Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T22:24:54.231Z Has data issue: false hasContentIssue false

Kindergarten stressors and cumulative adrenocortical activation: The “first straws” of allostatic load?

Published online by Cambridge University Press:  21 October 2011

Nicole R. Bush*
Affiliation:
University of California, San Francisco and Berkeley
Jelena Obradović
Affiliation:
Stanford University
Nancy Adler
Affiliation:
University of California, San Francisco and Berkeley
W. Thomas Boyce
Affiliation:
University of British Columbia, Vancouver
*
Address correspondence and reprint requests to: Nicole Bush, Center for Health and Community at the University of California, San Francisco, 3333 California Street, Suite 465, San Francisco, CA 94118; E-mail: [email protected].

Abstract

Using an ethnically diverse longitudinal sample of 338 kindergarten children, this study examined the effects of cumulative contextual stressors on children's developing hypothalamic–pituitary–adrenocortical (HPA) axis regulation as an early life indicator of allostatic load. Chronic HPA axis regulation was assessed using cumulative, multiday measures of cortisol in both the fall and spring seasons of the kindergarten year. Hierarchical linear regression analyses revealed that contextual stressors related to ethnic minority status, socioeconomic status, and family adversity each uniquely predicted children's daily HPA activity and that some of those associations were curvilinear in conformation. Results showed that the quadratic, U-shaped influences of family socioeconomic status and family adversity operate in different directions to predict children's HPA axis regulation. Results further suggested that these associations differ for White and ethnic minority children. In total, this study revealed that early childhood experiences contribute to shifts in one of the principal neurobiological systems thought to generate allostatic load, confirming the importance of early prevention and intervention efforts. Moreover, findings suggested that analyses of allostatic load and developmental theories accounting for its accrual would benefit from an inclusion of curvilinear associations in tested predictive models.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, E. K., & Kumari, M. (2009). Assessing salivary cortisol in large-scale, epidemiological research. Psychoneuroendocrinology, 34, 14231436.CrossRefGoogle ScholarPubMed
Adler, N. E., Boyce, W. T., Chesney, M. A., Cohen, S., Folkman, S., Kahn, R. L., et al. (1994). Socioeconomic status and health: The challenge of the gradient. American Psycholgist, 49, 1524.CrossRefGoogle ScholarPubMed
Adler, N. E., & Stewart, J. (2010). Health disparities across the lifespan: Meaning, methods, and mechanisms. Annals of the New York Academy of Science, 1186, 523.CrossRefGoogle ScholarPubMed
American Psychological Association, Task Force of the Socioeconomic Status Office. (2007). Report of the APA Task Force on Socioeconomic Status. Washington, DC: Author.Google Scholar
Belsky, J. (1997). Variation in susceptibility to environmental influence: An evolutionary argument. Psychological Inquiry, 8, 182186.CrossRefGoogle Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.CrossRefGoogle ScholarPubMed
Bird, C. E., Seeman, T. E., Escarce, J. J., Basurto-Davila, R., Finch, B. K., Dubowitz, T., et al. (2010). Neighborhood socioeconomic status and biological “wear & tear” in a nationally representative sample of U.S. adults. Journal of Epidemiology and Community Health, 64, 860865.CrossRefGoogle Scholar
Blair, C., Granger, D., & Razza, R. P. (2005). Cortisol reactivity is positively related to executive function in preschool children attending Head Start. Child Development, 76, 554567.CrossRefGoogle ScholarPubMed
Block, J. H. (1965). The child-rearing practices report. Unpublished manuscript, University of California, Berkeley.Google Scholar
