Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T01:08:10.013Z Has data issue: false hasContentIssue false

The neurobiology of oppositional defiant disorder and conduct disorder: Altered functioning in three mental domains

Published online by Cambridge University Press:  17 July 2012

Walter Matthys*
Affiliation:
University Medical Center Utrecht Utrecht University
Louk J. M. J. Vanderschuren
Affiliation:
University Medical Center Utrecht Utrecht University
Dennis J. L. G. Schutter
Affiliation:
Utrecht University
*
Address correspondence and reprint requests to: Walter Matthys, University Medical Center Utrecht, B01.324, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; E-mail: [email protected].

Abstract

This review discusses neurobiological studies of oppositional defiant disorder and conduct disorder within the conceptual framework of three interrelated mental domains: punishment processing, reward processing, and cognitive control. First, impaired fear conditioning, reduced cortisol reactivity to stress, amygdala hyporeactivity to negative stimuli, and altered serotonin and noradrenaline neurotransmission suggest low punishment sensitivity, which may compromise the ability of children and adolescents to make associations between inappropriate behaviors and forthcoming punishments. Second, sympathetic nervous system hyporeactivity to incentives, low basal heart rate associated with sensation seeking, orbitofrontal cortex hyporeactiviy to reward, and altered dopamine functioning suggest a hyposensitivity to reward. The associated unpleasant emotional state may make children and adolescents prone to sensation-seeking behavior such as rule breaking, delinquency, and substance abuse. Third, impairments in executive functions, especially when motivational factors are involved, as well as structural deficits and impaired functioning of the paralimbic system encompassing the orbitofrontal and cingulate cortex, suggest impaired cognitive control over emotional behavior. In the discussion we argue that more insight into the neurobiology of oppositional defiance disorder and conduct disorder may be obtained by studying these disorders separately and by paying attention to the heterogeneity of symptoms within each disorder.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

aan het Rot, M., Coupland, N., Boivin, D. B., Benkelfat, C., & Young, S. N. (2010). Recognizing emotions in faces: Effects of acute tryptophan depletion and bright light. Psychopharmacology, 24, 14471454.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author.Google Scholar
Angold, A., Costello, J. E., & Erkanli, A. (1999). Comorbidity. Journal of Child Psychology and Psychiatry, 40, 5787.CrossRefGoogle ScholarPubMed
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus–norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403450.Google Scholar
Balleine, B. W., & Killcross, S. (2006). Parallel incentive processing: An integral view of amygdala functioning. Trends in Neurosciences, 29, 272279.CrossRefGoogle Scholar
Barry, R. J., Clarke, A. R., & Johnstone, S. J. (2003). A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clinical Neurophysiology, 114, 171183.CrossRefGoogle ScholarPubMed
Bartzokis, G., Lu, P. H., Beckson, M., Rapaport, R., Grant, S., Wiseman, M., et al. (2000). Abstinence from cocaine reduces high-risk response on a gambling task. Neuropsychopharmacology, 22, 102103.CrossRefGoogle ScholarPubMed
Bauer, L. O., & Hesselbrock, V. M. (1999). Subtypes of family history and conduct disorder: Effects on P300 during the Stroop test. Neuropsychopharmacology, 21, 5162.Google Scholar
Baving, L., Rellum, T., Laucht, M., & Schmidt, M. H. (2006). Children with oppositional–defiant disorder display deviant attentional processing independent of ADHD symptoms. Journal of Neural Transmission, 113, 685693.CrossRefGoogle ScholarPubMed
Beachaine, T. P. (2001). Vagal tone, development, and Gray's motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214.CrossRefGoogle Scholar
Beauchaine, T. P., Gatzke-Kopp, L., & Mead, H. K. (2007). Polyvagal theory and developmental psychopathology: Emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74, 174184.Google Scholar
Beauchaine, T. P, Hong, J., & Marsh, P. (2008). Sex differences in autonomic correlates of conduct problems and aggression. Journal of the American Academy of Child & Adolescent Psychiatry, 47, 788796.Google Scholar
