuroendocrinology, 24, 519536.CrossRefGoogle ScholarPubMed
Diorio, J., & Meaney, M. J. (2007). Maternal programming of defensive responses through sustained effects on gene expression. Journal of Psychiatry Neuroscience, 32, 275284.Google ScholarPubMed
Doupe, A. J. (1997). Song- and order-selective neurons in the songbird anterior forebrain and their emergence during vocal development. Journal of Neuroscience, 22, 567631.Google Scholar
Dozier, M., Peloso, E., Levis, E., Laurenceau, J., & Seymour, L. (2006). Effects of an attachment-based intervention of the cortisone production of infants and toddlers in foster care. Development and Psychopathology, 20, 845859.CrossRefGoogle Scholar
Duncan, G., Brooks-Gunn, J., Yeung, W. J., & Smith, J. (1998). How much does childhood poverty affect the life chances of children? American Sociological Review, 63, 406423.CrossRefGoogle Scholar
Duncan, G., Morris, P., & Rodrigues, C. (in press). Does money really matter? Estimating impacts of family income on children's achievement with data from social policy experiments. Developmental Psychology.Google Scholar
Evans, G. W., Kim, P., Ting, A. H., Tesher, H. B., & Shannis, D. (2007). Cumulative risk, maternal responsiveness, and allostatic load among young adolescents. Developmental Psychology, 43, 341351.CrossRefGoogle ScholarPubMed
Fernald, L. C. H., Burke, H. M., & Gunnar, M. R. (2008). Salivary cortisol levels in children of low-income women with high depressive symptomatology. Development and Psychopathology, 20, 423436.CrossRefGoogle ScholarPubMed
Fisher, P. A., Stoolmiller, M., Gunnar, M. R., & Burraston, B. (2007). Effects of a therapeutic intervention for foster preschoolers on diurnal cortisol activity. Psychoneuroendocrinology, 32, 892905.CrossRefGoogle ScholarPubMed
Francis, D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286, 11551158.CrossRefGoogle ScholarPubMed
Galobardes, B., Davey Smith, G., Jeffreys, M., & McCarron, P. (2006). Childhood socioeconomic circumstances predict specific causes of death in adulthood: The Glasgow student cohort study. Journal of Epidemiology and Community Health, 60, 527529.CrossRefGoogle ScholarPubMed
Ganzel, B., Casey, B. J., Glover, G., Voss, H., & Temple, E. (2007). The aftermath of September 11th: Effect of intensity and recency of trauma on outcome. Emotion, 7, 227238.CrossRefGoogle Scholar
Ganzel, B., Kim, P., Glover, G., & Temple, E. (2008). Resilience after 9/11: Multimodal neuroimaging evidence for stress-related change in the healthy adult brain. NeuroImage, 40, 788795.CrossRefGoogle ScholarPubMed
Ganzel, B., Morris, P., & Wethington, E. (2010). Allostasis and the human brain: Integrating models of stress from the social and life sciences. Psychological Review, 117, 134174.CrossRefGoogle ScholarPubMed
Gianaros, P. J., Horenstein, J. A., Hariri, A. R., Sheu, L. K., Manuck, S. B., Matthews, K. A., et al. (2008). Potential neural embedding of parental social standing. Social Cognitive and Affective Neuroscience, 3, 9196.CrossRefGoogle ScholarPubMed
Gianaros, P. J., Jennings, J. R., Sheu, L. K., Greer, P. J., Kuller, L. H., & Matthews, K. A. (2007). Prospective reports of chronic life stress predict decreased grey matter volume in the hippocampus. NeuroImage, 35, 795803.CrossRefGoogle ScholarPubMed
Giedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021, 7784.CrossRefGoogle ScholarPubMed
Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., & Kozuch, K.L. (1996). Quantitative magnetic resonance imaging of human brain development: Ages 4–18. Cerebral Cortex, 6, 551559.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 81748179.CrossRefGoogle ScholarPubMed
Gogtay, N., Nugent, T. F., Herman, D. H., Ordonez, A., Greenstein, D., Hayashi, K.M., et al. (2006). Dynamic mapping of normal human hippocampal development. Hippocampus, 16, 1098–1063.CrossRefGoogle ScholarPubMed