Boyce, W. T. (1996). Biobehavioral reactivity and injuries in children and adolescents. In Bornstein, M. H. & Genevro, J. (Eds.), Child development and behavioral pediatrics: Toward understanding children and health. Mahwah, NJ: Erlbaum.Google Scholar
Boyce, W. T. (2007). A biology of misfortune: Stress reactivity, social context, and the ontogeny of psychopathology in early life. In Masten, A. (Ed.), Multilevel dynamics in developmental psychopathology: Pathways to the future (34th ed., pp. 4582). Minneapolis, MN: University of Minnesota.Google Scholar
Boyce, W. T., Chesney, M., Alkon, A., Tschann, J. M., Adams, S., Chesterman, B., et al. (1995). Psychobiologic reactivity to stress and childhood respiratory illnesses: Results of two prospective studies. Psychosomatic Medicine, 57, 411422.CrossRefGoogle ScholarPubMed
Boyce, W. T., Chesney, M., Alkon-Leonard, A., Tschann, J., Adams, S., Chesterman, B. et al. (1995). Psychobiologic reactivity to stress and childhood respiratory illnesses: Results of two prospective studies. Psychosomatic Medicine, 57, 411422.CrossRefGoogle ScholarPubMed
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.CrossRefGoogle ScholarPubMed
Boyce, W. T., Quas, J., Alkon, A., Smider, N., Essex, M., & Kupfer, D. J. (2001). Autonomic reactivity and psychopathology in middle childhood. British Journal of Psychiatry, 179, 144150.CrossRefGoogle ScholarPubMed
Brooks-Gunn, J., Duncan, G. J. & Britto, P. R. (1999). Are socioeconomic gradients for children similar to those for adults? Achievement and health of children in the United States. In Keating, D. P. & Hertzman, C. (Eds.), Developmental health and the wealth of nations: Social, biological, and educational dynamics (pp. 94124). New York: Guilford Press.Google Scholar
Burchinal, M., Roberts, J. E., Hooper, S., & Zeisel, S. A. (2000). Cumulative risk and early cognitive development: A comparison of statistical risk models. Developmental Psychology, 36, 793807.CrossRefGoogle ScholarPubMed
Bush, N., Adler, N., & Boyce, W. T. (2011). Mechanisms for socioeconomic health disparities: SES predicts longitudinal change in children's ANS reactivity. Unpublished manuscript.Google Scholar
Bush, N. R., Alkon, A., Stamperdahl, J., Obradović, J., & Boyce, W. T. (2011). Differentiating challenge reactivity from psychomotor activity in studies of children's psychophysiology: Considerations for theory and measurement. Journal of Experimental Child Psychology, 110, 6279.CrossRefGoogle ScholarPubMed
Carlson, M., & Earls, F. (1997). Psychological and neuroendocrinological sequelae of early social deprivation in institutionalized children in Romania. Annals of the New York Academy of Sciences, 807, 419428.CrossRefGoogle ScholarPubMed
Caspi, A., Harrington, H., Moffitt, T. E., Milne, B. J., & Poulton, R. (2006). Socially isolated children 20 years later: Risk of cardiovascular disease. Archives of Pediatrics & Adolescent Medicine, 160, 805811.CrossRefGoogle ScholarPubMed
Chen, E., Cohen, S., & Miller, G. E. (2010). How low socioeconomic status affects 2-year hormonal trajectories in children. Psychological Science, 21, 3137.CrossRefGoogle Scholar
Chen, E., Martin, A. D., & Matthews, K. A. (2006). Socioeconomic status and health: Do gradients differ within childhood and adolescence? Social Science & Medicine, 62, 21612170.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Dawson, G. (2002). Multiple levels of analysis [Editorial]. Development and Psychopathology, 14, 417420.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Gunnar, M. (2008). Integrating biological measures into the design and evaluation of preventative interventions. Development and Psychopathology, 20, 737743.CrossRefGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (2001). The impact of child maltreatment and psychopathology on neuroendocrine functioning. Development and Psychopathology, 13, 783804.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Toth, S. (2009). The past achievements and future promises of developmental psychopathology: The coming of age of a discipline. Journal of Child Psychology and Psychiatry, 50, 1625.CrossRefGoogle ScholarPubMed