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 715.CrossRefGoogle ScholarPubMed
Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S. W., & Nathan, P. E. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39, 376389.CrossRefGoogle ScholarPubMed
Beitchman, J. H., Baldassarra, L., Mik, H., De Luca, V., King, N., Bender, D., et al. (2006). Serotonin transporter polymorphisms and persistent, pervasive childhood aggression. American Journal of Psychiatry, 163, 11031105.CrossRefGoogle ScholarPubMed
Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42, 3384.Google Scholar
Berridge, K. C. (2007). The debate over dopamine's role in reward: The case for incentive salience. Psychopharmacology, 191, 391431.Google Scholar
Birmaher, B., Stanley, M., Greenhill, L., Twomey, J., Gavrilescu, A., & Rabinovich, H. (1990). Platelet imipramine binding in children and adolescents with impulsive behavior. Journal of the American Academy of Child & Adolescent Psychiatry, 29, 914918.CrossRefGoogle ScholarPubMed
Blair, R. J. R. (2004). The roles of orbital frontal cortex in the modulation of antisocial behaviour. Brain and Cognition, 55, 198208.CrossRefGoogle Scholar
Blair, R. J. R. (2007). Dysfunctions of medial and lateral orbitofrontal cortex in psychopathy. Annals of the New York Academy of Sciences, 1121, 461479.CrossRefGoogle ScholarPubMed
Blair, R. J. R., Colledge, E., & Mitchell, D. G. V. (2001). Somatic markers and response reversal: Is there orbitofrontal cortex dysfunction in boys with psychopathic tendencies? Journal of Abnormal Child Psychology, 29, 499511.CrossRefGoogle ScholarPubMed
Blair, R. J. R., Colledge, E., Murray, L., & Mitchell, D. G. V. (2001). A selective impairment in the processing of sad and fearful expressions in children with psychopathic tendencies. Journal of Abnormal Child Psychology, 29, 491498.Google Scholar
Buckholtz, J. W., Treadway, M. T., Cowan, R. L., Woodward, N. D., Benning, S. D., Li, R., et al. (2010). Mesolimbic dopamine reward system hypersensitivity in individuals with psychopathic traits. Nature Neuroscience, 13, 419421.CrossRefGoogle ScholarPubMed
Bussing, R., Grudnik, J., Mason, D., Wasiak, M., & Leonard, C. (2002). ADHD and conduct disorder: An MRI study in a community sample. World Journal of Biological Psychiatry, 3, 216220.CrossRefGoogle Scholar
Cappadocia, M. C., Desrocher, M., Pepler, D., & Schroeder, J. H. (2009). Contextualizing the neurobiology of conduct disorder in an emotion dysregulation framework. Clinical Psychological Review, 29, 506518.CrossRefGoogle Scholar
Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience and Biobehavioral Reviews, 26, 321352.CrossRefGoogle ScholarPubMed
Caspi, A., Hariri, A., Holmes, A., Uher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry, 167, 509527.CrossRefGoogle Scholar
Caspi, A., Langley, K., Milne, B., Moffitt, T. E., O'Donovan, M., Owen, M., et al. (2008). A replicated molecular genetic basis for subtyping antisocial behavior in children with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 65, 203210.Google Scholar
Caspi, A., McClay, J., Moffitt, T., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.Google Scholar
Chamberlain, S. R., Müller, U., Robbins, T. W., & Sahakian, B. J. (2006). Neuropharmacological modulation of cognition. Current Opinion in Neurology, 19, 607612.Google Scholar
Connor, D. F., Glatt, S., Lopez, I., Jackson, D., & Melloni, R. (2002). Psychopharmacology and aggression. I. A meta analysis of stimulant effects on overt–covert aggression-related behaviors in ADHD. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 253261.Google Scholar
Cools, R., Calder, A. J., Lawrence, A. D., Clark, L., Bullmore, E., & Robbins, T. W. (2005). Individual differences in threat sensitivity predict serotonergic modulation of amygdala response to fearful faces. Psychopharmacology, 180, 670679.Google Scholar
Cools, R., Roberts, A. C., & Robbins, T. W. (2008). Serotoninergic regulation of emotional and behavioural control processes. Trends in Cognitive Sciences, 12, 3140.CrossRefGoogle ScholarPubMed
Crowell, S., Beauchaine, T. P., Gatzke-Kopp, L., Sylvers, P., Mead, H., & Chipman-Chacon, J. (2006). Autonomic correlates of attention-deficit/hyperactivity disorder and oppositional defiant disorder in preschool children. Journal of Abnormal Psychology, 115, 174178.CrossRefGoogle ScholarPubMed
