Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-22T08:03:34.062Z Has data issue: false hasContentIssue false

Neural activity-dependent brain changes in development: Implications for psychopathology

Published online by Cambridge University Press:  31 October 2008

Eric Courchesne*
Affiliation:
Neurosciences Department, School of Medicine, University of California at San Diego Neuropsychology Research Laboratory, Children's Hospital
Heather Chisum
Affiliation:
Neuropsychology Research Laboratory, Children's Hospital
Jeanne Townsend
Affiliation:
Neurosciences Department, School of Medicine, University of California at San Diego Neuropsychology Research Laboratory, Children's Hospital
*
Address correspondence and reprint requests to: Eric Courchesne, Neuropsychology Research Laboratory, Children's Hospital, 3020 Children's Way, San Diego, CA 92123.

Abstract

In this paper we discuss the contribution of neural activity-dependent factors to shaping the brain in normal and pathologic development, and we discuss factors that determine the likelihood of recovery from the experience of abnormal neural activity during development.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akshoomoff, N. A., & Courchesne, E. (1992). A new role of the cerebellum in cognitive operations. Behavioral Neuroscience, 106, 731738.CrossRefGoogle ScholarPubMed
Akshoomoff, N. A., & Courchesne, E. (1994). Intramodality shifting attention in children with damage to the cerebellum. Journal of Cognitive Neuroscience, 6, 388399.CrossRefGoogle Scholar
Altman, J. (1982). Morphological development of the rat cerebellum and some of its mechanisms. In Palay, S. L. & Chan-Palay, V. (Eds.), The cerebellum—New vistas (pp. 849). New York: Springer-Verlag.CrossRefGoogle Scholar
Antonini, A., & Stryker, M. P. (1992). Morphological changes of single geniculocortical axons in the cat visual cortex during normal development and in the absence of retinal activity. Investigative Ophthalmology and Visual Science, 33, 1217.Google Scholar
Arin, D. M., Bauman, M. L., & Kemper, T. L. (1991). The distribution of Purkinje cell loss in the cerebellum in autism. Neurology, 41(Suppl. 1), 307.Google Scholar
Attig, E., Botez, M. I., Hublet, C., Vervonck, C., Jacquy, J., & Capon, A. (1991). Diaschisis cerebral croise par lesion cerebelleuse: Role du cervelet dans les fontions mentales [Cerebral crossed diaschisis caused by cerebellar lesion: Role of the cerebellum in mental functions]. Revue Neurologique, 147(3), 200207.Google Scholar
Bakeman, R., & Adamson, L. B. (1984). Coordinating attention to people and objects in mother-infant and peer-infant interaction. Child Development, 55, 12781289.CrossRefGoogle ScholarPubMed
Bauman, M. L. (1991). Microscopic neuroanatomic abnormalities in autism. Pediatrics, 87, 791796.CrossRefGoogle ScholarPubMed
Bauman, M. L., & Kemper, T. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35, 866874.CrossRefGoogle ScholarPubMed
Bauman, M. L., & Kemper, T. L. (1986). Developmental cerebellar abnormalities: A consistent finding in early infantile autism. Neurology, 36(Suppl. 1), 190.Google Scholar
Bauman, M. L., & Kemper, T. L. (1990). Limbic and cerebellar abnormalities are also present in an autistic child of normal intelligence. Neurology, 40(Suppl. 1), 359.Google Scholar
Bauman, M. L., & Kemper, T. L. (1994). Theneurobiology of autism. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Botez, M. I., Leveille, J., Lambert, R., & Botez, T. (1991). Single photon emission computed tomography (SPECT) in cerebellar disease: Cerebello-cerebral diaschisis. European Neurology, 31(6), 405412.CrossRefGoogle ScholarPubMed
Bruner, J. (1975). The ontogenesis of speech acts. Journal of Child Language, 2, 119.CrossRefGoogle Scholar
