Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T14:38:34.795Z Has data issue: false hasContentIssue false

Shaping long-term primate development: Telomere length trajectory as an indicator of early maternal maltreatment and predictor of future physiologic regulation

Published online by Cambridge University Press:  22 November 2017

Stacy S. Drury
Affiliation:
Tulane University
Brittany R. Howell
Affiliation:
University of Minnesota
Christopher Jones
Affiliation:
Tulane University
Kyle Esteves
Affiliation:
Tulane University
Elyse Morin
Affiliation:
Emory University
Reid Schlesinger
Affiliation:
Tulane University
Jerrold S. Meyer
Affiliation:
University of Massachusetts
Kate Baker
Affiliation:
Tulane University
Mar M. Sanchez*
Affiliation:
Emory University
*
Address correspondence and reprint requests to: Mar M. Sanchez, Department of Psychiatry and Behavioral Sciences, School of Medicine, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329; E-mail: [email protected].

Abstract

The molecular, neurobiological, and physical health impacts of child maltreatment are well established, yet mechanistic pathways remain inadequately defined. Telomere length (TL) decline is an emerging molecular indicator of stress exposure with definitive links to negative health outcomes in maltreated individuals. The multiple confounders endemic to human maltreatment research impede the identification of causal pathways. This study leverages a unique randomized, cross-foster, study design in a naturalistic translational nonhuman primate model of infant maltreatment. At birth, newborn macaques were randomly assigned to either a maltreating or a competent control mother, balancing for sex, biological mother parenting history, and social rank. Offspring TL was measured longitudinally across the first 6 months of life (infancy) from peripheral blood. Hair cortisol accumulation was also determined at 6, 12, and 18 months of age. TL decline was greater in animals randomized to maltreatment, but also interacted with biological mother group. Shorter TL at 6 months was associated with higher mean cortisol levels through 18 months (juvenile period) when controlling for relevant covariates. These results suggest that even under the equivalent social, nutritional, and environmental conditions feasible in naturalistic translational nonhuman primate models, early adverse caregiving results in lasting molecular scars that foreshadow elevated health risk and physiologic dysregulation.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Funding for this work was obtained from the Tulane National Primate Center Pilot Grant (to K.B.), Tulane Oliver Fund (to S.D.), NIH Grant R01MH101533 (to S.D.), NIH/NIMH Grants MH078105 (to Megan Gunnar; to M.M.S. Project 4) and MH015755 (Institutional NRSA, to Dante Cicchetti; B.R.H., mentee), and Office of Research Infrastructure Programs/OD Grant OD11132 (Yerkes National Primate Research Center Base Grant, formerly RR000165). We thank Anne Glenn, Christine Marsteller, Dora Guzman, and the staff at the Yerkes National Primate Research Center Field Station for the excellent technical support and animal care provided during these studies. The funders had no role in review design, data collection and analysis, decision to publish, or preparation of the manuscript. The content is solely the responsibility of the authors and does not represent the official views of the NIMH or the NIH. The Yerkes National Primate Research Center is fully accredited by the Association for the Assessment and Accreditation of Laboratory Animal Care, International. The authors have no conflicts of interest or relevant disclosures.