Dadds, M. R., El Masry, Y., Wimalaweera, S., & Guastella, A. J. (2008). Reduced eye gaze explains “fear blindness” in childhood psychopathic traits. Journal of the American Academy of Child & Adolescent Psychiatry, 47, 455463.Google Scholar
Dalley, J. W., Cardinal, R. N., & Robbins, T. W. (2004). Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates. Neuroscience and Biobehavioral Reviews, 28, 771784.CrossRefGoogle ScholarPubMed
Daugherty, T. K., & Quay, H. C. (1991). Response perseveration and delayed responding in childhood behavior disorders. Journal of Child Psychology and Psychiatry, 32, 453461.CrossRefGoogle ScholarPubMed
De Brito, S. A., Mechelli, A., Wilke, M., Laurens, K. R., Jones, A. P., Barker, G. J., et al. (2009). Size matters: Increased grey matter in boys with conduct problems and callous–unemotional traits. Brain, 132, 843852.Google Scholar
Decety, J., Michalska, K. J., Akitsuki, Y., & Lahey, B. B. (2009). Atypical empathic responses in adolescents with aggressive conduct disorder: A functional MRI investigation. Biological Psychology, 80, 203211.CrossRefGoogle ScholarPubMed
Durston, S., Hulshoff Pol, H. E., Casey, B. J., Giedd, J. N., Buitelaar, J. K., & van Engeland, H. (2001). Anatomical MRI of the developing human brain: What have we learned? Journal of the American Academy of Child & Adolescent Psychiatry, 40, 21492157.Google ScholarPubMed
El-Sheikh, M., Ballard, M., & Cummings, E. M. (1994). Individual differences in preschoolers’ physiological and verbal responses to videotaped angry interactions. Journal of Abnormal Child Psychology, 22, 303320.Google Scholar
Ernst, M., Grant, S. J., London, E. D., Contoreggi, C. S., Kimes, A. S., & Spurgeon, L. (2003). Decision making in adolescents with behaviour disorders and adults with substance abuse. American Journal of Psychiatry, 160, 3340.CrossRefGoogle ScholarPubMed
Fairchild, G., van Goozen, S. H. M., Stollery, S. J., Aitken, M. R. F., Savage, J., Moore, S. C., et al. (2009). Decision making and executive function in male adolescents with early-onset or adolescence-onset conduct disorder and control subjects. Biological Psychiatry, 66, 162168.Google Scholar
Fairchild, G., van Goozen, S. H. M., Stollery, S. J., & Goodyer, I. (2008). Fear conditioning and affective modulation of the startle reflex in male adolescents with early-onset or adolescence onset conduct disorder and healthy control subjects. Biological Psychiatry, 63, 279285.Google Scholar
Findling, R. L., McNamara, N. K., Branicky, L. A., Schluchter, M. D., Lemon, E., & Blumer, J. (2000). A double-blind pilot study of risperidone in the treatment of conduct disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 509516.CrossRefGoogle ScholarPubMed
Finger, E. C., Marsh, A. A., Blair, K. S., Reid, M. E., Sims, C., Ng, P., et al. (2011). Disrupted reinforcement signaling in the orbitofrontal cortex and caudate in youths with conduct disorder or oppositional defiant disorder and a high level of psychopathic traits. American Journal of Psychiatry, 168, 152162.Google Scholar
Finger, E. C., Marsh, A. A., Mitchell, D. G., Reid, M. E., Sims, C., Budhani, S., et al. (2008). Abnormal ventromedial prefrontal cortex function in children with psychopathic traits during reversal learning. Archives of General Psychiatry, 65, 586594.CrossRefGoogle ScholarPubMed
Flory, J. D., Newcorn, J. H., Miller, C., Harty, S., & Halperin, J. (2007). Serotonergic function in children with attention-deficit hyperactivity disorder. British Journal of Psychiatry, 190, 410414.Google Scholar
Foley, D. L., Eaves, L. J., Wormley, B., Silberg, J. L., Maes, H. H., Kuhn, J., et al. (2004). Childhood adversity, monoamine oxidase A genotype, and risk for conduct disorder. Archives of General Psychiatry, 61, 738744.CrossRefGoogle ScholarPubMed
Fone, K. C., & Nutt, D. J. (2005). Stimulants: Use and abuse in the treatment of attention deficit hyperactivity disorder. Current Opinion in Pharmacology, 5, 8793.CrossRefGoogle ScholarPubMed
Fowles, D. C. (1980). The three arousal model: Implications of Gray's two-factor learning theory for heart rate, electrodermal activity, and psychopathy. Psychophysiology, 17, 87104.Google Scholar
Fowles, D. C. (2000). Electrodermal hyporeactivity and antisocial behavior: Does anxiety mediate the relationship? Journal of Affective Disorders, 61, 177189.Google Scholar
Frick, P. J., & White, S. F. (2008). Research review: The importance of callous–unemotional traits for developmental models of aggressive and antisocial behavior. Journal of Child Psychology and Psychiatry, 49, 359375.CrossRefGoogle ScholarPubMed
