Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-20T18:15:43.404Z Has data issue: false hasContentIssue false

The phenotypic associations and gene–environment underpinnings of socioeconomic status and diurnal cortisol secretion in adolescence

Published online by Cambridge University Press:  26 October 2021

Christina Y. Cantave
Affiliation:
School of Criminology, University of Montreal, Montreal, Canada
Mara Brendgen
Affiliation:
Department of Psychology, University of Quebec at Montreal, Canada
Stéphane Paquin
Affiliation:
School of Criminology, University of Montreal, Montreal, Canada
Sonia Lupien
Affiliation:
Research Center of the Montreal Mental Health University Institute, Montreal, Canada Centre for Studies on Human Stress, Department of Psychiatry, University of Montreal, Montreal, Canada
Ginette Dionne
Affiliation:
School of Psychology, Laval University, Quebec City, Canada
Frank Vitaro
Affiliation:
School of Psychoeducation, University of Montreal, Montreal, Canada Sainte-Justine Hospital Research Center, Montreal, Canada
Michel Boivin
Affiliation:
School of Psychology, Laval University, Quebec City, Canada
Isabelle Ouellet-Morin*
Affiliation:
School of Criminology, University of Montreal, Montreal, Canada Research Center of the Montreal Mental Health University Institute, Montreal, Canada
*
Corresponding author: Isabelle Ouellet-Morin, email: [email protected]

Abstract

While converging evidence suggests that both environmental and genetic factors underlie variations in diurnal cortisol, the extent to which these sources of influence vary according to socioeconomic status (SES) has seldom been investigated, particularly in adolescence. To investigate whether a distinct genetic and environmental contribution to youth’s diurnal cortisol secretion emerges according to family SES and whether the timing of these experiences matters. Participants were 592 twin pairs, who mostly came from middle-income and intact families and for whom SES was measured in childhood and adolescence. Diurnal cortisol was assessed at age 14 at awakening, 30 min later, in the afternoon and evening over four nonconsecutive days. SES–cortisol phenotypic associations were specific to the adolescence period. Specifically, higher awakening cortisol levels were detected in wealthier backgrounds, whereas higher cortisol awakening response (CAR) and diurnal changes were present at both ends of the SES continuum. Moreover, smaller genetic contributions emerged for awakening cortisol in youth from poorer compared to wealthier backgrounds. The results suggest that the relative contribution of inherited factors to awakening cortisol secretion may be enhanced or suppressed depending on the socio-family context, which may help to decipher the mechanisms underlying later adjustment.

