Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T07:06:15.889Z Has data issue: false hasContentIssue false

Neural plasticity and the development of attention: Intrinsic and extrinsic influences

Published online by Cambridge University Press:  06 May 2015

Margaret M. Swingler*
Affiliation:
University of North Carolina at Greensboro
Nicole B. Perry
Affiliation:
University of North Carolina at Greensboro
Susan D. Calkins
Affiliation:
University of North Carolina at Greensboro
*
Address correspondence and reprint requests to:Margaret M. Swingler, University of North Carolina at Greensboro, 248 Stone Building, PO Box 26170, Greensboro, NC 27402; E-mail: [email protected].

Abstract

The development of attention has been strongly linked to the regulation of emotion and behavior and has therefore been of particular interest to researchers aiming to better understand precursors to behavioral maladjustment. In the current paper, we utilize a developmental psychopathology and neural plasticity framework to highlight the importance of both intrinsic (i.e., infant neural functioning) and extrinsic (i.e., caregiver behavior) factors for the development of attentional control across the first year. We begin by highlighting the importance of attention for children's emotion regulation abilities and mental health. We then review the development of attention behavior and underscore the importance of neural development and caregiver behavior for shaping attentional control. Finally, we posit that neural activation associated with the development of the executive attention network may be one mechanism through which maternal caregiving behavior influences the development of infants’ attentional control and subsequent emotion regulation abilities known to be influential to childhood psychopathology.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Pijlman, F. T., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers’ externalizing behavior in a randomized controlled trial. Developmental Psychology, 44, 293300.CrossRefGoogle ScholarPubMed
Beauregard, M., Levesque, J., & Paquette, V. (2004). Neural basis of conscious and voluntary self-regulation of emotion. In Beauregard, M. (Ed.), Consciousness, emotional self-regulation and the brain (pp. 163194). Philadelphia, PA: John Benjamins.CrossRefGoogle Scholar
Beck, A. T. (1976). Cognitive therapy and the emotional disorders. Madison, CT: Meridian.Google Scholar
Bell, M. A. (2001). Brain electrical activity associated with cognitive processing during a looking version of the A-not-B object permanence task. Infancy, 2, 311330.CrossRefGoogle Scholar
Bell, M. A. (2002). Power changes in infant EEG frequency bands during a spatial working memory task. Psychophysiology, 39, 450458.CrossRefGoogle ScholarPubMed
Bell, M. A. (2012). A psychobiological perspective on working memory performance at 8 months of age. Child Development, 83, 251265.CrossRefGoogle ScholarPubMed
Bell, M. A., & Calkins, S. D. (2012). Attentional control and emotion regulation in early development. In Posner, M. I. (Ed.), Cognitive neuroscience of attention (2nd ed., pp. 322330). New York: Guilford Press.Google Scholar
Bell, M. A., & Fox, N. A. (1992). The relations between frontal brain electrical activity and cognitive development during infancy. Child Development, 63, 11421163.CrossRefGoogle ScholarPubMed
Bell, T., Batterink, L., Currin, L., Pakulak, E., Stevens, C., & Neville, H. (2008). Genetic influences on selective auditory attention as indexed by ERPs. Paper presented at the Cognitive Neuroscience Society, San Francisco, CA.Google Scholar
Berger, A., Tzur, G., & Posner, M. I. (2006). Infant brains detect arithmetic errors. Proceedings of the National Academy of Sciences, 103, 1264912653.CrossRefGoogle ScholarPubMed
Black, J. E., & Greenough, W. T. (1986). Induction of pattern in neural structure by experience: Implications for cognitive development. Advances in Developmental Psychology, 4, 150.Google Scholar
Blair, C. (2002). School readiness: Integrating cognition and emotion in a neurobiological conceptualization of children's functioning at school entry. American Psychologist, 57, 111127.CrossRefGoogle Scholar
Bodrova, E., & Leong, D. (2007). Tools of the mind: The Vygotskian approach to early childhood education (2nd ed.). Upper Saddle River, NJ: Pearson Education.Google Scholar
Botwinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624652.CrossRefGoogle Scholar
Braungart-Rieker, J., Garwood, M., Powers, B. P., & Notaro, P. C. (1998). Infant affect and affect regulation during the still-face paradigm with mothers and fathers: The role of infant characteristics and parental sensitivity. Developmental Psychology, 34, 14281437.CrossRefGoogle ScholarPubMed
Bronson, M. B. (2000). Self-regulation in early childhood: Nature and nurture. New York: Guilford Press.Google Scholar
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215222.CrossRefGoogle ScholarPubMed