Fung, M. T., Raine, A., Loeber, R., Lynam, D. R., Steinhauer, S. R., Venables, P. H., et al. (2005). Reduced electrodermal activity in psychopathy-prone adolescents. Journal of Abnormal Psychology, 114, 187196.CrossRefGoogle ScholarPubMed
Gao, Y., Raine, A., Venables, P. H., Dawson, M. E., & Mednick, S. A. (2010a). Reduced electrodermal fear conditioning from ages 3 to 8 years is associated with aggressive behaviour at age 8 years. Journal of Child Psychology and Psychiatry, 51, 550558.Google Scholar
Gao, Y., Raine, A, Venables, P. H., Dawson, M. E., & Mednick, S. A. (2010b). Association of poor childhood fear conditioning and adult crime. American Journal of Psychiatry, 167, 5660.CrossRefGoogle ScholarPubMed
Grant, S., Contoreggi, C., & London, E. D. (2000). Drug abusers show impaired performance in a laboratory test of decision-making. Neuropsychologia, 38, 11801187.Google Scholar
Haberstick, B. C., Smolen, A., & Hewitt, J. K. (2006). Family-based association test of the 5-HTTLPR and aggressive behavior in a general population sample of children. Biological Psychiatry, 59, 836843.CrossRefGoogle Scholar
Halperin, J. M., Newcorn, J. H., Schwartz, S. T., Sharma, V., Siever, L. J., Koda, V. H., et al. (1997). Age-related changes in the association between serotonergic function and aggression in boys with ADHD. Biological Psychiatry, 41, 682689.CrossRefGoogle ScholarPubMed
Halperin, J. M., Sharma, V., Siever, L. J., Schwartz, S. T., Matier, K., Wornell, G., et al. (1994). Serotonergic function in aggressive and nonaggressive boys with attention deficit hyperactivity disorder. American Journal of Psychiatry, 151, 243248.Google ScholarPubMed
Harmer, C. J., Rogers, R. D., Timbridge, E., Cowen, P. J., & Goodwin, G. M. (2003). Tryptophan depletion decreases the recognition of fear in female volunteers. Psychopharmacology, 167, 411417.Google Scholar
Herpertz, S. C., Huebner, T., Marx, I., Vloet, T., Fink, G. R., Stoecker, T., et al. (2008). Emotional processing in male adolescents with childhood-onset conduct disorder. Journal of Child Psychology and Psychiatry, 49, 781791.Google Scholar
Herpertz, S. C., Mueller, B., Qunaibi, M., Lichterveld, C., Konrad, K., & Herpertz-Dahlmann (2005). Response to emotional stimuli in boys with conduct disorder. American Journal of Psychiatry, 162, 11001107.CrossRefGoogle ScholarPubMed
Holmes, J., Payton, A., Barrett, J., Harrington, R., McGuffin, P., Owen, M., et al. (2002). Association of DRD4 in children with ADHD ad comorbid conduct problems. American Journal of Medical Genetics, 114, 150153.Google Scholar
Houston, R. J., & Stanford, M. S. (2005). Electrophysiological substrates of impulsiveness: Potential effects on aggressive behavior. Progress in Neuropsychopharmacology and Biological Psychiatry, 29, 305313.CrossRefGoogle ScholarPubMed
Hoyer, D., Hannon, J. P., & Martin, G. R. (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacology, Biochemistry, & Behavior, 71, 533554.Google Scholar
Huebner, T., Vloet, T. D., Marx, I., Konrad, K., Fink, G. R., Herpertz, S. C., et al. (2008). Morphometric brain abnormalities in boys with conduct disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 47, 540547.Google Scholar
Jones, A. P., Laurens, K. R., Herba, C. J., & Viding, E. (2009). Amygdala hypoactivity to fearful faces in boys with conduct problems and callous–unemotional traits. American Journal of Psychiatry, 166, 95102.CrossRefGoogle ScholarPubMed
Klein, R. G., Abikoff, H., Klass, E., Ganales, D., Seese, L. M., & Pollack, S. (1997). Clinical efficacy of methylphenidate in conduct disorder with and without attention deficit hyperactivity disorder. Archives of General Psychiatry, 54, 10731080.Google Scholar
Kochanska, G. (1993). Toward a synthesis of parental socialization and child development in early development of conscience. Child Development, 64, 325347.CrossRefGoogle Scholar
Kruesi, M. J. P., Casanova, M. F., Mannheim, G., & Johnson-Bilder, A. (2004). Reduced temporal lobe volume in early onset conduct disorder. Psychiatry Research: Neuroimaging, 132, 111.CrossRefGoogle ScholarPubMed
Kruesi, M. J. P., Rapaport, J. L., Hamburger, S., Hibbs, E., Potter, W. Z. E., Lenane, M., et al. (1990). Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Archives of General Psychiatry, 47, 419426.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2002). Synaptic self: How our brains become who we are. New York: Viking.Google Scholar