Cohen, S., Kesler, R., & Underwood, L. (1995). Strategies for measuring stress in studies of psychiatric and physical disorders. In Choen, R., Kessler, R. C., & Underwood, L. G. (Eds.), Measuring stress: A guide for health and social scientists (pp. 328). New York: Oxford University Press.CrossRefGoogle Scholar
Cummings, E. M., & Davies, P. T. (2002). Effects of marital conflict on children: Recent advances and emerging themes in process-oriented research. Journal of Child Psychology and Psychiatry and Allied Disciplines, 43, 3163.CrossRefGoogle ScholarPubMed
Crimmins, E. M., Johnston, M., Hayward, M., & Seeman, T. (2003). Age differences in allostatic load: an index of physiological dysregulation. Experimental Gerontology, 38, 731734.CrossRefGoogle ScholarPubMed
Davis, E. P., Bruce, J., & Gunnar, M. R. (2002). The anterior attention network: Associations with temperament neuroendocrine activity in 6-year-old children. Developmental Psychobiology, 40, 4356.CrossRefGoogle Scholar
Deković, M., Janssens, J. M. A. M., & Gerris, J. R. M. (1991). Factor structure and construct validity of the Block Child Rearing Practice Report (CRPR). Psychological Assessment: Journal of Consulting & Clinical Psychology, 3, 182187.CrossRefGoogle Scholar
DeSantis, A. S., Adam, E. K., Doane, L. D., Mineka, S., Zinbarg, R. E., & Craske, M. G. (2007). Racial/ethnic differences in cortisol diurnal rhythms in a community sample of adolescents. Journal of Adolescent Health, 41, 313.CrossRefGoogle Scholar
Dettling, A. C., Gunnar, M. R., & Donzella, B. (1999). Cortisol levels of young children in full-day childcare centers: Relations with age and temperament. Psychoneuroendocrinology, 24, 519536.CrossRefGoogle ScholarPubMed
Dettling, A. C., Parker, S. W., Lane, S., Sebanc, A., & Gunnar, M. R. (2000). Quality of care and temperament determine changes in cortisol concentrations over the day for young children in childcare. Psychoneuroendocrinology, 25, 819836.CrossRefGoogle ScholarPubMed
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355391.CrossRefGoogle ScholarPubMed
Dienstbier, R. A. (1989). Arousal and physiological toughness—Implications for mental and physical health. Psychological Review, 96, 84100.CrossRefGoogle ScholarPubMed
Dozier, M., Manni, M., Gordon, M. K., Peloso, E., Gunnar, M. R., Stovall-McClough, K. C., et al. (2006). Foster children's diurnal production of cortisol: An exploratory study. Child Maltreatment, 11, 189197.CrossRefGoogle ScholarPubMed
Duncan, G. J., & Brooks-Gunn, J. (1997). Consequences of growing up poor. New York: Russell Sage Foundation.Google Scholar
Duncan, G. J., & Brooks-Gunn, J. (2000). Family poverty, welfare reform, and child development. Child Development, 71, 188196.CrossRefGoogle ScholarPubMed
Ellis, B. J., & Boyce, W. T. (2011). Differential susceptibility to the environment: Toward an understanding of sensitivity to developmental experiences and context. Development and Psychopathology, 23, 15.CrossRefGoogle Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.CrossRefGoogle Scholar
Ellis, B. J., Essex, M. J., & Boyce, W. T. (2005). Biological sensitivity to context: II. Empirical explorations of an evolutionary–developmental theory. Development and Psychopathology, 17, 303328.CrossRefGoogle ScholarPubMed
Engert, V., Efanov, S. I., Dedovic, K., Duchesne, A., Dagher, A., & Pruessner, J. C. (2010). Perceived early-life maternal care and the cortisol response to repeated psychosocial stress. Journal of Psychiatry & Neuroscience, 35, 370377.CrossRefGoogle ScholarPubMed
Essex, M. J., Klein, M. H., Cho, E., & Kalin, N. H. (2002). Maternal stress beginning in infancy may sensitize children to later stress exposure: Effects on cortisol and behavior. Biological Psychiatry, 52, 776784.CrossRefGoogle ScholarPubMed
Evans, G. W., & English, K. (2002). The environment of poverty: Multiple stressor exposure, psychophysiological stress, and socioemotional adjustment. Child Development, 73, 12381248.CrossRefGoogle ScholarPubMed