Calkins, S. D. (1994). Individual differences in the biological aspects of temperament. In Bates, J. E. & Wachs, T. D. (Eds.), Temperament: Individual differences at the interface of biology and behavior (pp. 199217). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Calkins, S. D. (2004). Early attachment process and the development of emotional self-regulation. In Baumeister, R. F. & Vohs, K. D. (Eds.), The handbook of self-regulation. Hillsdale, NJ: Erlbaum.Google Scholar
Calkins, S. D. (2008). The emergence of self-regulation: Biological and behavioral control mechanisms supporting toddler competencies. In Brownell, C. & Kopp, C. (Eds.), Transitions in early socioemotional development: The toddler years. New York: Guilford Press.Google Scholar
Calkins, S. D. (2010). Psychobiological models of adolescent risk: Implications for intervention and prevention. Developmental Psychobiology, 52, 213215.CrossRefGoogle Scholar
Calkins, S. D. (2011). Biopsychosocial models and the study of family processes and child adjustment. Journal of Marriage and Family, 73, 817821.CrossRefGoogle Scholar
Calkins, S. D., & Fox, N. A. (2002). Self-regulatory processes in early personality development: A multilevel approach to the study of childhood social withdrawal and aggression. Development and Psychopathology, 14, 477498.CrossRefGoogle Scholar
Calkins, S. D., Graziano, P. A., Berdan, L. E., Keane, S. P., & Degnan, K. A. (2008). Predicting cardiac vagal regulation in early childhood from maternal–child relationship quality during toddlerhood. Developmental Psychobiology, 50, 751766.CrossRefGoogle ScholarPubMed
Calkins, S. D., & Hill, A. (2007). Caregiver influences on emerging emotion regulation: Biological and environmental transactions in early development. In Gross, J. J. (Ed.), Handbook of emotion regulation (pp. 229248). New York: Guilford Press.Google Scholar
Calkins, S. D., & Johnson, M. C. (1998). Toddler regulation of distress to frustrating events: Temperamental and maternal correlates. Infant Behavior & Development, 21, 379395.CrossRefGoogle Scholar
Calkins, S. D., & Keane, S. P. (2004). Cardiac vagal regulation across the preschool period: Stability, continuity, and implications for childhood adjustment. Developmental Psychobiology, 45, 101112.CrossRefGoogle ScholarPubMed
Calkins, S. D., Smith, C. L., Gill, K. L., & Johnson, M. C. (1998). Maternal interactive style across contexts: Relations to emotional, behavioral, and physiological regulation during toddlerhood. Social Development, 7, 350369.CrossRefGoogle Scholar
Casey, B. J., Castellanos, F., Giedd, J. N., & Marsh, W. L. (1997). Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 374383.CrossRefGoogle ScholarPubMed
Champagne, F., & Meaney, M. J. (2001). Like mother, like daughter: Evidence for non-genomic transmission of parental behavior and stress responsivity. Progress in Brain Research, 133, 287302.CrossRefGoogle ScholarPubMed
Chenault, B., Thomson, J., Abbott, R. D., & Berninger, V. W. (2006). Effects of prior attention training on child dyslexics’ response to composition instruction. Developmental Neuropsychology, 29, 243260.CrossRefGoogle ScholarPubMed
Chugani, H. T., Behan, M. E., Muzik, O., Juhász, C., Nagy, F., & Chugani, D. C. (2001). Local brain functional activity following early deprivation: A study of postinstitutionalized Romanian orphans. NeuroImage, 14, 12901301.CrossRefGoogle ScholarPubMed
Cicchetti, D. (1984). The emergence of developmental psychopathology. Child Development, 55, 17.CrossRefGoogle ScholarPubMed
Cicchetti, D. (1993). Developmental psychopathology: Reactions, reflections, projections. Developmental Review, 13, 471502.CrossRefGoogle Scholar
Cicchetti, D., & Dawson, G. (2002). Editorial: Multiple levels of analysis. Development and Psychopathology, 14, 417420.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Lynch, M. (1995). Failures in the expectable environment and their impact on individual development: The case of child maltreatment. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Vol. 2. Risk, disorder, and adaptation (pp. 3271). Oxford: Wiley.Google Scholar
Cicchetti, D., & Posner, M. I. (2005). Editorial: Cognitive and affective neuroscience and developmental psychopathology. Development and Psychopathology, 17, 569575.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosh, F. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 4, 597600.CrossRefGoogle Scholar
Coan, J. A., & Allen, J. B. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 67, 749.CrossRefGoogle ScholarPubMed
Colombo, J. (2001). The development of visual attention in infancy. Annual Review of Psychology, 52, 337367.CrossRefGoogle ScholarPubMed
Colombo, J. (2002). Infant attention grows up: The emergence of a developmental cognitive neuroscience perspective. Current Directions in Psychological Science, 11, 196200.CrossRefGoogle Scholar