References

Altmann, S. (1962). A field study of the sociobiology of rhesus monkeys, Macaca mulatta. Annals of the New York Academy of Sciences, 102, 338435.Google Scholar
Asok, A., Bernard, K., Roth, T., Rosen, J., & Dozier, M. (2013). Parental responsiveness moderates the association between early-life stress and reduced telomere length. Development and Psychopathology. Advance online publication. doi:10.1017/s0954579413000011 Google Scholar
Avishai-Eliner, S., Yi, S. J., Newth, C. J., & Baram, T. Z. (1995). Effects of maternal and sibling deprivation on basal and stress induced hypothalamic-pituitary-adrenal components in the infant rat. Neuroscience Letters, 192, 4952.Google Scholar
Baerlocher, G., Rice, K., Vulto, I., & Lansdorp, P. (2007). Longitudinal data on telomere length in leukocytes from newborn baboons support a marked drop in stem cell turnover around 1 year of age. Aging Cell, 6, 121123. doi:10.1111/j.1474-9726.2006.00254.x CrossRefGoogle ScholarPubMed
Barrett, E. L. B., & Richardson, D. S. (2011). Sex differences in telomeres and lifespan. Aging Cell, 10, 913921. doi:10.1111/j.1474-9726.2011.00741.x Google Scholar
Bateson, M. (2016). Cumulative stress in research animals: Telomere attrition as a biomarker in a welfare context? BioEssays, 38, 201212.Google Scholar
Bercovitch, F., Widdig, A., & Nürnberg, P. (2000). Maternal investment in rhesus macaques (Macaca mulatta): Reproductive costs and consequences of raising sons. Behavioral Ecology and Sociobiology, 48, 111.Google Scholar
Bernard, K., Hostinar, C., & Dozier, M. (2015). Intervention effects on diurnal cortisol rhythms of CPS-referred infants persist into early childhood: Preschool follow-up results of a randomized clinical trial. JAMA Pediatrics, 169, 112.CrossRefGoogle Scholar
Broer, L., Codd, V., Nyholt, D., Deelen, J., Mangino, M., Willemsen, G., … de Geus, E. (2013). Meta-analysis of telomere length in 19 713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. European Journal of Human Genetics, 21, 11631168.Google Scholar
Choi, J., Fauce, S. R., & Effros, R. B. (2008). Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain, Behavior, and Immunity, 22, 600605. doi:10.1016/j.bbi.2007.12.004 Google Scholar
Cicchetti, D., & Rogosch, F. (2001). The impact of child maltreatment and psychopathology on neuroendocrine functioning. Development and Psychopathology, 13, 783804.Google Scholar
Coe, C., Lubach, G., Schneider, M., Dierschke, D., & Ershler, W. (1992). Early rearing conditions alter immune responses in the developing infant primate. Pediatrics, 90, 505509.Google Scholar
Darrow, S., Verhoeven, J., Révész, D., Lindqvist, D., Penninx, B., Delucchi, K., … Mathews, C. (2016). The association between psychiatric disorders and telomere length: A meta-analysis involving 14,827 persons. Psychosomatic Medicine, 78, 776787.CrossRefGoogle Scholar
Davenport, M., Lutz, C., Tiefenbacher, S., Novak, M., & Meyer, J. (2008). A rhesus monkey model of self-injury: Effects of relocation stress on behavior and neuroendocrine function. Biological Psychiatry, 63, 990996.Google Scholar
Davenport, M., Tiefenbacher, S., Lutz, C., Novak, M., & Meyer, J. (2006). Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. General and Comparative Endocrinology, 147, 255261.CrossRefGoogle ScholarPubMed
De Bellis, M., & Keshavan, M. (2003). Sex differences in brain maturation in maltreatment-related pediatric posttraumatic stress disorder. Neuroscience & Biobehavioral Reviews, 27, 103117.CrossRefGoogle ScholarPubMed
Del Giudice, M., Ellis, B., & Shirtcliff, E. (2011). The adaptive calibration model of stress responsivity. Neuroscience & Biobehavioral Reviews, 35, 15621592. doi:10.1016/j.neubiorev.2010.11.007 Google Scholar