Bryson, S. E., Wainwright-Sharp, J. A., & Smith, I. M. (1990). Autism: A developmental spatial neglect syndrome? In Enns, J. T. (Ed.), The development of attention: Research and theory (pp. 405427). North-Holland: Elsevier Science Publishers.CrossRefGoogle Scholar
Changeux, J. P., & Danchin, A. (1976). Selective stabilisation of developing synapses as a mechanism for the specification of neural networks. Nature (London), 264, 705712.CrossRefGoogle Scholar
Choi, D. W. (1992). Bench to bedside: The glutamate connection. Science, 258, 241243.CrossRefGoogle ScholarPubMed
Ciesielski, K. T., Allen, P. S., Sinclair, B. D., Pabst, H. F., Yanossky, R., & Ludwig, R. N. (1990). Hypoplasia of cerebellar vermis in autism and childhood leukemia. Proceedings of the 5th International Child Neurology Congress,Tokyo.Google Scholar
Courchesne, E., Press, G. A., & Yeung-Courchesne, R. (1993). Parietal lobe abnormalities detected on magnetic resonance images of patients with infantile autism. American Journal of Koentgenology, 160, 387393.CrossRefGoogle ScholarPubMed
Courchesne, E., Saitoh, O., Yeung-Courchesne, R., Press, G. A., Lincoln, A. J., Haas, R. H., & Schreibman, L. (1994a). Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: Identification of hypoplastic and hyper-plastic subgroups by MR imaging. American Journal of Roentgenology, 162, 123130.CrossRefGoogle Scholar
Courchesne, E., Townsend, J., Akshoomoff, N. A., Saitoh, O., Yeung-Courchesne, R., Lincoln, A. J., James, H., Haas, R., Schreibman, L., & Lau, L. (1994b). Impairment in shifting attention in autistic and cerebellar patients. Behavioral Neuroscience, 108, 118.CrossRefGoogle ScholarPubMed
Courchesne, E., Townsend, J., Akshoomoff, N. A., Yeung-Courchesne, R., Press, G., Murakami, J., Lincoln, A., James, H., Saitoh, O., Haas, R., & Schreibman, L. (1994c). A new finding: Impairment in shifting attention in autistic and cerebellar patients. In Broman, S. H. & Grafman, J. (Eds.), A typical cognitive deficits in developmental disorders: Implications for brain function (pp. 103137). Hillsdale, NJ:Erlbaum.Google Scholar
Courchesne, E., Townsend, J., & Saitoh, O. (1994). The brain in infantile autism: Posterior fossa structures are abnormal. Neurology, 44, 214223.CrossRefGoogle ScholarPubMed
Courchesne, E., Yeung-Courchesne, R., Press, G. T. A., Hesselink, J. R., & Jernigan, T. L. (1988). Hypoplasia of cerebellar lobules VI and VII in infantile autism. New England Journal of Medicine, 318, 13491354.CrossRefGoogle Scholar
Cowan, W. M. (1981). The development of the vertebrate central nervous system: An overview. In Garrod, D. R. & Fellman, J. D. (Eds.), Development in the nervous system (pp. 133). New York: Cambridge University Press.Google Scholar
Crepel, F. (1982). Regression of functional synapses in the immature mammalian cerebellum. Trends in Neurosciences, 5, 266269.CrossRefGoogle Scholar
Cynader, M., Timney, B. N., & Mitchell, D. E. (1980). Period of susceptibility of kitten visual cortex to the effects of monocular deprivation extends beyond six months of age. Brain Research, 191, 545550.CrossRefGoogle Scholar
Daw, N. W., Fox, K., Sato, H., & Czepita, D. (1992). Critical period for monocular deprivation in the cat visual cortex. Journal of Neurophysiology, 67, 197202.CrossRefGoogle ScholarPubMed
Dehay, C., Horsburgh, G., Berland, M., Killackey, H., & Kennedy, H. (1989). Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input. Nature (London), 337, 265267.CrossRefGoogle ScholarPubMed
Duffy, F. H., Snodgrass, S. R., Burchfiel, J. L., & Conway, J. L. (1976). Bicuculline reversal of deprivation amblyopia in the cat. Nature (London), 260, 256257.CrossRefGoogle ScholarPubMed