Colombo, J., & Cheatham, C. L. (2006). The emergence and basis of endogenous attention in infancy and early childhood. In Kail, R. V. (Ed.), Advances in child development and behavior (Vol. 34, pp. 283322). San Diego, CA: Elsevier Academic Press.Google Scholar
Colombo, J., Harlan, J. E., & Mitchell, D. W. (1999). The development of look duration in infancy: Evidence for a triphasic course. Poster presented at the annual meeting of the Society for Research in Child Development, Albuquerque, NM.Google Scholar
Colombo, J., Kapa, L., & Curtindale, L. (2010). Varieties of attention in infancy. In Oakes, L. M., Cashon, C. H., Casasola, M., & Rakison, D. H. (Eds.), Infant perception and cognition: Recent advances, emerging theories, and future directions (pp. 326). New York: Oxford University Press.CrossRefGoogle Scholar
Colombo, J., & Mitchell, D. (1990). Individual differences in early visual attention: Fixation time and information processing. In Colombo, J. & Fagen, J. W. (Eds.), Individual differences in infancy: Reliability, stability, prediction (pp. 193227). Hillsdale, NJ: Erlbaum.Google Scholar
Colombo, J., Mitchell, D., Coldren, J. T., & Freeseman, L. J. (1991). Individual differences in infant visual attention: Are short lookers faster processors or feature processors? Child Development, 62, 12471257.CrossRefGoogle ScholarPubMed
Colombo, J., Mitchell, D., O'Brien, M., & Horowitz, F. D. (1987). The stability of visual habituation during the first year of life. Child Development, 58, 474487.CrossRefGoogle ScholarPubMed
Courage, M. L., Reynolds, G. D., & Richards, J. E. (2006). Infants’ attention to patterned stimuli: Developmental change from 3 to 12 months of age. Child Development, 77, 680695.CrossRefGoogle ScholarPubMed
Courchesne, E., Ganz, L., & Norcia, A. M. (1981). Event-related brain potentials to human faces in infants. Child Development, 52, 804811.CrossRefGoogle ScholarPubMed
Crockenberg, S. C., & Leerkes, E. M. (2004). Infant and maternal behaviors regulate infant reactivity to novelty at 6 months. Developmental Psychology, 40, 11231132.CrossRefGoogle ScholarPubMed
Cuevas, K., & Bell, M. (2014). Infant attention and early childhood executive function. Child Development, 85, 397404.CrossRefGoogle ScholarPubMed
Curtis, W., & Cicchetti, D. (2007). Emotion and resilience: A multilevel investigation of hemispheric electroencephalogram asymmetry and emotion regulation in maltreated and nonmaltreated children. Development and Psychopathology, 19, 811840.CrossRefGoogle ScholarPubMed
Davidson, R. J., Jackson, D. C., & Larson, C. L. (2000). Human electroencephalography. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (Eds.), Handbook of psychophysiology (2nd ed., pp. 2752). New York: Cambridge University Press.Google Scholar
Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—A possible prelude to violence. Science, 289, 591594.CrossRefGoogle ScholarPubMed
Davis, E. P., Bruce, J., & Gunnar, M. R. (2002). The anterior attention network: Associations with temperament and neuroendocrine activity in 6-year-old children. Developmental Psychobiology, 40, 4365.CrossRefGoogle Scholar
De Bellis, M. D. (2001). Developmental traumatology: The psychobiological development of maltreated children and its implications for research, treatment, and policy. Development and Psychopathology, 13, 539564.CrossRefGoogle ScholarPubMed
de Haan, M., & Nelson, C. A. (1997). Recognition of the mother's face by six-month-old infants: A neurobehavioral study. Child Development, 68, 187210.Google ScholarPubMed
de Haan, M., & Nelson, C. A. (1999). Brain activity differentiates face and object processing in 6-month-old infants. Developmental Psychology, 35, 11131121.CrossRefGoogle Scholar
Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5, 303305.CrossRefGoogle Scholar
Derryberry, D., & Rothbart, M. K. (1988). Arousal, affect, and attention as components of temperament. Journal of Personality and Social Psychology, 55, 958966.CrossRefGoogle ScholarPubMed
Diamond, A., Barnett, W., Thomas, J., & Munro, S. (2007). Preschool program improves cognitive control. Science, 318, 13871388.CrossRefGoogle ScholarPubMed
Diaz, A., & Bell, M. A. (2011). Information processing efficiency and regulation at five months. Infant Behavior & Development, 34, 239247.CrossRefGoogle ScholarPubMed
Ernst, M., Liebenauer, L. L., King, A. C., Fitzgerald, G. A., Cohen, R. M., & Zametkin, A. J. (1994). Reduced brain metabolism in hyperactive girls. Journal of the American Academy of Child & Adolescent Psychiatry, 33, 858868.CrossRefGoogle ScholarPubMed
Fox, N. A. (1994). Dynamic cerebral processes underlying emotion regulation. Monographs of the Society for Research in Child Development, 59, 152166.CrossRefGoogle ScholarPubMed
Fox, N. A., & Calkins, S. D. (2003). The development of self-control of emotion: Intrinsic and extrinsic influences. Motivation and Emotion, 27, 726.CrossRefGoogle Scholar