Denham, J., O'Brien, B., & Charchar, F. (2016). Telomere length maintenance and cardio-metabolic disease prevention through exercise training. Sports Medicine. Advance online publication.Google Scholar
Didier, E., MacLean, A., Mohan, M., Didier, P., Lackner, A., & Kuroda, M. (2016). Contributions of nonhuman primates to research on aging. Veterinary Pathology. Advance online publication. doi:10.1016/0300985815622974 Google Scholar
Drury, S. (2015). Unraveling the meaning of telomeres for child psychiatry. Journal of the American Academy of Child & Adolescent Psychiatry, 54, 539540. doi:10.1016/j.jaac.2015.04.009 CrossRefGoogle ScholarPubMed
Drury, S., Esteves, K., Hatch, V., Woodbury, M., Borne, S., Adamski, A., & Theall, K. (2015). Setting the trajectory: Racial disparities in newborn telomere length. Journal of Pediatrics, 166, 11811186.Google Scholar
Drury, S., Gonzalez, A., & Sanchez, M. (2015). When mothering goes awry: Challenges and opportunities for utilizing evidence across rodent, primate and human studies to better define the biological consequences of negative early caregiving Hormones and Behavior, 77, 182192. doi:10.1016/j.ybeh.2015.10.007 Google Scholar
Drury, S., Mabile, E., Brett, S., Esteves, K., Jones, E., Shirtcliff, E., & Theall, K. (2014). The association of telomere length with family violence and disruption. Pediatrics, 134, e128e137. doi:10.1542/peds.2013-3415 Google Scholar
Drury, S., Theall, K., Gleason, M., Smyke, A., De Vivo, I., Wong, J., … Nelson, C. (2012). Telomere length and early severe social deprivation: Linking early adversity and cellular aging. Molecular Psychiatry, 17, 719727. doi:10.1038/mp.2011.53 Google Scholar
Eisenberg, D. (2011). An evolutionary review of human telomere biology: The thrifty telomere hypothesis and notes on potential adaptive paternal effects. American Journal of Human Biology, 23, 149167.Google Scholar
Epel, E. S. (2009). Telomeres in a life-span perspective: A new “psychobiomarker”? Current Directions in Psychological Science, 18, 610.Google Scholar
Franklin, T. B., Russig, H., Weiss, I. C., Gräff, J., Linder, N., Michalon, A., … Mansuy, I. M. (2010). Epigenetic transmission of the impact of early stress across generations. Biological Psychiatry, 68, 408415.CrossRefGoogle Scholar
Frenck, R. W., Blackburn, E., & Shannon, K. (1998). The rate of telomere sequence loss in human leukocytes varies with age. Proceedings of the National Academy of Sciences, 95, 56075610. doi:10.1073/pnas.95.10.5607 Google Scholar
Fyhrquist, F., Saijonmaa, O., & Strandberg, T. (2013). The roles of senescence and telomere shortening in cardiovascular disease. Nature Reviews Cardiology, 10, 274283.Google Scholar
Gardner, J., Kimura, M., Chai, W., Durrani, J., Tchakmakjian, L., Cao, X., … Skurnick, J. (2007). Telomere dynamics in macaques and humans. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 62, 367374.Google Scholar
Gardner, M., Bann, D., Wiley, L., Cooper, R., Hardy, R., Nitsch, D., … Park, J. (2014). Gender and telomere length: Systematic review and meta-analysis. Experimental Gerontology, 51, 1527. doi:10.1016/j.exger.2013.12.004 Google Scholar
Gee, D., Humphreys, K., Flannery, J., Goff, B., Telzer, E., Shapiro, M., … Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala–prefrontal circuitry. Journal of Neuroscience, 33, 45844593. doi:10.1523/jneurosci.3446-12.2013 Google Scholar
Getz, G., & Reardon, C. (2012). Animal models of atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 11041115.Google Scholar
Gotlib, I., LeMoult, J., Colich, N., Foland-Ross, L., Hallmayer, J., Joormann, J., … Wolkowitz, O. (2015). Telomere length and cortisol reactivity in children of depressed mothers. Molecular Psychiatry, 20, 615620.Google Scholar