Egaas, B., Courchesne, E., & Saitoh, O. (in press). Reduced size of corpus callosum in autism. Archives of Neurology.Google Scholar
Friedlander, M. J., Martin, K. A. C., & Wassenhove-McCarthy, D. (1991). Effects of monocular visual deprivation on geniculocortical innervation of Area 18 in cat. The Journal of Neuroscience, 11, 32683288.CrossRefGoogle ScholarPubMed
Frith, U. (1989). A new look at language and communication in autism. British Journal of Disorders of Communication, 24, 123150.CrossRefGoogle Scholar
Frith, U., Scares, I., & Wing, L. (1993). Research into the earliest detectable signs of autism: What the parents say. Communication, 23, 1718.Google Scholar
Gaffney, G. R., Tsai, L. Y., Kuperman, S., & Minchin, S. (1987). Cerebellar structure in autism. American Journal of Diseases in Children, 141, 13301332.Google ScholarPubMed
Galli, L., & Maffei, L. (1988). Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science, 242, 9091.CrossRefGoogle ScholarPubMed
Garber, H. J., & Ritvo, E. R. (1992). Magnetic resonance imaging of the posterior fossa in autistic adults. American Journal of Psychiatry, 149, 245247.Google ScholarPubMed
Garber, H. J., Ritvo, E. R., Chui, L. C., Griswold, V. J., Kashanian, A., & Oldendorf, W. H. (1989). A magnetic resonance imaging study of autism: Normal fourth ventricle size and absence of pathology. American Journal of Psychiatry, 146, 532535.Google ScholarPubMed
Giffin, F., & Mitchell, D. E. (1978). The rate of recovery of vision after early monocular deprivation in kittens. Journal of Physiology, 274, 511537.CrossRefGoogle ScholarPubMed
Gilbert, C. D. (1993). Rapid dynamic changes in adult cerebral cortex. Current Opinion in Neurobiology, 3, 100103.CrossRefGoogle ScholarPubMed
Gordon, W. (1992). Neurotoxic theory of infantile autism. In Naruse, H. & Ornitz, E. M. (Eds.), Neurobiology of infantile autism (pp. 373376). New York: Elsevier.Google Scholar
Gramsbergen, A., & Ijkema-Paassen, J. (1984). Cerebellar hemispherectomy at young ages in rats. In Bloedel, J. R., Dichgans, J., & Precht, W. (Eds.), Cerebellar functions (pp. 164167). New York: Springer-Verlag.CrossRefGoogle Scholar
Hashimoto, T., Tayama, M., Murakawa, K., Yoshimoto, T., Miyazaki, M., Harada, M., & Kuroda, Y. (in press). Development of the brainstem and cerebellum in autistic patients. Journal of Autism and Developmental Disorders.Google Scholar
Heumann, D., & Leuba, G. (1983). Neuronal death in the development and aging of the cerebral cortex of the mouse. Neuropathology and Applied Neurobiology, 9, 297311.CrossRefGoogle ScholarPubMed
Hockfield, S., & Kalb, R. G. (1993). Activity-dependent structural changes during neuronal development. Current Opinion in Neurobiology, 3, 8792.CrossRefGoogle ScholarPubMed
Holttum, J. R., Minshew, N. J., Sanders, R. S., & Phillips, N. E. (1992). Magnetic resonance imaging of the posterior fossa in autism. Biological Psychiatry, 32, 10911101.CrossRefGoogle ScholarPubMed
Horwitz, B., Rumsey, J., Grady, C., & Rapoport, S. (1988). The cerebral metabolic landscape in autism. Archives of Neurology, 45, 749755.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex – Developmental changes and effects of aging. Brain Research, 163, 195205.Google ScholarPubMed
Jenkins, W., Merzenich, M., & Recanzone, G. (1990). Neocortical representational dynamics in adult primates: Implications for neuropsychology. Neuropsychologia, 6, 573584.CrossRefGoogle Scholar
Kandel, E. R., & Jessell, T. (1991). Early experience and the fine tuning of synaptic connections. In Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (Eds.), Principles of neural science (pp. 945958). New York: Elsevier.Google Scholar