Fox, N. A., Henderson, H. A., & Marshall, P. J. (2001). The biology of temperament: An integrative approach. In Nelson, C. A., & Luciana, M. (Eds.), The handbook of developmental cognitive neuroscience (pp. 631645). Cambridge, MA: Springer.Google Scholar
Fox, N. A., Henderson, H. A., Rubin, K. H., Calkins, S. D., & Schmidt, L. A. (2001). Continuity and discontinuity of behavioral inhibition and exuberance: Psychophysiological and behavioral influences across the first four years of life. Child Development, 72, 121.CrossRefGoogle ScholarPubMed
Fox, E., Russo, R., & Dutton, K. (2002). Attentional bias for threat: Evidence for delayed disengagement from emotional faces. Cognition and Emotion, 16, 355379.CrossRefGoogle ScholarPubMed
Francis, D. D., Caldji, C., Champagne, F., Plotsky, P. M., & Meaney, M. J. (1999). The role of corticotropin-releasing factor–norepinephrine systems in mediating the effects of early experience on the development of behavioral and endocrine responses to stress. Biological Psychiatry, 46, 11531166.CrossRefGoogle ScholarPubMed
Frick, J. E., Colombo, J., & Saxon, T. F. (1999). Individual and developmental differences in disengagement of fixation in early infancy. Child Development, 70, 537548.CrossRefGoogle ScholarPubMed
Gao, W., Zhu, H., Giovanello, K. S., Smith, J. K., Shen, D., Gilmore, J. H., et al. (2009). Evidence on the emergence of the brain's default network from 2-week-old to 2-year-old healthy pediatric subjects. Proceedings of the National Academy of Sciences, 106, 67906795.CrossRefGoogle ScholarPubMed
Galkina, N. S., & Boravova, A. I. (1996). The formation of EEG mu- and alpha-rhythms in children during the second–third years of life. Human Physiology, 22, 540545.Google Scholar
Gehring, W. J., & Willoughby, A. R. (2002). Are all medial frontal negativities created equal? Toward a richer empirical basis for theories of action monitoring. In Ullsperger, M. & Falkenstein, M. (Eds.), Errors, conflicts, and the brain: Current opinions on performance monitoring (pp. 1420). Leipzig: Max Planck Institute of Cognitive Neuroscience.Google Scholar
Gianino, A. A., & Tronick, E. Z. (1988). The mutual regulation model: The infant's self and interactive regulation and coping and defensive capacities. In Field, T. M., McCabe, P. M., & Schneiderman, N. (Eds.), Stress and coping across development (pp. 4768). Hillsdale, NJ: Erlbaum.Google Scholar
Goldapple, K., Segal, Z., Garson, C., Lau, M., Bieling, P., Kennedy, S., et al. (2004). Modulation of cortical–limbic pathways in major depression. Archives of General Psychiatry, 61, 3441.CrossRefGoogle ScholarPubMed
Gottlieb, G. (1997). A systems view of psychobiological development. In Magnusson, D. (Ed.), The lifespan development of individuals: Behavioral, neurobiological, and psychosocial perspectives: A synthesis (pp. 76103). New York: Cambridge University Press.Google Scholar
Greenough, W. T., & Black, J. E. (1992). Induction of brain structure by experience: Substrates for cognitive development. In Gunnar, M. R. & Nelson, C. A. (Eds.), Developmental behavioral neuroscience (pp. 155200). Hillsdale, NJ: Erlbaum.Google Scholar
Grolnick, W. S., Bridges, L. J., & Connell, J. P. (1996). Emotion regulation in two-year-olds: Strategies and emotional expression in four contexts. Child Development, 67, 928941.CrossRefGoogle ScholarPubMed
Grossmann, K. E., & Grossmann, K. (1991). Attachment quality as an organizer of emotional and behavioral responses in a longitudinal perspective. In Parkes, C., Stevenson-Hinde, J., & Marris, P. (Eds.), Attachment across the life cycle (pp. 93114). New York: Tavistock/Routledge.Google Scholar
Gunnar, M. R., & Fisher, P. A., & the Early Experience, Stress, and Prevention Network (2006). Bringing basic research on early experience and stress neurobiology to bear on preventive interventions for neglected and maltreated children. Development and Psychopathology, 18, 651677.CrossRefGoogle ScholarPubMed
Guy, M. W., Reynolds, G. D., & Zhang, D. (2013). Visual attention to global and local stimulus properties in 6-month-old infants: Individual differences and event-related potentials. Child Development, 84, 13921406.CrossRefGoogle ScholarPubMed
Haley, D. W., & Stansbury, K. (2003). Infant stress and parent responsiveness: Regulation of physiology and behavior during still-face and reunion. Child Development, 74, 15341546.CrossRefGoogle ScholarPubMed
Hane, A., & Fox, N. A. (2006). Ordinary variations in maternal caregiving influence human infants’ stress reactivity. Psychological Science, 17, 550556.CrossRefGoogle ScholarPubMed
Harman, C., Rothbart, M. K., & Posner, M. I. (1997). Distress and attention interactions in early infancy. Motivation and Emotion, 21, 2743.Google Scholar
Jankowski, J. J., & Rose, S. A. (1997). The distribution of visual attention in infants. Journal of Experimental Child Psychology, 65, 127140.CrossRefGoogle ScholarPubMed