Gunnar, M., Fisher, P. A., & Early Experience, Stress, and Prevention Network. (2006). Bringing basic research on early experience and stress neurobiology to bear on preventive interventions for neglected and maltreated children. Development and Psychopathology, 18, 651677.Google Scholar
Hackman, D., Farah, M., & Meaney, M. (2010). Socioeconomic status and the brain: Mechanistic insights from human and animal research. Nature Reviews Neuroscience, 11, 651659.Google Scholar
Haussmann, M., Longenecker, A., Marchetto, N., Juliano, S., & Bowden, R. (2012). Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length. Proceedings of the Royal Society Part B: Biological Sciences, 279, 14471456. doi:10.1098/rspb.2011.1913 Google Scholar
Haycock, P. C., Heydon, E. E., Kaptoge, S., Butterworth, A. S., Thompson, A., & Willeit, P. (2014). Leucocyte telomere length and risk of cardiovascular disease: Systematic review and meta-analysis. British Medical Journal, 349, g4227. doi:10.1136/bmj.g4227 Google Scholar
Hinde, K. (2009). Richer milk for sons but more milk for daughters: Sex-biased investment during lactation varies with maternal life history in rhesus macaques. American Journal of Human Biology, 21, 512519.Google Scholar
Hinde, R., & Spencer-Booth, Y. (1967). The behaviour of socially living rhesus monkeys in their first two and a half years. Animal Behaviour, 15, 169196.Google Scholar
Honig, L., Kang, M., Cheng, R., Eckfeldt, J., Thyagarajan, B., Leiendecker-Foster, C., … Christensen, K. (2015). Heritability of telomere length in a study of long-lived families. Neurobiology of Aging. Advance online publication.Google Scholar
Hostinar, C. E., & Gunnar, M. R. (2013). The developmental effects of early life stress: An overview of current theoretical frameworks. Current Directions in Psychological Science, 22, 400406. doi:10.1177/0963721413488889 Google Scholar
Howell, B., Grand, A., McCormack, K., Shi, Y., LaPrarie, J., Maestripieri, D., … Sanchez, M. (2014). Early adverse experience increases emotional reactivity in juvenile rhesus macaques: Relation to amygdala volume. Developmental Psychobiology, 56, 17351746.Google Scholar
Howell, B., McCormack, K., Grand, A., Zhang, X., Maestripieri, D., Hu, D., & Sanchez, M. (2013). Brain white matter microstructure alterations in adolescent rhesus monkeys exposed to early life stress: Associations with high cortisol during infancy. Biology of Mood & Anxiety Disorders, 3, 21.CrossRefGoogle ScholarPubMed
Howell, B., McMurray, M., Guzman, D., Nair, G., Shi, Y., McCormack, K., … Sanchez, M. (2017). Maternal buffering beyond glucocorticoids: Impact of early life stress on corticolimbic circuits that control infant responses to novelty. Social Neuroscience, 12, 5064.Google Scholar
Howell, B., McMurray, M., Guzman, D., Nair, G., Shi, Y., McCormack, K., … Sanchez, M. (in press). Infant maltreatment and behavioral inhibition: Roles of maternal presence and prefrontal-amygdala connectivity. Social Neuroscience.Google Scholar
Huizinga, D., Haberstick, B., Smolen, A., Menard, S., Young, S., Corley, R., … Hewitt, J. (2006). Childhood maltreatment, subsequent antisocial behavior, and the role of monoamine oxidase A genotype. Biological Psychiatry, 60, 677683.CrossRefGoogle ScholarPubMed
Humphreys, K., Esteves, K., Zeanah, C., Fox, N., Nelson, C., & Drury, S. (2016). Accelerated telomere shortening: Tracking the lasting impact of early institutional care at the cellular level. Psychiatry Research, 246, 95100.Google Scholar
Humphreys, K. L., Gleason, M. M., Drury, S. S., Miron, D., Nelson, C. A., Fox, N. A., & Zeanah, C. H. (2015). Effects of institutional rearing and foster care on psychopathology at age 12 years in Romania: Follow-up of an open, randomised controlled trial. Lancet Psychiatry, 2, 625634.Google Scholar