Gould, E., McEwen, B. S., Tanapat, P., Galea, L. A., & Fuchs, E. (1997). Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. Journal of Neuroscience, 17, 24922498.CrossRefGoogle ScholarPubMed
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539559.CrossRefGoogle ScholarPubMed
Guilarte, T. R., Toscano, C. D., McGlothan, J. L., & Weaver, S. A. (2003). Environmental enrichment reverses cognitive and molecular deficits induced by developmental lead exposure. Annuals of Neurology, 53, 5056.CrossRefGoogle ScholarPubMed
Gumbinas, M., Oda, M., & Huttenlocher, P. (1974). The effect of corticosteroids on dendritic development in the rat brain. Yale Journal of Biology and Medicine, 47, 155165.Google Scholar
Gunnar, M. R., & Cheatham, C. L. (2003). Brain and behavior interface: Stress and the developing brain. Journal of Infant Mental Health, 24, 195211.CrossRefGoogle Scholar
Gunnar, M. R., & Donzella, B. (2002). The social regulation of cortisol levels in early human development. Psychoneuroendocrinology, 27, 199220.CrossRefGoogle ScholarPubMed
Gurvits, T., Shenton, M., Hokama, H., Ohta, H., Lasko, N., Gilbertson, M. W., et al. (1996). Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biological Psychiatry, 40, 10911099.CrossRefGoogle ScholarPubMed
Hanson, M. D., & Chen, E. (2010). Daily stress, cortisol, and sleep: The moderating role of childhood psychosocial environments. Health Psychology, 29, 394402.CrossRefGoogle ScholarPubMed
Hare, T. A.,Tottenham, N., Galvan, A., Voss, H. U., Glover, G. H., & Casey, B. J. (2008). Biological substrates of emotional reactivity and regulation in adolescence during an emotional go–no go task. Biological Psychiatry, 63, 927934.CrossRefGoogle Scholar
Harper, L. (2005). Epigenetic inheritance and the intergenerational transfer of experience. Psychological Bulletin, 131, 340360.CrossRefGoogle ScholarPubMed
Heckman, J. J. (2006). Skill formation and the economics of investing in disadvantaged children. Science, 312, 19001902.CrossRefGoogle ScholarPubMed
Honey, C. J., Kotter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences of the United States of America, 104, 1024010245.CrossRefGoogle ScholarPubMed
Hubel, D. H., & Wiesle, T. N. (1977). Ferrier lecture: Functional architecture of the macaque monkey visual cortex. Proceedings of the Royal Society of London. Series B, Biological Sciences, 198, 159.Google ScholarPubMed
Hudson, A., & Ripke, M. (2006). Developmental contexts in middle childhood. New York: Cambridge University Press.Google Scholar
Kaplow, J. B., & Widom, C. S. (2007). Age of onset of child maltreatment predicts long-term mental health outcomes. Journal of Abnormal Psychology, 116, 176187.CrossRefGoogle ScholarPubMed
Kempermann, G., Kuhn, H. G., & Gage, F. H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. Journal of Neuroscience, 18, 32063212.CrossRefGoogle ScholarPubMed
Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Science, 14, 317324.CrossRefGoogle ScholarPubMed
Knudsen, E. J. (2004). Sensitive periods in the development of brain and behavior. Journal of Cognitive Neuroscience, 16, 14121425.CrossRefGoogle ScholarPubMed
Koo, J. W., Park, C. H., Choi, S. H., Kim, N. J., Kim, H., Choe, J. C., et al. (2003). Postnatal environment can counteract prenatal effects on cognitive ability, cell proliferation, and synaptic protein expression. Federation of American Societies for Experimental Biology, 17, 15561558.Google ScholarPubMed
Levine, S. (2000). Influence of psychological variables on the activity of the hypothalamic–pituitary–adrenal axis. European Journal of Pharmacology, 405, 149160.CrossRefGoogle ScholarPubMed
Liston, C., McEwen, B. S., & Casey, B. J. (2009). Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proceedings of the National Academy of Sciences of the United States of America, 106, 912917.CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitaryadrenal responses to stress. Science, 277, 16591662.CrossRefGoogle Scholar