Lee, H. J., Jin, S. Y., Hong, M. S., Park, H. J., Kim, M. K., Yim, S. V., et al. (2004). MAOA and persistent, pervasive childhood aggression. Molecular Psychiatry, 9, 546547.Google Scholar
Lorber, M. F. (2004). Psychophysiology of aggression, psychopathy and conduct problems: A meta-analysis. Psychological Bulletin, 130, 531552.Google Scholar
Luman, M., Sergeant, J. S, Knol, D., & Oosterlaan, J. (2010). Impaired decision making in oppositional defiant disorder related to altered psychophysiological responses to reinforcement. Biological Psychiatry, 68, 337343.Google Scholar
Lykken, D. T. (1957). A study of anxiety in the sociopathic personality. Journal of Abnormal and Social Psychology, 55, 610.Google Scholar
Malone, R. P., Delaney, M. A., Luebbert, J. F., Cater, J., & Campbell, M. (2000). A double-blind placebo-controlled study of lithium in hospitalized aggressive children and adolescents with conduct disorder. Archives of General Psychiatry, 57, 649654.Google Scholar
Marsh, A. A., Finger, E. C., Buzas, B., Soliman, N., Richell, R. A., Vythilingham, M., et al. (2006). Impaired recognition of fear facial expressions in 5-HTTLPR S-polymorphism carriers following tryptophan depletion. Psychopharmacology, 189, 387394.Google Scholar
Marsh, A. A., Finger, E. C., Mitchell, D. G. V., Reid, M., Sims, C., Kosson, D. S., et al. (2008). Reduced amygdala response to fearful expressions in children and adolescents with callous–unemotional traits and disruptive behaviour disorders. American Journal of Psychiatry, 165, 712720.CrossRefGoogle Scholar
Matthys, W., & Lochman, J. E. (2010). Oppositional defiant disorder and conduct disorder in childhood. Chichester: Wiley-Blackwell.Google Scholar
Matthys, W., van Goozen, S. H. M., de Vries, H., Cohen-Kettenis, P., & van Engeland, H. (1998). The dominance of behavioural activation over behavioural inhibition in conduct disordered boys with and without attention deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry, 39, 643651.Google Scholar
Matthys, W., van Goozen, S. H. M., Snoek, H., & van Engeland, H. (2004). Response perseveration and sensitivity to reward and punishment in boys with oppositional defiant disorder. European Child and Adolescent Psychiatry, 13, 362364.Google Scholar
Mazas, C. A., Finn, P. R., & Steinmetz, J. E. (2000). Decision-making biases, antisocial personality, and early-onset al.coholism. Alcoholism: Clinical and Experimental Research, 24, 10361040.Google Scholar
Moore, T. M., Scarpa, A., & Raine, A. (2002). A meta-analysis of serotonin metabolite 5-HIAA and antisocial behavior. Aggressive Behavior, 28, 299316.Google Scholar
Morgan, A. B., & Lilienfeld, S. O. (2000). A meta-analytic review of the relation between antisocial behavior and neuropsychological measures of executive function. Clinical Psychological Review, 20, 113136.CrossRefGoogle ScholarPubMed
Nelson, R. J., & Trainer, B. C. (2007). Neural mechanisms of aggression. Nature Review of Neuroscience, 8, 536546.Google Scholar
Newcorn, J. H., Spencer, T. J., Biederman, J., Milton, D. R., & Michelson, D. (2005). Atomoxetine treatment in children and adolescents with attention deficit/hyperactivity disorder and comorbid oppositional defiant disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 44, 240248.Google Scholar
Nigg, J. T. (2006). What causes ADHD? Understanding what goes wrong and why. New York: Guilford Press.Google Scholar
Nock, M. K., Kazdin, A. E., Hiripi, E., & Kessler, R. C. (2007). Lifetime prevalence, correlates, and persistence of oppositional defiant disorder: Results from the national Comorbidity Survey Replication. Journal of Child Psychology and Psychiatry, 48, 703713.CrossRefGoogle ScholarPubMed
O'Brien, B. S., & Frick, P. J. (1996). Reward dominance: Associations with anxiety, conduct problems, and psychopathy in children. Journal of Abnormal Child Psychology, 24, 223240.Google Scholar
Oosterlaan, J., Logan, G. D., & Sergeant, J. A. (1998). Response inhibition in AD/HD, CD, comorbid AD/HD + CD, anxious and normal children: A meta-analysis of studies with the stop task. Journal of Child Psychology and Psychiatry, 39, 411426.Google Scholar
Ortiz, J., & Raine, A. (2004). Heart rate level and antisocial behavior in children and adolescents: A meta-analysis. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 154162.Google Scholar
