Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T14:56:28.323Z Has data issue: false hasContentIssue false

Insight from animal models of environmentally driven epigenetic changes in the developing and adult brain

Published online by Cambridge University Press:  30 September 2016

Tiffany S. Doherty
Affiliation:
University of Delaware, Newark
Tania L. Roth*
Affiliation:
University of Delaware, Newark
*
Address correspondence and reprint requests to: Tania L. Roth, Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716; E-mail [email protected].

Abstract

The efforts of many neuroscientists are directed toward understanding the appreciable plasticity of the brain and behavior. In recent years, epigenetics has become a core of this focus as a prime mechanistic candidate for behavioral modifications. Animal models have been instrumental in advancing our understanding of environmentally driven changes to the epigenome in the developing and adult brain. This review focuses mainly on such discoveries driven by adverse environments along with their associated behavioral outcomes. While much of the evidence discussed focuses on epigenetics within the central nervous system, several peripheral studies in humans who have experienced significant adversity are also highlighted. As we continue to unravel the link between epigenetics and phenotype, discerning the complexity and specificity of epigenetic changes induced by environments is an important step toward understanding optimal development and how to prevent or ameliorate behavioral deficits bred by disruptive environments.

Type
Special Section Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, J. L., & Rissman, E. F. (2013). Running-induced epigenetic and gene expression changes in the adolescent brain. International Journal of Developmental Neuroscience, 31, 382390.Google Scholar
Alleva, E., Caprioli, A., & Laviola, G. (1989). Litter gender composition affects maternal behavior of the primiparous mouse dam (Mus musculus). Journal of Comparative Psychology, 103, 8387.Google Scholar
Amstadter, A. B., Nugent, N. R., & Koenen, K. C. (2009). Genetics of PTSD: Fear conditioning as a model for future research. Psychiatric Annals, 39, 358.CrossRefGoogle Scholar
Andero, R., & Ressler, K. J. (2012). Fear extinction and BDNF: Translating animal models of PTSD to the clinic. Genes, Brain and Behavior, 11, 503512.CrossRefGoogle ScholarPubMed
Anier, K., Malinovskaja, K., Pruus, K., Aonurm-Helm, A., Zharkovsky, A., & Kalda, A. (2014). Maternal separation is associated with DNA methylation and behavioural changes in adult rats. European Neuropsychopharmacology, 24, 459468.CrossRefGoogle ScholarPubMed
Beach, S. R., Brody, G. H., Todorov, A. A., Gunter, T. D., & Philibert, R. A. (2011). Methylation at 5HTT mediates the impact of child sex abuse on women's antisocial behavior: An examination of the Iowa adoptee sample. Psychosomatic Medicine, 73, 8387.Google Scholar
Benoit, J. D., Rakic, P., & Frick, K. M. (2015). Prenatal stress induces spatial memory deficits and epigenetic changes in the hippocampus indicative of heterochromatin formation and reduced gene expression. Behavioural Brain Research, 281, 18.CrossRefGoogle ScholarPubMed
Bernstein, D. L., Le Lay, J. E., Ruano, E. G., & Kaestner, K. H. (2015). Tale-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. Journal of Clinical Investigation, 125, 19982006.CrossRefGoogle ScholarPubMed
Bertran-Gonzalez, J., Bosch, C., Maroteaux, M., Matamales, M., Hervé, D., Valjent, E., et al. (2008). Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. Journal of Neuroscience, 28, 56715685.CrossRefGoogle ScholarPubMed
Bestor, T. H. (2000). The DNA methyltransferases of mammals. Human Molecular Genetics, 9, 23952402.CrossRefGoogle ScholarPubMed
Blaze, J., Asok, A., & Roth, T. L. (2015). Long-term effects of early-life caregiving experiences on brain-derived neurotrophic factor histone acetylation in the adult rat mpfc. Stress. Advance online publication.CrossRefGoogle ScholarPubMed
Blaze, J., & Roth, T. L. (2013). Exposure to caregiver maltreatment alters expression levels of epigenetic regulators in the medial prefrontal cortex. International Journal of Developmental Neuroscience, 31, 804810.Google Scholar
Blaze, J., & Roth, T. L. (2015). Evidence from clinical and animal model studies of the long-term and transgenerational impact of stress on DNA methylation. Seminars in Cell and Developmental Biology, 43, 7684.CrossRefGoogle ScholarPubMed