Loman, M. M., & Gunnar, M. R. (2010). Early experience and the development of stress reactivity and regulation in children. Neuroscience and Biobehavioral Reviews, 34, 867–76.CrossRefGoogle ScholarPubMed
Lu, L., Bao, G., Chen, H., Xia, P., Fan, X., Zhang, J., et al. (2003). Modification of hippocampal neurogenesis and neuroplasticity by social environments. Experimental Neurology, 183, 600609.CrossRefGoogle ScholarPubMed
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445.CrossRefGoogle ScholarPubMed
Maier, S. F., & Watkins, L. R. (1998). Cytokines for psychologists: Implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychological Review, 105, 83107.CrossRefGoogle ScholarPubMed
Matthews, S. G. (2002). Early programming of the hypothalamo–pituitary–adrenal axis. Journal of Clinical Endocrinology and Metabolism, 13, 373378.Google ScholarPubMed
McEwen, B. S. (1987). Steroid hormones and brain development: Some guidelines for understanding actions of pseudohormones and other toxic agents. Environmental Health Perspectives, 74, 177184.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171179.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2000). Allostasis and allostatic load: Implications for neuropsychopharmacology. Neuropsychopharmacology, 22, 108124.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2002). The end of stress as we know it. Washington, DC: Joseph Henry Press.Google Scholar
McEwen, B. S. (2003). Mood disorders and allostatic load. Biological Psychiatry, 54, 200207.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2004). Protective and damaging effects of the mediators of stress and adaptation: Allostasis and allostatic load. In Schulkin, J. (Ed.), Allostasis, homeostasis, and the costs of physiological adaptation. Cambridge: Cambridge University Press.Google Scholar
McEwen, B. S. (2005). Glucocorticoids, depression and mood disorders: Structural remodeling in the brain. Metabolism: Clinical and Experimental, 54, 2023.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Seeman, T. (2003). Stress & affect: Applicability of the concepts of allostasis and allostatic load. In Davidson, R., Scherer, S., & Goldsmith, H. Hill (Eds.), Handbook of affective sciences (pp. 11171137). Oxford: Oxford University Press.Google Scholar
McEwen, B. S., & Stellar, E. (1993). Stress and the individual. Archives of Internal Medicine, 153, 20932101.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior, 43, 215.CrossRefGoogle ScholarPubMed
Mead, H. K., Beauchaine, T. P., & Shannon, K. E. (2010). Neurobiological adaptations to violence across development. Development and Psychopathology, 22, 122.CrossRefGoogle ScholarPubMed
Meaney, M. J., Aitken, D. H., Viau, V., Sharma S., & Sarrieau, A. (1989). Neonatal handling alters adrenocorticol negative feedback sensitivity and hippocampal type II glucocorticoid receptor binding in the rat. Neuroendocrinology, 50, 597604.CrossRefGoogle Scholar
Mitra, R., Jadhav, S., McEwen, B. S., & Chattarji, S. (2005). Stress duration modulates the spatioteporal patterns of spine formation in the basolateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 102, 93719376.CrossRefGoogle ScholarPubMed
Morris, P., Duncan, G., Huston, A., Crosby, D., & Bos, J. (2001). How welfare and work policies affect children: A synthesis of research. New York: MDRC.Google Scholar
Oda, M., & Huttenlocher, P. (1974). The effect of corticosteroids on dendritic development in the rat brain. Yale Journal of Biology and Medicine, 3, 155165.Google Scholar
Orr, L., Feins, J.D., Jacob, R., Beecroft, E., Sanbonmatsu, L., Katz, L. F., et al. (2003). Moving to opportunity interim impacts evaluation. Washington, DC: US Department of Housing and Urban Development, Office of Policy Development and Research.Google Scholar
Pacak, K., & Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses: Implications for stress-related disorders. Endocrine Reviews, 22, 502548.CrossRefGoogle ScholarPubMed