Type
Regular Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, E. K., & Gunnar, M. R. (2001). Relationship functioning and home and work demands predict individual differences in diurnal cortisol patterns in women. Psychoneuroendocrinology, 26(2), 189208. https://doi.org/10.1016/S0306-4530(00)00045-7 CrossRefGoogle Scholar
Adam, E. K., Hawkley, L. C., Kudielka, B. M., & Cacioppo, J. T. (2006). Day-to-day dynamics of experience-cortisol associations in a population-based sample of older adults. Proceedings of the National Academy of Sciences, 103(45), 1705817063. https://doi.org/10.1073/pnas.0605053103 CrossRefGoogle Scholar
Badrick, E., Kirschbaum, C., & Kumari, M. (2007). The relationship between smoking status and cortisol secretion. The Journal of Clinical Endocrinology & Metabolism, 92(3), 819824. https://doi.org/10.1210/jc.2006-2155 CrossRefGoogle Scholar
Bartels, M., de Geus, E. J. C., Kirschbaum, C., Sluyter, F., & Boomsma, D. I. (2003). Heritability of Daytime Cortisol Levels in Children. Behavior Genetics, 33(4), 421433. https://doi.org/10.1023/A:1025321609994 CrossRefGoogle Scholar
Bartels, M, Van den Berg, M., Sluyter, F., Boomsma, D. I., & de Geus, E. J. C. (2003). Heritability of cortisol levels: Review and simultaneous analysis of twin studies. Psychoneuroendocrinology, 28(2), 121137. https://doi.org/10.1016/S0306-4530(02)00003-3 CrossRefGoogle Scholar
Bernard, K., Frost, A., Bennett, C. B., & Lindhiem, O. (2017). Maltreatment and diurnal cortisol regulation: A meta-analysis. Psychoneuroendocrinology, 78, 5767.CrossRefGoogle Scholar
Brendgen, M., Ouellet-Morin, I., Lupien, S., Vitaro, F., Dionne, G., & Boivin, M. (2017). Does cortisol moderate the environmental association between peer victimization and depression symptoms? A genetically informed twin study. Psychoneuroendocrinology, 84(Supplement C), 4250. https://doi.org/10.1016/j.psyneuen.2017.06.014 CrossRefGoogle Scholar
Brendgen, M., Ouellet-Morin, I., Lupien, S. J., Vitaro, F., Dionne, G., & Boivin, M. (2017). Environmental influence of problematic social relationships on adolescents’ daily cortisol secretion: A monozygotic twin-difference study. Psychological Medicine, 47(3), 460470. https://doi.org/10.1017/S003329171600252X CrossRefGoogle Scholar
Bunea, I. M., Szentágotai-Tătar, A., & Miu, A. C. (2017). Early-life adversity and cortisol response to social stress: A meta-analysis. Translational Psychiatry, 7(12), 1274. https://doi.org/10.1038/s41398-017-0032-3 CrossRefGoogle Scholar
Chen, E., Cohen, S., & Miller, G. E. (2010). How low socioeconomic status affects 2-year hormonal trajectories in children. Psychological Science, 21(1), 3137. https://doi.org/10.1177/0956797609355566 CrossRefGoogle Scholar
Chen, E., Martin, A. D., & Matthews, K. A. (2007). Trajectories of socioeconomic status across children’s lifetime predict health. Pediatrics, 120(2), e297e303. https://doi.org/10.1542/peds.2006-3098 CrossRefGoogle Scholar
Chen, E., & Paterson, L. Q. (2006). Neighborhood, family, and subjective socioeconomic status: How do they relate to adolescent health? Health Psychology, 25(6), 704. https://doi.org/10.1037/0278-6133.25.6.704 CrossRefGoogle Scholar
Chen, M. C., Joormann, J., Hallmayer, J., & Gotlib, I. H. (2009). Serotonin transporter polymorphism predicts waking cortisol in young girls. Psychoneuroendocrinology, 34(5), 681686. https://doi.org/10.1016/j.psyneuen.2008.11.006 CrossRefGoogle Scholar
Clearfield, M. W., Carter-Rodriguez, A., Merali, A.-R., & Shober, R. (2014). The effects of SES on infant and maternal diurnal salivary cortisol output. Infant Behavior and Development, 37(3), 298304. https://doi.org/10.1016/j.infbeh.2014.04.008 CrossRefGoogle Scholar
Clow, A., Hucklebridge, F., Stalder, T., Evans, P., & Thorn, L. (2010). The cortisol awakening response: More than a measure of HPA axis function. Neuroscience & Biobehavioral Reviews, 35(1), 97103. https://doi.org/10.1016/j.neubiorev.2009.12.011 CrossRefGoogle Scholar
Clow, A., Thorn, L., Evans, P., & Hucklebridge, F. (2004). The awakening cortisol response: Methodological issues and significance. Stress, 7(1), 2937. https://doi.org/10.1080/10253890410001667205 CrossRefGoogle Scholar