Evans, G. W., & Kim, P. (2007). Childhood poverty and health: Cumulative risk exposure and stress dysregulation. Psychological Science, 18, 953957.CrossRefGoogle ScholarPubMed
Evans, G. W., Kim, P., Ting, A. H., Tesher, H. B., & Shannis, D. (2007). Cumulative risk, maternal responsiveness, and allostatic load among young adolescents. Developmental Psychology, 43, 341351.CrossRefGoogle ScholarPubMed
Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Spitz, A. M., Edwards, V., et al. (1998). Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. American Journal of Preventive Medicine, 14, 245258.CrossRefGoogle ScholarPubMed
Fernald, L. C., Burke, H. M., & Gunnar, M. R. (2008). Salivary cortisol levels in children of low-income women with high depressive symptomatology. Development and Psychopathology, 20, 423436.CrossRefGoogle ScholarPubMed
Ganzel, B. L., Morris, P. A., & Wethington, E. (2010). Allostasis and the human brain: Integrating models of stress from the social and life sciences. Psychological Review, 117, 134174.CrossRefGoogle ScholarPubMed
Garcia-Coll, C., Akerman, A., & Cicchetti, D. (2000). Cultural influences on developmental processes and outcomes: Implications for the study of development and psychopathology. Development and Psychopathology, 12, 333356.CrossRefGoogle Scholar
Geronimus, A. T., Hicken, M., Keene, D., & Bound, J. (2006). “Weathering” and age patterns of allostatic load scores among blacks and whites in the United States. American Journal of Public Health, 96, 826833.CrossRefGoogle ScholarPubMed
Goodyer, I. M., Herbert, J., & Altham, P. M. E. (1998). Adrenal steroid secretion and major depression in 8- to 16-year-olds, III. Influence of cortisol/DHEA ratio at presentation on subsequent rates of disappointing life events and persistent major depression. Psychological Medicine, 28, 265273.CrossRefGoogle ScholarPubMed
Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145173.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Frenn, K., Wewerka, S. S., & Van Ryzin, M. J. (2009). Moderate versus severe early life stress: Associations with stress reactivity and regulation in 10–12-year-old children. Psychoneuroendocrinology, 34, 6275.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Sebanc, A. M., Tout, K., Donzella, B., & van Dulmen, M. H. (2003). Peer rejection, temperament, and cortisol activity in preschoolers. Developmental Psychobiology, 43, 346358.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Tout, K., de Haan, M., Pierce, S., & Stansbury, K. (1997). Temperament, social competence, and adrenocortical activity in preschoolers. Developmental Psychobiology, 31, 6585.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Vazquez, D. (2006). Stress neurobiology and developmental psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology (Vol. 2, pp. 533577). Hoboken, NJ: Wiley.Google Scholar
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538.CrossRefGoogle Scholar
Halberstadt, A. G. (1986). Family socialization of emotional expression and nonverbal communication styles and skills. Journal of Personality and Social Psychology, 51, 827836.CrossRefGoogle Scholar
Hardie, T., Moss, H., Vanyukov, M., Yao, J., & Kirillovac, G. (2002). Does adverse family environment or sex matter in the salivary cortisol responses to anticipatory stress? Psychiatry Research, 111, 121131.CrossRefGoogle Scholar
Helms, J. E., Jernigan, M., & Mascher, J. (2005). The meaning of race in psychology and how to change it—A methodological perspective. American Psychologist, 60, 2736.CrossRefGoogle ScholarPubMed
Hertzman, C. (1999). The biological embedding of early experience and its effects on health in adulthood. Annals of the New York Academy of Sciences, 896, 8595.CrossRefGoogle ScholarPubMed
Hertzman, C., & Boyce, T. (2010). How experience gets under the skin to create gradients in developmental health. Annual Review of Public Health, 31, 329347.CrossRefGoogle ScholarPubMed