Panksepp, J. (1998). Affective neuroscience. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nature Reviews Neuroscience, 9, 947957.CrossRefGoogle ScholarPubMed
Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9, 148158.CrossRefGoogle ScholarPubMed
Phan, K. L., Wager, T. D., Taylor, S. F., & Lieberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16, 331348.CrossRefGoogle ScholarPubMed
Phelps, E. A. (2004). Human emotion and memory: Interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14, 198202.CrossRefGoogle ScholarPubMed
Phelps, E. A. (2006). Emotion and cognition: Insights from studies of the human amygdala. Annual Reviews of Psychology, 57, 2753.CrossRefGoogle ScholarPubMed
Pollitt, R. A., Rose, K. M., & Kaufman, J. S. (2005). Evaluating the evidence for models of life course socioeconomic factors and cardiovascular outcomes: A systematic review. BMC Public Health, 20, 57.Google Scholar
Power, C., & Hertzman, C. (1997). Social and biological pathways linking early life and adult disease. British Medical Bulletin, 53, 210221.CrossRefGoogle ScholarPubMed
Pryce, C. R., Ruedi-Bettschen, D., Dettling, A. C., Weston, A., Russig, H., Ferger, B. et al. (2005). Long-term effects of early-life environmental manipulations in rodents and primates: Potential animal models in depression research. Neuroscience and Biobehavioral Reviews, 29, 649674.CrossRefGoogle ScholarPubMed
Rakic, P., Bourgeois, J. P., & Goldman-Rakic, P. S. (1994). Synaptic development of the cerebral cortex: Implications for learning, memory, and mental illness. Progress in Brain Research, 102, 227243.CrossRefGoogle ScholarPubMed
Rhodes, J. S., Van Praag, H., Jeffrey, S., Girard, I., Mitchell, G. S., Garland, T. Jr., et al. (2003). Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for increased voluntary wheel running. Behavioral Neuroscience, 117, 10061016.CrossRefGoogle Scholar
Rice, D., & Barone, S. (2000). Critical periods of vulnerability for the developing nervous system: Evidence from human and animal models. Environmental Health Perspectives, 108, 511533.Google Scholar
Rosen, J., & Schulkin, J. (1998). From normal fear to pathological anxiety. Psychological Review, 105, 325350.CrossRefGoogle ScholarPubMed
Rutter, M. (1983). Stress, coping, and development: Some issues and some questions. In Garmezy, N. & Rutter, M. (Eds.), Stress, coping, and development in children (pp. 141). New York: McGraw–Hill.Google Scholar
Sanchez, M., Ladd, C., & Plotsky, P. (2001). Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Development and Psychopathology, 13, 419449.CrossRefGoogle ScholarPubMed
Sapolsky, R. M. (1984). A mechanism for glucocorticoid toxicity in the hippocampus: Increased neuronal vulnerability to metabolic insult. Journal of Neuroscience, 5, 12281232.CrossRefGoogle Scholar
Sapolsky, R. M. (1998). Why zebras don't get ulcers. New York: W. H. Freeman.Google Scholar
Sapolsky, R. M., Krew, L., & McEwen, B. S. (1986). The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocrine Reviews, 7, 284301.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence the stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21, 5589.Google ScholarPubMed
Schonkoff, J., & Phillips, D. (Eds.). (2000). From neurons to neighborhoods: The science of early childhood development. Washington, DC: National Academy Press.Google Scholar
Selye, H. (1950). The physiology and pathology of exposure to stress: A treatise based on the concepts of the General-Adaptation-Syndrome and the diseases of adaptation. Montreal: ACTA, Inc.Google Scholar
Selye, H. (1956). The stress of life. New York: McGraw–Hill.Google Scholar
Sharot, T., Martorella, E. A., Delgado, M. R., & Phelps, E. A. (2007). How personal experience modulates the neural circuitry of memories of September 11. Proceedings of the National Academy of Sciences of the United States of America, 104, 389394.CrossRefGoogle ScholarPubMed
Sirevaag, A. M., & Greenough, W. T. (1988). A multivariate statistical summary of synaptic plasticity measures in rats exposed to complex, social and individual environments. Brain Research, 441, 386392.CrossRefGoogle ScholarPubMed