Pardini, D. A., Frick, P. J., & Moffitt, T. E. (2010). Building an evidence base for DSM-5 conceptualizations of oppositional defiant and conduct disorder: Introduction to the special section. Journal of Abnormal Psychology, 119, 683686.CrossRefGoogle Scholar
Pattij, T., & Vanderschuren, L. J. M. J. (2008). The neuropharmacology of impulsive behavior. Trends in Pharmacological Sciences, 29, 192199.Google Scholar
Pennington, B. F., & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry, 37, 5187.CrossRefGoogle ScholarPubMed
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48, 175187.Google Scholar
Pitkänen, A. (2000). Connectivity of the rat amygdaloid complex. In Aggleton, J. P. (Ed.), The amygdala: A functional analysis (pp. 31115). Oxford: Oxford University Press.Google Scholar
Pliszka, S. R., Rogeness, G. A., Renner, P., Sherman, J., & Broussard, T. (1988). Plasma neurochemistry in juvenile offenders. Journal of the American Academy of Child & Adolescent Psychiatry, 27, 588594.Google Scholar
Posthumus, J. A., Böcker, K. B. E., Raaijmakers, M. A. J., van Engeland, H., & Matthys, W. (2009). Heart rate and skin conductance in 4-year old children with aggressive behavior. Biological Psychology, 82, 164168.Google Scholar
Qian, Q. J., Liu, J., Wang, Y. F., Yang, L., Guan, L. L., & Faraone, S. V. (2009). Attention deficit hyperactivity disorder comorbid oppositional defiant disorder and its predominantly inattentive type: Evidence for an association with COMT but not MAOA in a Chinese sample. Behavioural and Brain Functions, 5, 8.Google Scholar
Quay, H. C. (1965). Psychopathic personality as pathological stimulation-seeking. American Journal of Psychiatry, 122, 180183.Google Scholar
Raaijmakers, M. A. J., Smidts, D. P., Sergeant, J. A., Maassen, G. H., Posthumus, J. A., van Engeland, H., et al. (2008). Executive functions in preschool children with aggressive behavior: Impairments in inhibitory control. Journal of Abnormal Child Psychology, 36, 10971107.CrossRefGoogle ScholarPubMed
Raine, A. (1993). The psychopathology of crime: Criminal behavior as a clinical disorder. San Diego, CA: Academic Press.Google Scholar
Robbins, T. W., & Arnsten, A. F. T. (2009). The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation. Annual Review of Neuroscience, 32, 267287.Google Scholar
Rogeness, G. A., Hernandez, J. M., Macedo, C. A., & Mitchell, E. L. (1982). Biochemical differences in children with conduct disorder socialized and undersocialized. American Journal of Psychiatry, 139, 307311.Google Scholar
Rogeness, G. A., Javors, M. A., Maas, J. W., & Macedo, C. A. (1990). Catecholamines and diagnoses in children. Journal of the American Academy of Child & Adolescent Psychiatry, 29, 234241.Google Scholar
Rogeness, G. A., Javors, M.A., Maas, J. W., Macedo, C. A., & Fischer, C. (1987). Plasma dopamine-β-hydroxylase, HVA, MHPG, and conduct disorder in emotionally disturbed boys. Biological Psychiatry, 22, 11581162.Google Scholar
Rogers, R. D., Everitt, B. J., Baldacchino, A., Blackshaw, A. J., Swainson, R., Wynne, K., et al. (1999). Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: Evidence for monoaminergic mechanisms. Neuropsychopharmacology, 20, 322339.Google Scholar
Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55, 1129.Google Scholar
Rowe, R., Costello, E. J., Angold, A., Copeland, W., & Maughan, B. (2010). Developmental pathways in oppositional defiant disorder and conduct disorder. Journal of Abnormal Psychology, 119, 726738.Google Scholar
Rubia, K. (2011). “Cool” inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus “hot” ventromedial orbitofrontal-limbic dusfunction in conduct disorder: A review. Biological Psychiatry, 69, e69e87.Google Scholar
Rubia, K., Halari, R., Cubillo, A., Smith, A., Mohammed, A.-M., Scott, S., et al. (2010). Disorder-specific inferior prefrontal hypofunction in boys with pure attention-deficit/hyperactivity disorder compared to boys with pure conduct disorder during cognitive flexibility. Human Brain Mapping, 31, 18231833.Google Scholar
Rubia, K., Halari, R., Smith, A., Mohammed, M., Scott, S., & Brammer, M. J. (2009). Shared and disorder-specific prefrontal abnormalities in boys with pure attention-deficit/hyperactivity disorder compared to boys with pure CD during interference inhibition and attention allocation. Journal of Child Psychology and Psychiatry, 50, 669678.CrossRefGoogle ScholarPubMed
Rubia, K., Halari, R., Smith, A., Mohammed, M., Scott, S., Giampetro, V., et al. (2008). Dissociated functional brain abnormalities of inhibition in boys with pure conduct disorder and in boys with pure attention deficit hyperactivity disorder. American Journal of Psychiatry, 165, 889897.Google Scholar