Johnson, M. H., Posner, M. I., & Rothbart, M. K. (1991). Components of visual orienting in early infancy: Contingency learning, anticipatory looking, and disengaging. Journal of Cognitive Neuroscience, 3, 335344.CrossRefGoogle ScholarPubMed
Kagan, J., Snidman, N., Kahn, V., & Towsley, S. (2007). The preservation of two infant temperaments into adolescence. Monographs of the Society for Research in Child Development, 72, 195.Google ScholarPubMed
Keenan, K. (2000). Emotion dysregulation as a risk factor for child psychopathology. Clinical Psychology: Science and Practice, 7, 418434.Google Scholar
Kindt, M., & Van Den Hout, M. (2001). Selective attention and anxiety: A perspective on developmental issues and the causal status. Journal of Psychopathology and Behavioral Assessment, 23, 193202.CrossRefGoogle Scholar
Kogan, N., & Carter, A. S. (1996). Mother–infant reengagement following the still-face: The role of maternal emotional unavailability and infant affect regulation. Infant Behavior & Development, 19, 359370.CrossRefGoogle Scholar
Kopp, C. B. (1982). Antecedents of self-regulation: A developmental perspective. Developmental Psychology, 18, 199214.CrossRefGoogle Scholar
Kopp, C. B. (1989). Regulation of distress and negative emotions: A developmental view. Developmental Psychology, 25, 343354.CrossRefGoogle Scholar
Kopp, C. B. (2002). Commentary: The Codevelopments of attention and emotion regulation. Infancy, 3, 199208.CrossRefGoogle ScholarPubMed
Kopp, C. B., & Neufeld, S. J. (2003). Emotional development during infancy. In Davidson, R. J., Scherer, K. R., & Goldsmith, H. (Eds.), Handbook of affective sciences (pp. 347374). New York: Oxford University Press.Google Scholar
Lane, R. D., & McRae, K. (2004). Neural substrates of conscious emotional experience: A cognitive–neuroscientific perspective. In Beauregard, M. (Ed.), Consciousness, emotional self-regulation and the brain (pp. 87122). Amsterdam: John Benjamins.CrossRefGoogle Scholar
Lang, M., Lang, W., Diekmann, V., & Kornhuber, H.H. (1987). The frontal theta rhythm indicating motor and cognitive learning. Electroencephalography and Clinical Neurophysiology 40(Suppl.), 322327.Google ScholarPubMed
Lansink, J. M., & Richards, J. E. (1997). Heart rate and behavioral measures of attention in six-, nine-, and twelve-month-old infants during object exploration. Child Development, 68, 610620.CrossRefGoogle ScholarPubMed
Luthar, S. S., Cicchetti, D., & Becker, B. (2000). The construct of resilience: A critical evaluation and guidelines for future work. Child Development, 71, 543562.CrossRefGoogle ScholarPubMed
Luu, P., Flaisch, T., & Tucker, D. M. (2000). Medial frontal cortex in action monitoring. Journal of Neuroscience, 20, 464469.CrossRefGoogle ScholarPubMed
Luu, P., & Tucker, D. M. (2004). Self-regulation by the medial frontal cortex: Limbic representation of motive set-points. In Beauregard, M. (Ed.), Consciousness, emotional self-regulation and the brain (pp. 123161). Amsterdam: John Benjamins.CrossRefGoogle Scholar
Markand, O. N. (1990). Alpha rhythms. Journal of Clinical Neurophysiology, 7, 163190.CrossRefGoogle ScholarPubMed
Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113, 11991208.CrossRefGoogle ScholarPubMed
Marshall, P. J., & Fox, N. A. (2004). A comparison of the electroencephalogram between institutionalized and community children in Romania. Journal of Cognitive Neuroscience, 16, 13271338.CrossRefGoogle ScholarPubMed
Maulsby, R. L. (1971). An illustration of emotionally evoked theta rhythm in infancy: Hedonic hypersynchrony. Electroencephalography & Clinical Neurophysiology, 31, 157165.CrossRefGoogle ScholarPubMed
Mayberg, H. S. (2003). Modulating dysfunctional limbic–cortical circuits in depression: Towards development of brain-based algorithms for diagnosis and optimised treatment. British Medical Bulletin, 65, 193207.CrossRefGoogle ScholarPubMed
McEwen, B. (1999). Development of the cerebral cortex: XIII. Stress and brain development: II. Journal of the American Academy of Child & Adolescent Psychiatry, 38, 101103.CrossRefGoogle ScholarPubMed
Mesman, J., van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2009). The many faces of the still-face paradigm: A review and meta-analysis. Developmental Review, 29, 120162.CrossRefGoogle Scholar
Moore, G. A., & Calkins, S. D. (2004). Infants’ vagal withdrawal in the still-face paradigm is related to dyadic coordination of mother–infant interaction. Developmental Psychology, 40, 10681080.CrossRefGoogle Scholar
Morales, M., Mundy, P., Crowson, M. M., Neal, A., & Delgado, C. F. (2005). Individual differences in infant attention skills, joint attention, and emotion regulation behaviour. International Journal of Behavioral Development, 29, 259263.CrossRefGoogle Scholar
Mundy, P., Fox, N., & Card, J. (2003). EEG coherence, joint attention and language development in the second year. Developmental Science, 6, 4854.CrossRefGoogle Scholar