Cutuli, J. J., Wiik, K. L., Herbers, J. E., Gunnar, M. R., & Masten, A. S. (2010). Cortisol function among early school-aged homeless children. Psychoneuroendocrinology, 35(6), 833845. https://doi.org/10.1016/j.psyneuen.2009.11.008 CrossRefGoogle Scholar
Desantis, A. S., Kuzawa, C. W., & Adam, E. K. (2015). Developmental origins of flatter cortisol rhythms: Socioeconomic status and adult cortisol activity. American Journal of Human Biology, 27(4), 458467. https://doi.org/10.1002/ajhb.22668 CrossRefGoogle Scholar
Dohrenwend, B. S. (1974). Social status and stressful life events. Journal of Personality and Social Psychology, 28(2), 225. https://doi.org/10.1037/h0035718 CrossRefGoogle Scholar
Doom, J. R., Cicchetti, D., Rogosch, F. A., & Dackis, M. N. (2013). Child maltreatment and gender interactions as predictors of differential neuroendocrine profiles. Psychoneuroendocrinology, 38(8), 14421454. https://doi.org/10.1016/j.psyneuen.2012.12.019 CrossRefGoogle Scholar
Duncan, T. E., Duncan, S. C., Alpert, A., Hops, H., Stoolmiller, M., & Muthen, B. (1997). Latent variable modeling of longitudinal and multilevel substance use data. Multivariate Behavioral Research, 32(3), 275318. https://doi.org/10.1207/s15327906mbr3203_3 CrossRefGoogle Scholar
Essex, M. J., Klein, M. H., Cho, E., & Kalin, N. H. (2002). Maternal stress beginning in infancy may sensitize children to later stress exposure: Effects on cortisol and behavior. Biological Psychiatry, 52(8), 776784. https://doi.org/10.1016/S0006-3223(02)01553-6 CrossRefGoogle Scholar
Evans, G. W., & English, K. (2002). The environment of poverty: Multiple stressor exposure, psychophysiological stress, and socioemotional adjustment. Child Development, 73(4), 12381248. https://doi.org/10.1111/1467-8624.00469 CrossRefGoogle Scholar
Fogelman, N., & Canli, T. (2018). Early life stress and cortisol: A meta-analysis. Hormones and Behavior, 98, 6376. https://doi.org/10.1016/j.yhbeh.2017.12.014 CrossRefGoogle Scholar
Forget-Dubois, N., Pérusse, D., Turecki, G., Girard, A., Billette, J.-M., Rouleau, G., Boivin, M., Malo, J., & Tremblay, R. E. (2003). Diagnosing Zygosity in infant twins: Physical similarity, genotyping, and chorionicity. Twin Research and Human Genetics, 6(6), 479485. https://doi.org/10.1375/twin.6.6.479 CrossRefGoogle Scholar
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and associations with puberty. Development and Psychopathology, 21(1), 6985. https://doi.org/10.1017/S0954579409000054 CrossRefGoogle Scholar
Gustafsson, P. A., Gustafsson, P. E., Anckarsäter, H., Lichtenstein, P., Ljung, T., Nelson, N., & Larsson, H. (2011). Heritability of cortisol regulation in children. Twin Research and Human Genetics, 14(6), 553561. https://doi.org/10.1375/twin.14.6.553 CrossRefGoogle Scholar
Gustafsson, P. E., Gustafsson, P. A., & Nelson, N. (2006). Cortisol levels and psychosocial factors in preadolescent children. Stress and Health, 22(1), 39. https://doi.org/10.1002/smi.1074 CrossRefGoogle Scholar
Koss, K. J., & Gunnar, M. R. (2018). Annual research review: Early adversity, the hypothalamic–pituitary–adrenocortical axis, and child psychopathology. Journal of Child Psychology and Psychiatry, 59(4), 327346. https://doi.org/10.1111/jcpp.12784 CrossRefGoogle Scholar
Kuhlman, K. R., Chiang, J. J., Horn, S., & Bower, J. E. (2017). Developmental psychoneuroendocrine and psychoneuroimmune pathways from childhood adversity to disease. Neuroscience & Biobehavioral Reviews, 80, 166184. https://doi.org/10.1016/j.neubiorev.2017.05.020 CrossRefGoogle Scholar
Larose, M.-P., Ouellet-Morin, I., Vitaro, F., Geoffroy, M. C., Ahun, M., Tremblay, R. E., & Côté, S. M. (2019). Impact of a social skills program on children’s stress: A cluster randomized trial. Psychoneuroendocrinology, 104, 115121. https://doi.org/10.1016/j.psyneuen.2019.02.017 CrossRefGoogle Scholar
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2000). Child’s stress hormone levels correlate with mother’s socioeconomic status and depressive state. Biological Psychiatry, 48(10), 976980. https://doi.org/10.1016/S0006-3223(00)00965-3 CrossRefGoogle Scholar