Kananen, L., Surakka, I., Pirkola, S., Suvusaari, J., Lonnqvist, J., Peltonen, L., … Hovatta, I. (2010). Childhood adversities are associated with shorter telomere length at adult age both in individuals with an anxiety disorder and controls. PLOS ONE, 5, e10826. doi:10.13`71/journal.pone.0010826 Google Scholar
Koss, K. J., Hostinar, C. E., Donzella, B., & Gunnar, M. R. (2014). Social deprivation and the HPA axis in early development. Psychoneuroendocrinology, 50, 113. doi:10.1016/j.psyneuen.2014.07.028 Google Scholar
Kroenke, C. H., Epel, E., Adler, N., Bush, N. R., Obradović, J., Lin, J., … Boyce, W. T. (2011). Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children. Psychosomatic Medicine, 73, 533540. doi:10.1097/PSY.0b013e318229acfc Google Scholar
Küffer, A., Maercker, A., & Burri, A. (2014). Transgenerational effects of PTSD or traumatic stress: Do telomeres reach across the generations? Trauma and Treatment, 3, 8.Google Scholar
Ladd, C. O., Huot, R. L., Thrivikraman, K. V., Nemeroff, C. B., & Plotsky, P. M. (2004). Long-term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypothalamo-pituitary-adrenal axis following neonatal maternal separation. Biological Psychiatry, 55, 367375. doi:10.1016/j.biopsych.2003.10.007 Google Scholar
Lopizzo, N., Tosato, S., Begni, V., Tomassi, S., Cattane, N., Barcella, M., … Pariante, C. (2017). Transcriptomic analyses and leukocyte telomere length measurement in subjects exposed to severe recent stressful life events. Translational Psychiatry, 7, e1042.Google Scholar
Lubach, G., Coe, C., & Ershler, W. (1995). Effects of early rearing environment on immune-responses of infant Rhesus monkeys. Brain, Behavior, and Immunity, 9, 3146.CrossRefGoogle ScholarPubMed
MacMillan, H. L., Georgiades, K., Duku, E. K., Shea, A., Steiner, M., Niec, A., … Schmidt, L. A. (2009). Cortisol response to stress in female youths exposed to childhood maltreatment: Results of the youth mood project. Biological Psychiatry, 66, 6268.Google Scholar
Maestripieri, D. (1999). The biology of human parenting: Insights from nonhuman primates. Neuroscience & Biobehavioral Reviews, 23, 411422.Google Scholar
Maestripieri, D. (2005). Early experience affects the intergenerational transmission of infant abuse in rhesus monkeys. Proceedings of the National Academy of Sciences, 102, 97269729.Google Scholar
Maestripieri, D., & Carroll, K. (1998). Risk factors for infant abuse and neglect in group-living rhesus monkeys. Psychological Sciences, 9, 143.Google Scholar
Maestripieri, D., Jovanovic, T., & Gouzoules, H. (2000). Crying and infant abuse in rhesus monkeys. Child Development, 71, 301309.CrossRefGoogle ScholarPubMed
McCormack, K., Howell, B., Guzman, D., Villongco, C., Pears, K., Kim, H., … Sanchez, M. (2015). The development of an instrument to measure global dimensions of maternal care in rhesus macaques (Macaca mulatta). American Journal of Primatology, 77, 2033.Google Scholar
McCormack, K., Newman, T., Higley, J., Maestripieri, D., & Sanchez, M. (2009). Serotonin transporter gene variation, infant abuse, and responsiveness to stress in rhesus macaque mothers and infants. Hormones and Behavior, 55, 538547.Google Scholar
McCormack, K., Sanchez, M., Bardi, M., & Maestripieri, D. (2006). Maternal care patterns and behavioral development of rhesus macaque abused infants in the first 6 months of life. Developmental Psychobiology, 48, 537550.Google Scholar
McLaughlin, K., Sheridan, M., Tibu, F., Fox, N., Zeanah, C., & Nelson, C. (2015). Causal effects of the early caregiving environment on development of stress response systems in children. Proceedings of the National Academy of Sciences, 112, 56375642.Google Scholar
Meyer, J., & Novak, M. (2012). Minireview: Hair cortisol: A novel biomarker of hypothalamic-pituitary-adrenocortical activity. Endocrinology, 153, 41204127.Google Scholar