Nelson, C. A. (1994). Neural correlates of recognition memory in the first postnatal year. In Dawson, G. & Fischer, K. W. (Eds.), Human behavior and the developing brain (pp. 269313). New York: Guilford Press.Google Scholar
Nelson, C. A. (2000). The neurobiological bases of early intervention. In Shonkoff, J. P. & Meisels, S. J. (Eds.), Handbook of early childhood intervention (2nd ed., pp. 204227). New York: Cambridge University Press.CrossRefGoogle Scholar
Nelson, C. A., & Bloom, F. E. (1997). Child development and neuroscience. Child Development, 68, 970987.CrossRefGoogle ScholarPubMed
Nelson, C. A., Thomas, K. M., & de Haan, M. (2006). Neural bases of cognitive development. In Kuhn, D., Siegler, R. S., Damon, W., & Lerner, R. M. (Eds.), Handbook of child psychology: Vol. 2. Cognition, perception, and language (6th ed., pp. 357). Hoboken, NJ: Wiley.Google Scholar
Neville, H., Stevens, C., Pakulak, E., Bell, T., Fanning, J., Klein, S., et al. (2013). Family based training program improves brain function, cognition, and behavior in lower socioeconomic status preschoolers. Proceedings of the National Academy of Science. Advance online publication.CrossRefGoogle Scholar
Nikitina, G. M., Stroganova, T. A., & Posikera, I. N. (1987). Central organization of emotional reactions of infants during the first year of life. In Trojan, S. & Stastny, F. (Eds.), Ontogenesis of the brain (pp. 223228). Prague: Universitas Carolina.Google Scholar
Nunez, P. L. (1981). Electric fields of the brain: The neurophysics of EEG. New York: Oxford University Press.Google Scholar
Orekhova, E. V., Stroganova, T. A., & Posikera, I. N. (1999). Theta synchronization during sustained anticipatory attention in infants over the second half of the first year of life. International Journal of Psychophysiology, 32, 151172.CrossRefGoogle ScholarPubMed
Orekhova, E. V., Stroganova, T. A., & Posikera, I. N. (2001). Alpha activity as an index of cortical inhibition during sustained internally controlled attention in infants. Clinical Neurophysiology, 112, 740749.CrossRefGoogle ScholarPubMed
Parasuraman, R. (1998). The attentive brain. Cambridge, MA: MIT Press.Google Scholar
Picton, T. W., Bentin, S. S., Berg, P. P., Donchin, E. E., Hillyard, S. A., Johnson, R., et al. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37, 127152.CrossRefGoogle ScholarPubMed
Pizzagalli, D. A. (2007). Electroencephalography and high-density electrophysiological source localization. In Cacioppo, J., Tassinary, L. G., & Bernston, G. G. (Eds.), Handbook of psychophysiology (Vol. 2, pp. 5684). New York: Cambridge University Press.CrossRefGoogle Scholar
Porges, S. W. (2003). The polyvagal theory: Phylogenetic contributions to social behavior. Physiology & Behavior, 79, 503513.CrossRefGoogle ScholarPubMed
Posner, M. I., & Dehaene, S. (1994). Attentional networks. Trends in Neurosciences, 17, 7579.CrossRefGoogle ScholarPubMed
Posner, M. I., & DiGirolamo, G. J. (1998). Executive attention: Conflict, target detection, and cognitive control. In Parasuraman, R. (Ed.), The attentive brain (pp. 401423). Cambridge, MA: MIT Press.Google Scholar
Posner, M. I., & Fan, J. (2008). Attention as an organ system. In Pomerantz, J. R. (Ed.), Topics in integrative neuroscience (pp. 3161). New York: Cambridge University Press.CrossRefGoogle Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542.CrossRefGoogle ScholarPubMed
Posner, M. I., & Rothbart, M. K. (1994). Attentional regulation: From mechanism to culture. In Bertelson, P., Eelen, P., & Ydewalle, G. (Eds.), International perspectives on psychological science: Leading themes (pp. 4155). East Sussex: Psychology Press.Google Scholar
Posner, M. I., & Rothbart, M. K. (1998). Summary and commentary: Developing attentional skills. In Richards, J. E. (Ed.), Cognitive neuroscience of attention: A developmental perspective (pp. 317323). Mahwah, NJ: Erlbaum.Google Scholar
Posner, M. I., & Rothbart, M. K. (2000). Developing mechanisms of self-regulation. Development and Psychopathology, 12, 427441.CrossRefGoogle Scholar
Posner, M. I., & Rothbart, M. K. (2009). Toward a physical basis of attention and self-regulation. Physics of Life Reviews, 6, 103120.CrossRefGoogle Scholar
Posner, M. I., Rothbart, M. K., Sheese, B. E., & Tang, Y. (2007). The anterior cingulate gyrus and the mechanism of self-regulation. Cognitive, Affective, & Behavioral Neuroscience, 7, 391395.CrossRefGoogle ScholarPubMed
Posner, M. I., Rothbart, M. K., Sheese, B. E., & Voelker, P. (2012). Control networks and neuromodulators of early development. Developmental Psychology, 48, 827835.CrossRefGoogle ScholarPubMed
Potts, G. F., Martin, L. E., Burton, P., & Montague, P. (2006). When things are better or worse than expected: The medial frontal cortex and the allocation of processing resources. Journal of Cognitive Neuroscience, 18, 11121119.CrossRefGoogle ScholarPubMed