Johnson, P. L., & O'Leary, K. D. (1987). Parental behavior patterns and conduct problems in girls. Journal of Abnormal Child Psychology, 15, 573581.CrossRefGoogle Scholar
King, J. A., Barkley, R. A., & Barrett, S. (1998). Attention-deficit hyperactivity disorder and the stress response. Biological Psychiatry, 44, 7274.CrossRefGoogle ScholarPubMed
Kirschbaum, C., & Hellhammer, D. H. (1994). Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 19, 313333.CrossRefGoogle ScholarPubMed
Klimes-Dougan, B., Hastings, P. D., Granger, D. A., Usher, B. A., & Zahn-Waxler, C. (2001). Adrenocortical activity in at-risk and normally developing adolescents: Individual differences in salivary cortisol basal levels, diurnal variation, and responses to social challenges. Development and Psychopathology, 13, 695719.CrossRefGoogle ScholarPubMed
Krieger, N., Chen, J. T., Ware, J. H., & Kaddour, A. (2008). Race/ethnicity and breast cancer estrogen receptor status: Impact of class, missing data, and modeling assumptions. Cancer Causes & Control, 19, 13051318.CrossRefGoogle ScholarPubMed
Kudielka, B. M., Broderick, J. E., & Kirschbaum, C. (2003). Compliance with saliva sampling protocols: Electronic monitoring reveals invalid cortisol daytime profiles in noncompliant subjects. Psychosomatic Medicine, 65, 313319.CrossRefGoogle ScholarPubMed
Lengua, L. J., Bush, N. R., Long, A. C., Kovacs, E. A., & Trancik, A. M. (2008). Effortful control as a moderator of the relation between contextual risk factors and growth in adjustment problems. Development and Psychopathology, 20, 509528.CrossRefGoogle ScholarPubMed
Levine, S. (1957). Infantile experience and resistance to physiological stress. Science, 126, 405.CrossRefGoogle ScholarPubMed
Levine, S. (2005). Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology, 30, 939946.CrossRefGoogle ScholarPubMed
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2000). Child's stress hormone levels correlate with mother's socioeconomic status and depressive state. Biological Psychiatry, 48, 976980.CrossRefGoogle ScholarPubMed
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2001). Can poverty get under your skin? Basal cortisol levels and cognitive function in children from low and high socioeconomic status. Development and Psychopathology, 13, 653676.CrossRefGoogle ScholarPubMed
Lupien, S. J., Maheu, F., Tu, M., Fiocco, A., & Schramek, T. E. (2007). The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain and Cognition, 65, 209237.CrossRefGoogle ScholarPubMed
Lupien, S. J., Ouellet-Morin, I., Hupbach, A., Tu, M. T., Buss, C., Walker, D., et al. (2006). Beyond the stress concept: Allostatic load—A developmental biological and cognitive perspective. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Vol. 2. Developmental neuroscience (pp. 578628). Hoboken, NJ: Wiley.Google Scholar
Lyons, D. M., & Parker, K. J. (2007). Stress inoculation-induced indications of resilience in monkeys. Journal of Traumatic Stress, 20, 423433.CrossRefGoogle ScholarPubMed
Lyons, D. M., Parker, K. J., & Schatzberg, A. F. (2010). Animal models of early life stress: Implications for understanding resilience. Developmental Psychobiology, 52, 402410.CrossRefGoogle ScholarPubMed
Marmot, M. G., Bosma, H., Hemingway, H., Brunner, E., & Stansfeld, S. (1997). Contribution of job control and other risk factors to social variations in coronary heart disease incidence. Lancet, 350, 235239.CrossRefGoogle ScholarPubMed
Masharani, U., Shiboski, S., Eisner, M. D., Katz, P. P., Janson, S. L., Granger, D. A., et al. (2005). Impact of exogenous glucocorticoid use on salivary cortisol measurements among adults with asthma and rhinitis. Psychoneuroendocrinology, 30, 744752.CrossRefGoogle ScholarPubMed
Masten, A. S., & Shaffer, A. (2006). How families matter in child development: Reflections from research on risk and resilience. In Clarke-Stewart, A. & Dunn, J. (Eds.), Families count: Effects on child and adolescent development (pp. 525). New York: Cambridge University Press.CrossRefGoogle Scholar