Katz, L. C. (1993). Coordinate activity in retinal and cortical development. Current Opinion in Neurobiology, 3, 9399.CrossRefGoogle ScholarPubMed
Killackey, H. P. (1990). Neocortical expansion: An attempt toward relating phylogeny and ontogeny. Journal of Cognitive Neuroscience, 2, 117.CrossRefGoogle ScholarPubMed
Kimura, S., Nakamura, H., Matsumura, K., Morohashi, S., Ueoka, Y., Hasegawa, A., & Yonekura, Y. (1989). Crossed “cerebral” diaschisis? Seven cases with unilateral cerebellar vascular lesion which showed decreased perfusion in the contralateral cerebral cortex. Kaku Igaku Japanese Journal of Nuclear Medicine, 26(10), 12591266.Google ScholarPubMed
Kleiman, M. D., Neff, S., & Rosman, N. P. (1992). The brain of infantile autism: Are posterior fossa structures abnormal? Neurology, 42, 753760.CrossRefGoogle ScholarPubMed
Landry, S. H., & Loveland, K. A. (1988). Communication behaviors in autism and developmental language delay. Journal of Child Psychology and Psychiatry and Allied Disciplines, 29, 621634.CrossRefGoogle ScholarPubMed
Lovaas, O. I., Koegel, R. L., & Schreibman, L. (1979). Stimulus overselectivity in autism: A review of research. Psychological Bulletin, 86, 12361254.CrossRefGoogle ScholarPubMed
Lovaas, O. I., Schreibman, L., Koegel, R. L., & Rehm, R. (1971). Selective responding by autistic children to multiple sensory input. Journal of Abnormal Psychology, 77, 211222.CrossRefGoogle ScholarPubMed
Loveland, K., & Landry, S. (1986). Joint attention and language in autism and developmental language delay. Journal of Autism and Developmental Disorders, 16, 335349.CrossRefGoogle ScholarPubMed
McArdle, C. B., Richardson, C. J., Nicholas, D. A., Mirfakhraee, M., Hayden, C. K., & Amparo, E. G. (1987). Developmental features of the neonatal brain: MR imaging part II. Ventricular size and extracerebral space. Radiology, 162, 230234.CrossRefGoogle ScholarPubMed
Meister, M., Wong, R. O. L., Baylor, D. A., & Shatz, C. J. (1990). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science, 252, 939943.CrossRefGoogle Scholar
Mesulam, M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10, 309325.CrossRefGoogle Scholar
Mesulam, M. (1983). The functional anatomy and hemispheric specialization for directed attention. The role of the parietal lobe and its connectivity. Trends in Neuroscience, 6, 384387.CrossRefGoogle Scholar
Mitchell, D. E. (1988). The extent of visual recovery from early monocular or binocular visual deprivation in kittens. Journal of Physiology, 395, 639660.CrossRefGoogle ScholarPubMed
Mitchell, D. E., & Murphy, K. M. (1984). The effectiveness of reverse occlusion as a means of promoting visual recovery in monocularly deprived kittens. In Stone, J., Dreher, B., & Rapaport, D. H. (Eds.), Development of visual pathways in mammals (pp. 381392). New York: Alan R. Liss.Google Scholar
Mitchell, D. E., Murphy, K. M., Dzioba, H. A., & Home, J. A. (1986). Optimization of visual recovery from early monocular deprivation in kittens: Implications for occlusion therapy in the treatment of amblyopia. Clinical Vision Sciences, 1, 173177.Google Scholar
Moore, C., & Corkum, V. (in press). Social understanding at the end of the first year of life. Developmental Review.Google Scholar
Movshon, J. A., & Kiopes, L. (1990). The role of experience in visual development. In Coleman, J. R. (Ed.), Development of sensory systems in mammals (pp. 155202). New York: John Wiley & Sons.Google Scholar
Mullen, R. J., Eicher, E. M., & Sidman, R. L. (1976). Purkinje cell degeneration, a new neurological mutation in the mouse. Proceeding of the National Academy of Sciences, 73, 208212.CrossRefGoogle ScholarPubMed
Mundy, P., Sigman, M., & Kasari, C. (1990). A longitudinal study of joint attention and language development in autistic children. Journal of Autism and Developmental Disorders, 20, 115128.CrossRefGoogle ScholarPubMed