Propper, C., & Moore, G. A. (2006). The influence of parenting on infant emotionality: A multilevel psychobiological perspective. Developmental Review, 26, 427460.CrossRefGoogle Scholar
Ray, W. J., & Cole, H. W. (1985). EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science, 228, 750752.CrossRefGoogle ScholarPubMed
Reynolds, G. D., Courage, M. L., & Richards, J. E. (2010). Infant attention and visual preferences: Converging evidence from behavior, event-related potentials, and cortical source localization. Developmental Psychology, 46, 886904.CrossRefGoogle ScholarPubMed
Reynolds, G. D., Guy, M. W., & Zhang, D. (2011). Neural correlates of individual differences in infant visual attention and recognition memory. Infancy, 16, 368391.CrossRefGoogle ScholarPubMed
Reynolds, G. D., & Richards, J. E. (2005). Familiarization, attention, and recognition memory in infancy: An event-related potential and cortical source localization study. Developmental Psychology, 41, 598615.CrossRefGoogle ScholarPubMed
Richards, J. E. (2003a). Attention affects the recognition of briefly presented visual stimuli in infants: An ERP study. Developmental Science, 6, 312328.CrossRefGoogle ScholarPubMed
Richards, J. E. (2003b). Cortical sources of event-related potentials in the prosaccade and antisaccade task. Psychophysiology, 40, 878894.CrossRefGoogle ScholarPubMed
Richards, J. E., & Casey, B. J. (1990). Infant visual recognition memory performance as a function of heart rate defined phases of attention. Infant Behavior & Development, 13, 585.Google Scholar
Richards, J. E., Reynolds, G. D., & Courage, M. L. (2010). The neural bases of infant attention. Current Directions in Psychological Science, 19, 4146.CrossRefGoogle ScholarPubMed
Rothbart, M. K. (1981). Measurement of temperament in infancy. Child Development, 52, 569578.CrossRefGoogle Scholar
Rothbart, M. K. (1986). Longitudinal observation of infant temperament. Developmental Psychology, 22, 356.CrossRefGoogle Scholar
Rothbart, M. K., & Bates, J. E. (1998). Temperament. In Eisenberg, N. (Ed.), Handbook of child psychology: Vol. 3. Social, emotional, and personality development (5th ed., pp. 105176). New York: Wiley.Google Scholar
Rothbart, M. K., & Posner, M. I. (2006). Temperament, attention, and developmental psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Vol 2. Developmental neuroscience (2nd ed., pp. 465501). Hoboken, NJ: Wiley.Google Scholar
Rothbart, M. K., Posner, M. I., & Boylan, A. (1990). Regulatory mechanisms in infant development. In Enns, J. T. (Ed.), The development of attention: Research and theory (pp. 4766). Oxford: North–Holland.CrossRefGoogle Scholar
Rothbart, M. K., Posner, M. I., & Rosicky, J. (1994). Orienting in normal and pathological development. Development and Psychopathology, 6, 635652.CrossRefGoogle Scholar
Rothbart, M. K., Sheese, B. E., & Posner, M. I. (2007). Executive attention and effortful control: Linking temperament, brain networks, and genes. Child Development Perspectives, 1, 27.CrossRefGoogle Scholar
Rubia, K., Halari, R., Smith, A., Mohammed, M., Scott, S., Giampietro, V., et al. (2008). Dissociated functional brain abnormalities of inhibition in boys with pure conduct disorder and in boys with pure attention deficit hyperactivity disorder. American Journal of Psychiatry, 165, 889897.CrossRefGoogle ScholarPubMed
Rueda, M., Posner, M. I., & Rothbart, M. K. (2005). The development of executive attention: Contributions to the emergence of self-regulation. Developmental Neuropsychology, 28, 573594.CrossRefGoogle Scholar
Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., & Posner, M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Proceedings of the National Academy of Sciences, 102, 1493114936.CrossRefGoogle ScholarPubMed
Ruff, H., & Rothbart, M. (1996). Attention in early development: Themes and variations. New York: Oxford University Press.Google Scholar
Rutter, M., & O'Connor, T. G. (2004). Are there biological programming effects for psychological development? Findings from a study of Romanian adoptees. Developmental Psychology, 40, 8194.CrossRefGoogle ScholarPubMed
Sameroff, A. (2010). A unified theory of development: A dialectic integration of nature and nurture. Child Development, 81, 622.CrossRefGoogle ScholarPubMed
Sanders, L. D., Stevens, C., Coch, D., & Neville, H. J. (2006). Selective auditory attention in 3- to 5-year-old children: An event-related potential study. Neuropsychologia, 44, 21262138.CrossRefGoogle ScholarPubMed
Sheese, B. E., Voelker, P. M., Rothbart, M. K., & Posner, M. I. (2007). Parenting quality interacts with genetic variation in dopamine receptor D4 to influence temperament in early childhood. Development and Psychopathology, 19, 10391046.CrossRefGoogle ScholarPubMed
Shonkoff, J. P. (2010). Building a new biodevelopmental framework to guide the future of early childhood policy. Child Development, 81, 357367.CrossRefGoogle ScholarPubMed