Rubia, K., Smith, A. B., Halari, R., Matsukara, F., Mohammad, M., Taylor, E., et al. (2009). Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. American Journal of Psychiatry, 166, 8394.Google Scholar
Sakai, J. T., Young, S. E., Stallings, M. C., Timberlake, D., Smolen, A., Steler, G., et al. (2006). Case-control and within-family tests for an association between conduct disorder and 5HTTLPR. American Journal of Medical Genetics, 141B, 825832.Google Scholar
Sander, D., Grafman, J., & Zalla, T. (2003). The human amygdala: An evolved system for relevance detection. Review of Neurosciences, 14, 303316.Google Scholar
Schmidt, L. A., Fox, N. A., Rubin, K. H., Hu, S., & Hamer, D. H. (2002). Molecular genetics of shyness and aggression in preschoolers. Personality and Individual Differences, 33, 227238.Google Scholar
Schoenbaum, G., Roesch, M. R., Stalnaker, T. A., & Takahashi, Y. K. (2009). A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nature Review of Neurosciences, 10, 885892.Google Scholar
Schultz, K. P., Newcorn, J. H., McKay, K. E., Himelstein, J., Koda, V. H., Siever, L. J., et al. (2001). Relationship between serotonergic function and aggression in prepubertal boys: Effect of age and attention-deficit/hyperactivity disorder. Psychiatry Research, 101, 110.Google Scholar
Schutter, D. J. L. G., van Bokhoven, I., Vanderschuren, L. J. M. J., Lochman, J. E., & Matthys, W. (2011). Risky decision making in substance dependent adolescents with a disruptive behavior disorder. Journal of Abnormal Child Psychology, 39, 333339.CrossRefGoogle ScholarPubMed
Schutter, D. J. L. G., & van Honk, J. (2005). The cerebellum on the rise in humane motion. Cerebellum, 4, 290294.Google Scholar
Séguin, J. R., & Zelazo, P. D. (2005). Executive function in early physical aggression. In Tremblay, R. E., Hartup, W. W., & Archer, J. (Eds.), Developmental origins of aggression (pp. 307329). New York: Guilford Press.Google Scholar
Shapiro, S. K., Quay, H. C., Hogan, A. E., & Schwartz, K. P. (1988). Response perseveration and delayed responding in undersocialized aggressive conduct disorder. Journal of Abnormal Psychology, 97, 371373.Google Scholar
Siever, L. J. (2008). Neurobiology of aggression and violence. American Journal of Psychiatry, 165, 429442.Google Scholar
Sijtsema, J. J., Veenstra, R., Lindenberg, S., van Roon, A. M., Verhulst, F. C., Ormel, J., et al. (2010). Mediation of senstation seeking and behavioral inhibition on the relationship between heart rate and antisocial behaviour: The TRAILS study. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 493502.Google Scholar
Snoek, H., van Goozen, S. H. M., Matthys, W., Buitelaar J. K., & van Engeland, H. (2004). Stress responsivity in children with externalizing behavior disorders. Development and Psychopathology, 16, 389406.Google Scholar
Snoek, H., van Goozen, S. H. M., Matthys, W., Sigling, H. O., Koppeschaar, H. P. F., Westenberg, H. G. M., et al. (2002). Serotonergic functioning in children with oppositional defiant disorder: A sumatriptan challenge study. Biological Psychiatry, 51, 319325.Google Scholar
Stadler, C., Sterzer, P., Schmeck, K., Krebs, A., Kleinschmidt, A., & Poustka, F. (2007). Reduced anterior cingulate activation in aggressive children and adolescents during affective stimulation: Association with temperament traits. Journal of Psychiatric Research, 41, 410417.Google Scholar
Sterzer, P., Stadler, C., Krebs, A., Kleinschmidt, A., & Poustka, F. (2005). Abnormal neural responses to emotional stimuli in adolescents with conduct disorder. Biological Psychiatry, 57, 715.Google Scholar
Sterzer, P., Stadler, C., Poustka, F., & Kleinschmidt, A. (2007). A structural neural deficit in adolescents with conduct disorder and its association with lack of empathy. NeuroImage, 37, 335342.Google Scholar
Stoff, D. M., Ieni, J., Friedman, E., Bridger, W. H., Pollock, L., & Vitiello, B. (1991). Platelet 3H-imipramine binding, serotonin reuptake, and plasma alpha 1 acid glycoprotein in disruptive behaviour disorders. Biological Psychiatry, 29, 494498.CrossRefGoogle Scholar
Stringaris, A., & Goodman, R. (2009a). Longitudinal outcome of youth oppositionality: Irritable, headstrong, and hurtful behaviors have distinctive predictions. Journal of the American Academy of Child & Adolescent Psychiatry, 48, 404412.Google Scholar