Lupien, S. J., King, S., Meaney, M. J., & Mcewen, B. S. (2001). Can poverty get under your skin? Basal cortisol levels and cognitive function in children from low and high socioeconomic status. Development and Psychopathology, 13(3), 653676. https://doi.org/10.1017/S0954579401003133 CrossRefGoogle Scholar
Lupien, Sonia J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434445.CrossRefGoogle Scholar
McEwen, B. S., & Seeman, T. (1999). Protective and damaging effects of mediators of stress: Elaborating and testing the concepts of Allostasis and Allostatic load. Annals of the New York Academy of Sciences, 896(1), 3047. https://doi.org/10.1111/j.1749-6632.1999.tb08103.x CrossRefGoogle Scholar
McEwen, B. S., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153(18), 20932101. https://doi.org/10.1001/archinte.1993.00410180039004 CrossRefGoogle Scholar
McLachlan, K., Rasmussen, C., Oberlander, T. F., Loock, C., Pei, J., Andrew, G., Reynolds, J., & Weinberg, J. (2016). Dysregulation of the cortisol diurnal rhythm following prenatal alcohol exposure and early life adversity. Alcohol (Fayetteville, N.Y.), 53, 918. https://doi.org/10.1016/j.alcohol.2016.03.003 CrossRefGoogle Scholar
Neale, M. C., & Cardon, L. R. (1992). NATO ASI series D: Behavioural and social sciences, Vol. 67. Methodology for genetic studies of twins and families. New York, US: Kluwer Academic/Plenum Publishers. https://doi.org/10.1007/978-94-015-8018-2.Google Scholar
Ouellet-Morin, I., Boivin, M., Dionne, G., Lupien, S. J., Arsenault, L., Barr, R. G., Pérusse, D., & Tremblay, R. E. (2008). Variations in heritability of cortisol reactivity to stress as a function of early familial adversity among 19-month-old twins. Archives of General Psychiatry, 65(2), 211218.CrossRefGoogle Scholar
Ouellet-Morin, I., Brendgen, M., Girard, A., Lupien, S. J., Dionne, G., Vitaro, F., & Boivin, M. (2016). Evidence of a unique and common genetic etiology between the CAR and the remaining part of the diurnal cycle: A study of 14 year-old twins. Psychoneuroendocrinology, 66(Supplement C), 91100. https://doi.org/10.1016/j.psyneuen.2015.12.022 CrossRefGoogle Scholar
Ouellet-Morin, I., Cantave, C., Paquin, S., Geoffroy, M.-C., Brendgen, M., Vitaro, F., Tremblay, R., Boivin, M., Lupien, S., & Côté, S. (2020). Associations between developmental trajectories of peer victimization, hair cortisol, and depressive symptoms: A longitudinal study. Journal of Child Psychology and Psychiatry, n/a(n/a). https://doi.org/10.1111/jcpp.13228 Google Scholar
Ouellet-Morin, I., Dionne, G., Pérusse, D., Lupien, S. J., Arseneault, L., Barr, R. G., Tremblay, R. E., & Boivin, M. (2009). Daytime cortisol secretion in 6-month-old twins: Genetic and environmental contributions as a function of early familial adversity. Biological Psychiatry, 65(5), 409416.CrossRefGoogle Scholar
Phan, J. M., Hulle, C. A. V., Shirtcliff, E. A., Schmidt, N. L., & Goldsmith, H. H. (2020). Longitudinal effects of family psychopathology and stress on pubertal maturation and hormone coupling in adolescent twins. Developmental Psychobiology, n/a(n/a). https://doi.org/10.1002/dev.22028 Google Scholar
Schreiber, J. E., Shirtcliff, E., Hulle, C. V., Lemery-Chalfant, K., Klein, M. H., Kalin, N. H., Essex, M. J., & Goldsmith, H. H. (2006). Environmental influences on family similarity in afternoon cortisol levels: Twin and parent–offspring designs. Psychoneuroendocrinology, 31(9), 11311137. https://doi.org/10.1016/j.psyneuen.2006.07.005 CrossRefGoogle Scholar
Shanahan, M. J., & Hofer, S. M. (2005). Social context in gene–environment interactions: Retrospect and prospect. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60(Special_Issue_1), 6576.CrossRefGoogle Scholar
Shirtcliff, E. A., Allison, A. L., Armstrong, J. M., Slattery, M. J., Kalin, N. H., & Essex, M. J. (2012). Longitudinal stability and developmental properties of salivary cortisol levels and circadian rhythms from childhood to adolescence. Developmental Psychobiology, 54(5), 493502. https://doi.org/10.1002/dev.20607 CrossRefGoogle Scholar