McBurnett, K. M., Lahey, B. B., Frick, P. J., Risch, C., Loeber, R., Hart, E. L., et al. (1991). Anxiety, inhibition, and conduct disorder in children: II. Relation to salivary cortisol. Journal of the American Academy of Child & Adolescent Psychiatry, 30, 192196.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171179.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2000). Effects of adverse experiences for brain structure and function. Biological Psychiatry, 48, 721731.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87, 873904.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Seeman, T. (1999). Protective and damaging effects of mediators of stress—Elaborating and testing the concepts of allostasis and allostatic load. Annals of the New York Academy of Sciences, 896, 3047.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Stellar, E. (1993). Stress and the individual. Mechanisms leading to disease. Archives of Internal Medicine, 153, 20932101.CrossRefGoogle ScholarPubMed
McLeod, J. D., & Shanahan, M. J. (1993). Poverty, parenting, and childrens mental health. American Sociological Review, 58, 351366.CrossRefGoogle Scholar
Meany, M. (2011). Curvinlinear associations among genetic variation, birth weight, and internalizing problems. Unpublished manuscript.Google Scholar
Miller, G., & Chen, E. (2007). Unfavorable socioeconomic conditions in early life presage expression of proinflammatory phenotype in adolescence. Psychosomatic Medicine, 69, 402409.CrossRefGoogle ScholarPubMed
Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic–pituitary–adrenocortical axis in humans. Psychological Bulletin, 133, 2545.CrossRefGoogle ScholarPubMed
Moss, H. B., Vanyukov, M. M., & Martin, C. S. (1995). Salivary cortisol responses and the risk for substance abuse in prepubertal boys. Biological Psychiatry, 38, 547555.CrossRefGoogle ScholarPubMed
Nielsen, L., Seeman, T., & Hahn, M. S. (2007). Background materials and statements from November 2007 workshop participants. Paper presented at the NIA Exploratory Workshop on Allostatic Load, Washington, DC.Google Scholar
Obradović, J. (in press). Stress reactivity in child development research: Indices, correlates, and future directions. In Mayes, L. C. & Lewis, M. (Eds.), A developmental environment measurement handbook. New York: Cambridge University Press.Google Scholar
Obradović, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: The interactive effects of stress reactivity and family adversity on socioemotional behavior and school readiness. Child Development, 81, 270289.CrossRefGoogle ScholarPubMed
Obradović, J., Shaffer, A., & Masten, A. S. (in press). Adversity and risk in developmental psychopathology: Progress and future directions. In Mayes, L. C. & Lewis, M. (Eds.), A developmental environment measurement handbook. New York: Cambridge University Press.Google Scholar
Oosterlaan, J., Geurts, H. M., Knol, D. L., & Sergeant, J. A. (2005). Low basal salivary cortisol is associated with teacher-reported symptoms of conduct disorder. Psychiatry Research, 134, 110.CrossRefGoogle ScholarPubMed
Porter, B., & O'Leary, K. D. (1980). Marital discord and childhood behavior problems. Journal of Abnormal Child Psychology, 8, 287295.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., & Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology, 28, 916931.CrossRefGoogle ScholarPubMed
Radloff, L. S. (1977). The CES-D Scale: A self report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401.CrossRefGoogle Scholar
Repetti, R. L., Taylor, S. E., & Seeman, T. E. (2002). Risky families: Family social environments and the mental and physical health of offspring. Psychological Bulletin, 128, 330366.CrossRefGoogle ScholarPubMed
Richters, P., & Martinez, J. E. (1993). The NIMH Community Violence Project: I. Children as victims and witnesses to violence. Psychiatry, 56, 721.CrossRefGoogle ScholarPubMed
Rickel, A. U., & Biasatti, L. L. (1982). Modification of the Block child rearing practice report. Journal of Clinical Psychology, 38, 129133.3.0.CO;2-3>CrossRefGoogle Scholar