Stringaris, A., & Goodman, R. (2009b). Three dimensions of oppositionality in youth. Journal of Child Psychology & Psychiatry, 50, 216223.Google Scholar
Taylor, E., Schachar, R., Thorley, G., Wieselberg, H. M., Everitt, B., & Rutter, M. (1987). Which boys respond to stimulant medication? A controlled trial of methylphenidate in boys with disruptive behaviour. Psychological Medicine, 17, 121143.Google Scholar
Thapar, A., Langley, K., Fowler, T., Rice, F., Turic, D., Whittinger, N., et al. (2005). Catechol-O-methyltransferase gene variant and birth weight predict early-onset antisocial behaviour in children with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 62, 12751278.Google Scholar
Turgay, A. (2009). Psychopharmacological treatment of oppositional defiant disorder. CNS Drugs, 23, 117.Google Scholar
Unis, A. S., Cook, E. H., Vincent, J. G., Gjerde, D. K., Perry, B. D., Mason, C., et al. (1997). Platelet serotonin measures in adolescents with conduct disorder. Biological Psychiatry, 42, 553559.Google Scholar
van Bokhoven, I, Matthys, W., van Goozen, S. H. M., & van Engeland, H. (2005). Prediction of adolescent outcome in children with disruptive behaviour disorders: A study of neurobiological, psychological and family factors. European Child and Adolescent Psychiatry, 14, 153163.Google Scholar
van der Vegt, E. J. M., Oostra, B. A., Arias-Vàsquez, A., van der Ende, J., Verhulst, F. C., & Tiemeier, H. (2009). High activity of monoamine oxidase A is associated with externalizing behaviour in maltreated and nonmaltreated adoptees. Psychiatric Genetics, 19, 209211.Google Scholar
van Goozen, S. H., Matthys, W., Cohen-Kettenis, P. T., Westenberg, H., & van Engeland, H. (1999). Plasma monoamine metabolites and aggression: Two studies of normal and oppositional defiant disorder children. European Neuropsychopharmacology, 9, 141147.Google Scholar
van Goozen, S. H. M., Cohen-Kettenis, P. T., Snoek, H., Matthys, W., Swaab-Barneveld, H., & van Engeland, H. (2004). Executive functioning in children: A comparison of hospitalized ODD and ODD/ADHD children and normal controls. Journal of Child Psycholology and Psychiatry, 45, 284292.Google Scholar
van Goozen, S. H. M., & Fairchild, G. (2008). How can the study of biological processes help design new interventions for children with severe antisocial behavior? Development and Psychopathology, 20, 941973.Google Scholar
van Goozen, S. H. M., Fairchild, G., Snoek, H., & Harold, G. T. (2007). The evidence of a neurobiological model of childhood antisocial behavior. Psychological Bulletin, 133, 149182.Google Scholar
van Goozen, S. H. M., Matthys, W., Cohen-Kettenis, P. T., Buitelaar, J. K., & van Engeland, H. (2000). Hypothylamic–pituitary–adrenal axis and autonomic nervous system activity in disruptive children and matched controls. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 14381445.Google Scholar
van Goozen, S. H. M., Matthys, W., Cohen-Kettenis, P. T., Gispen-de Wied, C., Wiegant, V. M., & van Engeland, H. (1998). Salivary cortisol and cardiovascular activity during stress in oppositional-defiant disorder boys and normal controls. Biological Psychiatry, 43, 531539.Google Scholar
van Goozen, S. H. M., Snoek, H., Matthys, W., van Rossum, I., & van Engeland, H. (2004). Evidence of fearlessness in behaviourally disordered children: A study on startle reflex modulation. Journal of Child Psychology and Psychiatry, 45, 884892.Google Scholar
van Honk, J., Hermans, E. J., Putman, P., Montagne, B., & Schutter, D. J. L. G. (2002). Defective somatic markers in sub-clinical psychopathy. NeuroReport, 13, 10251027.Google Scholar
Volkow, N. D., Wang, G. J., Fowler, J. S., Telang, F., Maynard, L., Logan, J., et al. (2004). Evidence that methylphenidate enhances saliency of a mathematical task by increasing dopamine in the human brain. American Journal of Psychiatry, 161, 11731180.Google Scholar
Völm, B. A., de Araujo, I. E., Cowel, P. J., Rolls, E. T., Kringelbach, M. L., Smith, K. A., et al. (2004). Metampetamine activates reward circuitry in drug naïve human subjects. Neuropsychopharmacology, 29, 17151722.Google Scholar
Voorn, P., Vanderschuren, L. J. M. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. A. (2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends in Neurosciences, 27, 468474.Google Scholar
Winterer, G., & Goldman, D. (2003). Genetics of human prefrontal function. Brain Research Review, 43, 134163.Google Scholar