Meyer, J., Novak, M., Hamel, A., & Rosenberg, K. (2014). Extraction and analysis of cortisol from human and monkey hair. Journal of Visualized Experiments, 24, e50882.Google Scholar
Mundstock, E., Sarria, E., Zatti, H., Mattos Louzada, F., Kich Grun, L., Herbert Jones, M., … Barbé-Tuana, F. (2015). Effect of obesity on telomere length: Systematic review and meta-analysis. Obesity, 23, 21652174.CrossRefGoogle ScholarPubMed
Nelson, C., Fox, N., & Zeanah, C. (in press). Romania's abandoned children: Deprivation, brain development and the struggle for recovery. Cambridge, MA: Harvard University Press.Google Scholar
Petrullo, L., Mandalaywala, T., Parker, K., Maestripieri, D., & Higham, J. (2016). Effects of early life adversity on cortisol/salivary alpha-amylase symmetry in free-ranging juvenile rhesus macaques. Hormones and Behavior. Advance online publication.Google Scholar
Policicchio, B., Pandrea, I., & Apetrei, C. (2016). Animal models for HIV cure research. Frontiers in Immunology, 7, 12.CrossRefGoogle ScholarPubMed
Prescott, J., Karlson, E., Orr, E., Zee, R., De Vivo, I., & Costenbader, K. (2016). A prospective study investigating prediagnostic leukocyte telomere length and risk of developing rheumatoid arthritis in women. Journal of Rheumatology, 43, 282288.Google Scholar
Provençal, N., Suderman, M., Guillemin, C., Massart, R., Ruggiero, A., Wang, D., … Côté, S. (2012). The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. Journal of Neuroscience, 32, 1562615642.Google Scholar
Russell, E., Koren, G., Rieder, M., & Van Uum, S. (2012). Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology, 37, 589601.Google Scholar
Samplin, E., Ikuta, T., Malhotra, A., Szeszko, P., & DeRosse, P. (2013). Sex differences in resilience to childhood maltreatment: Effects of trauma history on hippocampal volume, general cognition and subclinical psychosis in healthy adults. Journal of Psychiatric Research, 47, 11741179.CrossRefGoogle ScholarPubMed
Sanchez, M. (2006). The impact of early adverse care on HPA axis development: Nonhuman primate models. Hormones and Behavior, 50, 623631.Google Scholar
Sanchez, M., Alagbe, O., Felger, J., Zhang, J., Graff, A., Grand, A., … Miller, A. (2007). Activated p38 MAPK is associated with decreased CSF 5-HIAA and increased maternal rejection during infancy in rhesus monkeys. Molecular Psychiatry, 12, 895897.Google Scholar
Sanchez, M., McCormack, K., Grand, A., Fulks, R., Graff, A., & Maestripieri, D. (2010). Effects of sex and early maternal abuse on adrenocorticotropin hormone and cortisol responses to the corticotropin-releasing hormone challenge during the first 3 years of life in group-living rhesus monkeys. Developmental Psychopathology, 22, 4553.Google Scholar
Sanchez, M., McCormack, K., & Howell, B. (2015). Social buffering of stress responses in nonhuman primates: Maternal regulation of development of emotional regulatory brain circuits. Social Neuroscience. Advance online publication. doi:10.1080/17470919.2015.1087426 Google Scholar
Savolainen, K., Eriksson, J., Kajantie, E., Lahti, J., & Räikkönen, K. (2015). Telomere length and hypothalamic–pituitary–adrenal axis response to stress in elderly adults. Psychoneuroendocrinology, 53, 179184.Google Scholar
Schino, G., Cozzolino, R., & Troisi, A. (1999). Social rank and sex-biased maternal investment in captive Japanese macaques: Behavioural and reproductive data. Folia Primatologica, 70, 254263.Google Scholar
Shalev, I., Moffitt, T., Sugden, K., Williams, B., Houts, R., Danese, A., … Caspi, A. (2012). Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: A longitudinal study. Molecular Psychiatry. Advance online publication.Google Scholar