Shonkoff, J. P. (2010). Building a new biodevelopmental framework to guide the future of early childhood policy. Child Development, 81(1), 357367. https://doi.org/10.1111/j.1467-8624.2009.01399.x CrossRefGoogle Scholar
Smyth, J. M., Ockenfels, M. C., Gorin, A. A., Catley, D., Porter, L. S., Kirschbaum, C., Hellhammer, D. H., & Stone, A. A. (1997). Individual differences in the diurnal cycle of cortisol. Psychoneuroendocrinology, 22(2), 89105. https://doi.org/10.1016/S0306-4530(96)00039-X CrossRefGoogle Scholar
Spitz, E., Carlier, M., Vacher-Lavenu, M.-C., & Reed, T. (1996). Long-term effect of prenatal heterogeneity among monozygotes. Cahiers de Psychologie Cognitive/Current Psychology of Cognition, 15(3), 283308.Google Scholar
Statistics Canada. (2016, July 8). Low income cut-offs (LICOs) before and after tax by community size and family size, in current dollars. https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1110024101 Google Scholar
Tarullo, A. R., Tuladhar, C. T., Kao, K., Drury, E. B., & Meyer, J. (2020). Cortisol and socioeconomic status in early childhood: A multidimensional assessment. Development and Psychopathology, 32(5), 18761887. https://doi.org/10.1017/S0954579420001315 CrossRefGoogle Scholar
Utge, S., Räikkönen, K., Kajantie, E., Lipsanen, J., Andersson, S., Strandberg, T., Reynolds, R. M., Eriksson, J. G., & Lahti, J. (2018). Polygenic risk score of SERPINA6/SERPINA1 associates with diurnal and stress-induced HPA axis activity in children. Psychoneuroendocrinology, 93, 17. https://doi.org/10.1016/j.psyneuen.2018.04.009 CrossRefGoogle Scholar
Van Hulle, C. A., Shirtcliff, E. A., Lemery-Chalfant, K., & Goldsmith, H. H. (2012). Genetic and environmental influences on individual differences in cortisol level and circadian rhythm in middle childhood. Hormones and Behavior, 62(1), 3642. https://doi.org/10.1016/j.yhbeh.2012.04.014 CrossRefGoogle Scholar
Velders, F. P., Kuningas, M., Kumari, M., Dekker, M. J., Uitterlinden, A. G., Kirschbaum, C., Hek, K., Hofman, A., Verhulst, F. C., Kivimaki, M., Van Duijn, C. M., Walker, B. R., & Tiemeier, H. (2011). Genetics of cortisol secretion and depressive symptoms: A candidate gene and genome wide association approach. Psychoneuroendocrinology, 36(7), 10531061. https://doi.org/10.1016/j.psyneuen.2011.01.003 CrossRefGoogle Scholar
West, P., Sweeting, H., Young, R., & Kelly, S. (2010). The relative importance of family socioeconomic status and school-based peer hierarchies for morning cortisol in youth: An exporatory study. Social Science & Medicine, 70(8), 12461253. https://doi.org/10.1016/j.socscimed.2009.12.006 CrossRefGoogle Scholar
Wüst, S., Federenko, I., Hellhammer, D. H., & Kirschbaum, C. (2000). Genetic factors, perceived chronic stress, and the free cortisol response to awakening. Psychoneuroendocrinology, 25(7), 707720. https://doi.org/10.1016/S0306-4530(00)00021-4 CrossRefGoogle Scholar
Wüst, S., Federenko, I. S., Rossum, E. F. C., Koper, J. W., Kumsta, R., Entringer, S., & Hellhammer, D. H. (2004). A psychobiological perspective on genetic determinants of hypothalamus-pituitary-adrenal axis activity. Annals of the New York Academy of Sciences, 1032(1), 5262. https://doi.org/10.1196/annals.1314.005 CrossRefGoogle Scholar
Young, E. S., Farrell, A. K., Carlson, E. A., Englund, M. M., Miller, G. E., Gunnar, M. R., Roisman, G. I., & Simpson, J. A. (2019). The dual impact of early and concurrent life stress on adults’ diurnal cortisol patterns: A prospective study. Psychological Science, 30(5), 739747. https://doi.org/10.1177/0956797619833664 CrossRefGoogle Scholar
Zalewski, M., Lengua, L. J., Thompson, S. F., & Kiff, C. J. (2016). Income, cumulative risk, and longitudinal profiles of hypothalamic–pituitary–adrenal axis activity in preschool-age children. Development and Psychopathology, 28(2), 341353. https://doi.org/10.1017/S0954579415000474 CrossRefGoogle Scholar
Supplementary material: File

Cantave et al. supplementary material

Cantave et al. supplementary material

Download Cantave et al. supplementary material(File)
File 86.4 KB