Mundy, P., Sigman, M., Ungerer, J., & Sherman, T. (1986). Defining the social deficits of autism: The contribution of nonverbal communication measures. Journal of Child Psychology and Psychiatry and Allied Disciplines, 27, 657669.CrossRefGoogle ScholarPubMed
Murakami, J. W., Courchesne, E., Press, G. A., Yeung-Courchesne, R., & Hesselink, J. R. (1989). Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Archives of Neurology, 46, 689694.CrossRefGoogle ScholarPubMed
Neville, H. (1991). Neurobiology of cognitive and language processing: Effects of early experience. In Gibson, K. R. & Petersen, A. C. (Eds.), Brain maturation and cognitive development: Comparative and cross-cultural perspectives (pp. 355380). New York: Aldine de Gruyter Press.Google Scholar
Newman, P. P., & Reza, H. (1979). Functional relationships between the hippocampus and the cerebellum: An electrophysiological study of the cat. Journal of Physiology (London), 287, 405426.CrossRefGoogle ScholarPubMed
O'Leary, D. D. M. (1989). Do cortical areas emerge from a protocortex? Trends in Neuroscience, 12, 400406.CrossRefGoogle ScholarPubMed
O'Leary, D. D. M., & Koester, S. E. (1993). Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex. Neuron, 10, 9911006.CrossRefGoogle ScholarPubMed
Pettegrew, J. W., & Minshew, N. J. (1992). Molecular insights into schizophrenia. Journal of Neural Transmission, Supplementum, 36, 2340.Google ScholarPubMed
Piven, J., Nehme, E., Simon, J., Barta, P., Pearlson, G., & Folstein, S. E. (1992). Magnetic resonance imaging in autism: Measurement of the cerebellum pons and fourth ventricle. Biological Psychiatry, 31, 491504.CrossRefGoogle ScholarPubMed
Rakic, P. (1981). Development of visual centers in the primate brain depends on binocular competition before birth. Science, 214, 928931.CrossRefGoogle ScholarPubMed
Rakic, P. (1984). Defective cell-to-cell interactions as causes of brain malformations. In Gollin, E. S. (Ed.), Malformations of development: Biological and psychological sources and consequences (pp. 239285). New York: Academic Press.Google Scholar
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170176.CrossRefGoogle ScholarPubMed
Ritvo, E. R., Freeman, B. J., Scheibel, A. B., Duong, T., Robinson, H., Guthrie, D., & Ritvo, A. (1986). Lower Purkinje cell counts in the cerebella of four autistic subjects: Initial findings of the UCLANSAC autopsy research report. American Journal of Psychiatry, 143, 862866.Google ScholarPubMed
Rosenzweig, M. R., Bennett, E. L., & Alberti, M. (1984). Multiple effects of lesions on brain structure in young rats. In Finger, S. & Almli, C. R. (Eds.), Early brain damage: Vol. 2. Neurobiology and behavior (pp. 4970). New York: Academic Press.CrossRefGoogle Scholar
Rousseaux, M., & Steinling, M. (1992). Crossed hemispheric diaschisis in unilateral cerebellar lesions. Stroke, 23(4), 511514.CrossRefGoogle ScholarPubMed
Saitoh, O., Courchesne, E., Egaas, B., Lincoln, A. J., & Schreibman, L. (in press). Cross-sectional area of the posterior hippocampus in autistic patients with cerebellar and corpus callosum abnormalities. Neurology.Google Scholar
Sanes, J. N., Wang, J., & Donoghue, J. P. (1992). Immediate and delayed changes of rat motor cortical output representation with new forelimb configurations. Cerebral Cortex, 2, 141152.CrossRefGoogle ScholarPubMed
Schneider, G. E. (1979). It is really better to have your brain lesion early? A revision of the “Kennard Principle.” Neuropsychologia, 17, 557583.CrossRefGoogle Scholar
Schreibman, L., & Lovaas, O. I. (1973). Overselective response to social stimuli by autistic children. Journal of Abnormal Child Psychology, 1, 152168.CrossRefGoogle ScholarPubMed