Rutter, M. (2006). Genes and behavior: Nature–nurture interplay explained. Hoboken, NJ: Wiley.Google Scholar
Sapolsky, R. M. (1994). The physiological relevance of glucocorticoid endangerment of the hippocampus. Brain Corticosteroid Receptors, 746, 294307.Google ScholarPubMed
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21, 5589.Google ScholarPubMed
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147177.CrossRefGoogle ScholarPubMed
Seeman, T., Epel, E., Gruenewald, T., Karlamangla, A., & McEwen, B. S. (2010). Socio-economic differentials in peripheral biology: Cumulative allostatic load. Annals of the New York Academy of Sciences, 1186, 223239.CrossRefGoogle ScholarPubMed
Seeman, T., Gruenewald, T., Karlamangla, A., Sidney, S., Liu, K. A., McEwen, B., et al. (2010). Modeling multisystem biological risk in young adults: The coronary artery risk development in young adults study. American Journal of Human Biology, 22, 463472.CrossRefGoogle ScholarPubMed
Seeman, T., Merkin, S. S., Crimmins, E., Koretz, B., Charette, S., & Karlamangla, A. (2008). Education, income and ethnic differences in cumulative biological risk profiles in a national sample of US adults: NHANES III (1988–1994). Social Science & Medicine, 66, 7287.CrossRefGoogle Scholar
Seeman, T. E., Crimmins, E., Huang, M. H., Singer, B., Bucur, A., Gruenewald, T., et al. (2004). Cumulative biological risk and socio-economic differences in mortality: MacArthur studies of successful aging. Social Science & Medicine, 58, 19851997.CrossRefGoogle ScholarPubMed
Seeman, T. E., & McEwen, B. S. (1996). Impact of social environment characteristics on neuroendocrine regulation. Psychosomatic Medicine, 58, 459471.CrossRefGoogle ScholarPubMed
Seeman, T. E., McEwen, B. S., Rowe, J. W., & Singer, B. H. (2001). Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proceedings of the National Academy of Sciences of the United States of America, 98, 47704775.CrossRefGoogle ScholarPubMed
Seery, M. D., Holman, E. A., & Silver, R. C. (2010). Whatever does not kill us: Cumulative lifetime adversity, vulnerability, and resilience. Journal of Personality and Social Psychology, 99, 10251041.CrossRefGoogle Scholar
Selye, H. (1950). Stress: The physiology and pathology of exposure to stress. Montreal: Acta Medical Publishers.Google Scholar
Selye, H. (1956). Stress and psychiatry. American Journal of Psychiatry, 113, 423427.CrossRefGoogle ScholarPubMed
Shirtcliff, E. A., Granger, D. A., Booth, A., & Johnson, D. (2005). Low salivary cortisol levels and externalizing behavior problems in youth. Development and Psychopathology, 17, 167184.CrossRefGoogle ScholarPubMed
Shonkoff, J. P., & Phillips, D. A. (Eds.). (2000). From neurons to neighborhoods: The science of early child development. Washington, DC: National Academy Press.Google Scholar
Smider, N. A., Essex, M. J., Kalin, N. H., Buss, K. A., Klein, M. H., Davidson, R. J., et al. (2002). Salivary cortisol as a predictor of socioemotional adjustment during kindergarten: A prospective study. Child Development, 73, 7592.CrossRefGoogle ScholarPubMed
Spielberger, C. D. (1988). Manual for the State-Trait Anger Expression Inventory (STAXI). Odessa, FL: Psychological Assessment Resources.Google Scholar
Sterling, P., & Eyer, J. (1989). Allostasis a new paradigm to explain arousal pathology. In Fisher, S. & Reason, J. (eds.), Handbook of life stress cognition and health (pp. 629650). Chichester: Wiley.Google Scholar
Tarullo, A., Mliner, S., & Gunnar, M. (2011). Inhibition and exuberance in preschool classrooms: Associations with peer social experiences and changes in cortisol across the preschool year. Developmental Psychology. doi:10.1037/a0024093CrossRefGoogle ScholarPubMed
Tarullo, A. R., & Gunnar, M. R. (2006). Child maltreatment and the developing HPA axis. Hormones and Behavior, 50, 632639.CrossRefGoogle ScholarPubMed
Yehuda, R. (2000). Biology of posttraumatic stress disorder. Journal of Clinical Psychiatry, 61, 1421.Google ScholarPubMed