Spinelli, S., Chefer, S., Suomi, S. J., Higley, J. D., Barr, C. S., & Stein, E. (2009). Early-life stress induces long-term morphologic changes in primate brain. Archives of General Psychiatry, 66, 658665.CrossRefGoogle ScholarPubMed
Sterling, P. (2004). Principles of allostasis: Optimal design, predictive regulation, pathophysiology, and rational therapeutics. In Schulkin, J. (Ed.), Allostasis, homeostasis, and the costs of physiological adaptation (pp. 1764). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Sterling, P., & Eyer, J. (1988). Allostasis: A new paradigm to explain arousal pathology. In Fisher, S. & Reason, J. (Eds.), Handbook of life stress, cognition, and health (pp. 629649). Chichester: Wiley.Google Scholar
Susser, M., & Stein, Z. (1994). Timing in prenatal nutrition: A reprise of the Dutch Famine Study. Nutrition Reviews, 52, 8494.CrossRefGoogle ScholarPubMed
Taylor, S. E., Eisenberger, N. I., Saxbe, D., Lehman, B. J., & Lieberman, M. D. (2006). Neural responses to emotional stimuli are associated with childhood family stress. Biological Psychiatry, 60, 296301.CrossRefGoogle ScholarPubMed
Tottenham, N., Hare, T. A., Quinn, B. T., McCarry, T., Nurse, M., Gilhooly, T., et al. (2009). Prolonged institutional rearing is associated with atypically large amygdala volume and emotion regulation difficulties. Developmental Science, 13, 4661.CrossRefGoogle Scholar
Tottenham, N., & Sheridan, M. A. (2010). A review of adversity, the amygdala and the hippocampus: A consideration of developmental timing. Frontiers in Human Neuroscience, 3, 118.Google ScholarPubMed
Tucker, P. M., Pfefferbaum, B., North, C. S., Kent, A., Burgin, C. E., Parker, D. E., et al. (2007). Physiologic reactivity despite emotional resilience several years after direct exposure to terrorism. American Journal of Psychiatry, 164, 230235.CrossRefGoogle ScholarPubMed
Uno, H., Tarara, R., Else, J., Suleman, M., & Sapolsky, R. (1989). Hippocampal damage associated with prolonged and fatal stress in primates. Journal of Neuroscience, 9, 17051711.CrossRefGoogle ScholarPubMed
Vazquez, D. M., Bailey, C., Dent, G. W., Okimoto, D. K., Steffek, A., López, J. F., et al. (2006). Brain corticotropin-releasing hormone (CRH) circuits in the developing rat: effect of maternal deprivation. Brain Research, 1121, 8394.CrossRefGoogle ScholarPubMed
Votruba-Drzal, E. (2006). Economic disparities in middle childhood development: Does income matter? Developmental Psychology, 42, 11541167.CrossRefGoogle ScholarPubMed
Vyas, A., Mitra, R., Shankaranarayana Rao, B. S., & Chattarji, S. (2002). Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. Journal of Neuroscience, 22, 68106818.CrossRefGoogle ScholarPubMed
Waddington, C. H. (1957). The strategy of genes. London: Allen & Unwin.Google Scholar
Watamura, S. E., Donzella, B., Kertes, D., & Gunnar, M. R. (2004). Developmental changes in baseline cortisol activity in early childhood: Relations with napping and effortful control. Developmental Psychobiology, 45, 125133.CrossRefGoogle ScholarPubMed
Weaver, I. C. G., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.CrossRefGoogle ScholarPubMed
Westlye, L. T., Walhovd, K., Dale, A. M., Bjørnerud, A., Due-Tønnesse, P., Engvig, A., et al. (2010a). Life-span changes of the human brain white matter: Diffusion tensor imaging (DTI) and volumetry. Cerebral Cortex, 20, 20552068.CrossRefGoogle ScholarPubMed
Westlye, L. T., Walhovd, K. B., Dale, A. M., Bjørnerud, A., Due-Tønnessen, P. D., Engvig, A., et al. (2010b). Differentiating maturational and aging-related changes of the cerebral cortex by use of thickness and signal intensity. NeuroImage, 52, 172185.CrossRefGoogle ScholarPubMed
Zhou, Q., Tao, H. W., & Poo, M. M. (2003). Reversal and stabilization of synaptic modifications in a developing visual system. Science, 300, 19531957.CrossRefGoogle Scholar