Seo, M. L., & Ito, M. (1987). Reorganization of rat vibrissa barrelfield as studied by cortical lesioning on different postnatal days. Experimental Brain Research, 65, 251260.CrossRefGoogle ScholarPubMed
Sidman, R. L., & Green, M. C. (1970). “Nervous,” a new mutant mouse with cerebellar disease. In Sabourdy, M. (Ed.), Les mutants pathologiques chez I'animal, leur interetpour la recherche biomedicale (pp. 6979). Paris: Editions du Centre National de la Recherche Scientifique.Google Scholar
Siegler, R. S. (1989). Mechanisms of cognitive development. Annual Review of Psychology, 40, 353379.CrossRefGoogle ScholarPubMed
Sigman, M., Ungerer, J. A., Mundy, P., & Sherman, T. (1987). Cognition in autistic children. In Cohen & Donnellan, A. M. (Eds.), Handbook of autism and pervasive developmental disorders (pp. 103120). New York: John Wiley & Sons.Google Scholar
Smith, D. C., & Holdefer, R. N. (1985). Binocular competitive interaction and recovery of visual acuity in long-term monocularly deprived cats. Vision Research, 25, 17831794.CrossRefGoogle ScholarPubMed
Sotelo, C., & Alvarado-Mallart, R. M. (1991). The reconstruction of cerebellar circuits. Trends in Neuroscience, 14, 350355.CrossRefGoogle ScholarPubMed
Sretevan, B. W., & Shatz, C. J. (1986). Prenatal development of retinal ganglion cell axons: Segregation into eye-specific layers. The Journal of Neuroscience, 6, 234251.CrossRefGoogle Scholar
Stryker, M. P. (1990). Summary: The brain in 1990. Cold Spring Harbor Symposia on Quantitative Biology, LV, 10491067.CrossRefGoogle Scholar
Stryker, M. P., & Harris, W. A. (1986). Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. The Journal of Neuroscience, 6, 21172133.CrossRefGoogle ScholarPubMed
Townsend, J. (1992). Abnormalities of brain structure and function underlying the distribution of visual attention in autism. Dissertation Abstracts International, 53, 1993.Google Scholar
Townsend, J., & Courchesne, E. (1994a). Parietal damage and narrow “spotlight” spatial attention. Journal of Cognitive Neurosciences, 6(3), 218230.CrossRefGoogle ScholarPubMed
Townsend, J., & Courchesne, E. (1994b). What does the cerebellum contribute to spatial attention? Specific deficits from cerebellar and parietal damage. Manuscript submitted for publication.Google Scholar
Townsend, J., Courchesne, E., & Egaas, B. (1992). Deficits In Orienting Attention In Patients With Cerebellar And Parietal Damage [Abstract]. Society for Neuroscience Abstracts, 18, 332.Google Scholar
Trevarthen, C., & Hubley, P. (1978). Secondary inter-subjectivity. In Lock, A. (Ed.), Confidence, confiding and acts of meaning in the first year: Action, gesture, and symbol. London: Academic Press.Google Scholar
Tronick, E. Z. (1982). Affectivity and sharing. In Tronick, E. Z. (Ed.), Social interchange in infancy: Affect cognition and communication (pp. 16). Baltimore, MD: University Park Press.Google Scholar
Wall, J. T. (1988). Variable organization in cortical maps of the skin as an indication of the lifelong adaptive capacities of circuits in the mammalian brain. Trends in Neurosciences, 11, 549557.CrossRefGoogle ScholarPubMed
Werner, H., & Kaplan, B. (1963). Symbol formation. New York: Wiley.Google Scholar
Wetherby, A., & Pruning, C. (1984). Profiles of communicative and cognitive-social abilities in autistic children. Journal of Speech and Hearing Research, 27, 264377.Google ScholarPubMed
Williams, R. S., Hauser, S. L., Purpura, D. P., DeLong, R., & Swisher, C. N. (1980). Autism and mental retardation: Neuropathologic studies performed in four retarded persons with autistic behavior. Archives of Neurology, 37, 749753.CrossRefGoogle ScholarPubMed