Shonkoff, J. P., Garner, A. S., Committee on Psychosocial Aspects of Child and Family Health, Committee on Early Childhood, Adoption, and Dependent Care, & Section on Developmental and Behavioral Pediatrics. (2011). The lifelong effects of early childhood adversity and toxic stress. Pediatrics, 129, e232e246. doi:10.1542/peds.2011-2663 CrossRefGoogle ScholarPubMed
Small, M., & Smith, D. (1984). Sex differences in maternal investment by Macaca mulatta. Behavioral Ecology and Sociobiology, 14, 313314.Google Scholar
Smith, D., Mattison, J., Desmond, R., Gardner, J., Kimura, M., Roth, G., … Aviv, A. (2011). Telomere dynamics in rhesus monkeys: No apparent effect of caloric restriction. Journal of Gerontology Series A: Biological Sciences and Medical Sciences, 66, 11631168. doi:10.1093/gerona/glr136 Google Scholar
Stanton, M. E., Gutierrez, Y. R., & Levine, S. (1988). Maternal deprivation potentiates pituitary-adrenal stress responses in infant rats. Behavior Neuroscience, 102, 692700.Google Scholar
Steptoe, A., Hamer, M., Lin, J., Blackburn, E., & Erusalimsky, J. (2016). The longitudinal relationship between cortisol responses to mental stress and leukocyte telomere attrition. Journal of Clinical Endocrinology and Metabolism. Advance online publication.Google Scholar
Stindl, R. (2016). The paradox of longer sperm telomeres in older men's testes: A birth-cohort effect caused by transgenerational telomere erosion in the female germline. Molecular Cytogenetics, 9, 1.Google Scholar
Stoltenborgh, M., Bakermans-Kranenburg, M., Alink, L., & van IJzendoorn, M. (2015). The prevalence of child maltreatment across the globe: Review of a series of meta-analyses. Child Abuse Review, 24, 3750.Google Scholar
Suomi, S. (2005). Mother-infant attachment, peer relationships, and the development of social networks in rhesus monkeys. Human Development, 48, 6779.Google Scholar
Tomiyama, A. J., O'Donovan, A., Lin, J., Puterman, E., Lazaro, A., Chan, J., … Epel, E. (2012). Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiology & Behavior, 106, 4045. doi:10.1016/j.physbeh.2011.11.016 Google Scholar
Tyrka, A. R., Price, L. H., Kao, H. T., Porton, B., Marsella, S. A., & Carpenter, L. L. (2010). Childhood maltreatment and telomere shortening: Preliminary support for an effect of early stress on cellular aging. Biological Psychiatry, 67, 531534. doi:10.1016/j.biopsych.2009.08.014 Google Scholar
US Department of Health and Human Services, Administration for Children and Families, and Children's Bureau. (2015). Child maltreatment 2013. Washington, DC: Author. Retrieved from http://www.acf.hhs.gov/sites/default/files/cb/cm2013.pdf Google Scholar
US Department of Health and Human Services, Administration for Children and Families, and Children's Bureau. (2017). Child maltreatment 2015. Washington, DC: Author. Retrieved from http://www.acf.hhs.gov/programs/cb/research-data-technology/statistics-research/child-maltreatment Google Scholar
Vaughan, K., & Mattison, J. (2016). Obesity and aging in humans and nonhuman primates: A mini-review. Gerontology. Advance online publication.Google Scholar
Wachs, T. D., Georgieff, M., Cusick, S., & McEwen, B. S. (2014). Issues in the timing of integrated early interventions: Contributions from nutrition, neuroscience, and psychological research. Annals of the New York Academy of Sciences, 1308, 89106. doi:10.1111/nyas.12314 Google Scholar
Wojcicki, J., Heyman, M., Elwan, D., Shiboski, S., Lin, J., Blackburn, E., & Epel, E. (2015). Telomere length is associated with oppositional defiant behavior and maternal clinical depression in Latino preschool children. Translational Psychiatry, 5, e581.Google Scholar
Ye, J., Renault, V., Jamet, K., & Gilson, E. (2014). Transcriptional outcome of telomere signalling. Nature Reviews Genetics, 15, 491503. doi:10.1038/nrg3743 Google Scholar