Silk, J. S., Shaw, D. S., Skuban, E. M., Oland, A. A., & Kovacs, M. (2006). Emotion regulation strategies in offspring of childhood-onset depressed mothers. Journal of Child Psychology and Psychiatry, 47, 6978.CrossRefGoogle ScholarPubMed
Singer, W. (1995). Development and plasticity of cortical processing architectures. Science, 270, 758764.CrossRefGoogle ScholarPubMed
Smith, A., Taylor, E., Brammer, M., Toone, B., & Rubia, K. (2006). Task-specific hypoactivation in prefrontal and temporoparietal brain regions during motor inhibition and task switching in medication-naive children and adolescents with attention deficit hyperactivity disorder. American Journal of Psychiatry, 163, 10441051.CrossRefGoogle ScholarPubMed
Spinrad, T. L., & Stifter, C. A. (2002). Maternal sensitivity and infant emotional reactivity: Concurrent and longitudinal relations. Marriage & Family Review, 34, 243263.CrossRefGoogle Scholar
Sroufe, L., & Rutter, M. (1984). The domain of developmental psychopathology. Child Development, 55, 1729.CrossRefGoogle ScholarPubMed
Stevens, C., Coch, D., Sanders, L., & Neville, H. (2008). Neural mechanisms of selective auditory attention are enhanced by computerized training: Electrophysiological evidence from language-impaired and typically developing children. Brain Research, 1205, 5569.CrossRefGoogle ScholarPubMed
Stevens, C., Harn, B., Chard, D., Currin, J., Parisi, D., & Neville, H. (2013). Examining the role of attention and instruction in at-risk kindergarteners: Electrophysiological measures of selective auditory attention before and after an early literacy intervention. Journal of Learning Disabilities, 46, 7386.CrossRefGoogle ScholarPubMed
Stevens, C., & Neville, H. (2013). Specificity of experiential effects in neurocognitive development. In Gazzaniga, M. S. (Ed.), The new cognitive neurosciences (5th ed., pp. 221). Cambridge, MA: MIT Press.Google Scholar
Stevens, C., Sanders, L., & Neville, H. (2006). Neurophysiological evidence for selective auditory attention deficits in children with specific language impairment. Brain Research, 1111, 143152.CrossRefGoogle ScholarPubMed
Striano, T., Reid, V. M., & Hoehl, S. (2006). Neural mechanisms of joint attention in infancy. European Journal of Neuroscience, 23, 28192823. doi:10.1111/j.1460-9568.2006.04822.xCrossRefGoogle ScholarPubMed
Stroganova, T. A., Orekhova, E. V., & Posikera, I. N. (1998). Externally and internally controlled attention in infants: An EEG study. International Journal of Psychophysiology, 30, 339351.CrossRefGoogle ScholarPubMed
Stroganova, T. A., Orekhova, E. V., & Posikera, I. N. (1999). EEG alpha rhythm in infants. Clinical Neurophysiology, 110, 9971012.CrossRefGoogle ScholarPubMed
Stroganova, T. A., & Posikera, I. N. (1993). Functional organisation of behavioural states in wakefulness during infancy (EEG study). In Adrianov, O. S. (Ed.), Brain and behaviour in infancy (pp. 78166). Moscow: IPRAN Press.Google Scholar
Swanson, J. M., Posner, M., Potkin, S. G., Bonforte, S., Youpa, D., & Cantwell, D. et al. (1991). Activating tasks for the study of visual–spatial attention in ADHD children: A cognitive anatomic approach. Journal of Child Neurology, 6, S119S127.CrossRefGoogle Scholar
Swingler, M. M., Perry, N. B, Calkins, S. D., & Bell, M. A. (in press). Maternal sensitivity and infant response to frustration: The moderating role of EEG asymmetry. Infant Behavior & Development.Google Scholar
Thatcher, R. W. (1994). Cyclic cortical reorganization: Origins of human cognitive development. In Dawson, G. & Fischer, K. W. (Eds.), Human behavior and the developing brain (pp. 232266). New York: Guilford Press.Google Scholar
Thatcher, R. W., Krause, P. J., & Hrybyk, M. M. (1986). Cortico-cortical associations and EEG coherence: A two-compartmental model. Electroencephalography & Clinical Neurophysiology, 64, 123143.CrossRefGoogle ScholarPubMed
Thompson, R. A., & Goodvin, R. (2007). Taming the tempest in the teapot: Emotion regulation in toddlers. In Brownell, C. A. & Kopp, C. B. (Eds.), Socioemotional development in the toddler years: Transitions and transformations (pp. 320341). New York: Guilford Press.Google Scholar
Thompson, R. A., Lewis, M. D., & Calkins, S. D. (2008). Reassessing emotion regulation. Child Development Perspectives, 2, 124131.CrossRefGoogle Scholar
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749750.CrossRefGoogle ScholarPubMed
Yamada, Y., Stevens, C., Harn, B., Chard, D., & Neville, H. (2011). Emergence of the neural network for reading in five-year-old beginning readers of different levels of early literacy abilities: An fMRI study. NeuroImage, 57, 704713.CrossRefGoogle Scholar
Yeung, N., Holroyd, C. B., & Cohen, J. D. (2005). ERP correlates of feedback and reward processing in the presence and absence of response choice. Cerebral Cortex, 15, 535544.CrossRefGoogle ScholarPubMed