Blaze, J., Scheuing, L., & Roth, T. L. (2013). Differential methylation of genes in the medial prefrontal cortex of developing and adult rats following exposure to maltreatment or nurturing care during infancy. Developmental Neuroscience, 35, 306316.Google Scholar
Bockmühl, Y., Patchev, A. V., Madejska, A., Hoffmann, A., Sousa, J. C., Sousa, N., et al. (2015). Methylation at the CpG island shore region upregulates Nr3c1 promoter activity after early-life stress. Epigenetics, 10, 247257.Google Scholar
Boersma, G. J., Lee, R. S., Cordner, Z. A., Ewald, E. R., Purcell, R. H., Moghadam, A. A., et al. (2014). Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics, 9, 437447.Google Scholar
Bredy, T. W., Zhang, T. Y., Grant, R. J., Diorio, J., & Meaney, M. J. (2004). Peripubertal environmental enrichment reverses the effects of maternal care on hippocampal development and glutamate receptor subunit expression. European Journal of Neuroscience, 20, 13551362.Google Scholar
Brown, S. E., Weaver, I. C., Meaney, M. J., & Szyf, M. (2008). Regional-specific global cytosine methylation and DNA methyltransferase expression in the adult rat hippocampus. Neuroscience Letters, 440, 4953.Google Scholar
Carlin, J., George, R., & Reyes, T. M. (2013). Methyl donor supplementation blocks the adverse effects of maternal high fat diet on offspring physiology. PLOS ONE, 8, e63549.CrossRefGoogle ScholarPubMed
Cassel, S., Carouge, D., Gensburger, C., Anglard, P., Burgun, C., Dietrich, J.-B., et al. (2006). Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Molecular Pharmacology, 70, 487492.CrossRefGoogle ScholarPubMed
Chahrour, M., Jung, S. Y., Shaw, C., Zhou, X., Wong, S. T. C., Qin, J., et al. (2008). Mecp2, a key contributor to neurological disease, activates and represses transcription. Science, 320, 12241229.Google Scholar
Champagne, F., Diorio, J., Sharma, S., & Meaney, M. (2001). Variations in maternal care in the rat are associated with differences in estrogen-related changes in oxytocin receptor levels. Proceedings of the National Academy of Sciences, 98, 1273612741.Google Scholar
Champagne, F. A., Weaver, I. C., Diorio, J., Dymov, S., Szyf, M., & Meaney, M. J. (2006). Maternal care associated with methylation of the estrogen receptor-α1b promoter and estrogen receptor-α expression in the medial preoptic area of female offspring. Endocrinology, 147, 29092915.Google Scholar
Champagne, F. A., Weaver, I. C., Diorio, J., Sharma, S., & Meaney, M. J. (2003). Natural variations in maternal care are associated with estrogen receptor α expression and estrogen sensitivity in the medial preoptic area. Endocrinology, 144, 47204724.Google Scholar
Chertkow-Deutsher, Y., Cohen, H., Klein, E., & Ben-Shachar, D. (2010). DNA methylation in vulnerability to post-traumatic stress in rats: Evidence for the role of the post-synaptic density protein Dlgap2. International Journal of Neuropsychopharmacology, 13, 347359.Google Scholar
Cicchetti, D., & Toth, S. L. (2005). Child maltreatment. Annual Review of Clinical Psychology, 1, 409438.CrossRefGoogle ScholarPubMed
Cirulli, F., Adriani, W., & Laviola, G. (1997). Sexual segregation in infant mice: Behavioural and neuroendocrine responses to d-amphetamine administration. Psychopharmacology, 134, 140152.Google Scholar
Collins, A., Hill, L. E., Chandramohan, Y., Whitcomb, D., Droste, S. K., & Reul, J. (2009). Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus. PLOS ONE, 4, e4330.CrossRefGoogle ScholarPubMed
Conradt, E., Lester, B. M., Appleton, A. A., Armstrong, D. A., & Marsit, C. J. (2013). The roles of DNA methylation of NR3C1 and 11β-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics, 8, 13211329.Google Scholar
Cooney, C. (1992). Are somatic cells inherently deficient in methylation metabolism? A proposed mechanism for DNA methylation loss, senescence and aging. Growth, Development, and Aging, 57, 261273.Google Scholar
Curran, T., & D'Arcangelo, G. (1998). Role of reelin in the control of brain development. Brain Research Reviews, 26, 285294.Google Scholar
Day, J. J., Childs, D., Guzman-Karlsson, M. C., Kibe, M., Moulden, J., Song, E., et al. (2013). DNA methylation regulates associative reward learning. Nature Neuroscience, 16, 14451452.Google Scholar
De Kloet, E. R., Vreugdenhil, E., Oitzl, M. S., & Joels, M. (1998). Brain corticosteroid receptor balance in health and disease 1. Endocrine Reviews, 19, 269301.Google Scholar
Dembo, R., Williams, L., La Voie, L., Berry, E., Getreu, A., Wish, E. D., et al. (1989). Physical abuse, sexual victimization, and illicit drug use: Replication of a structural analysis among a new sample of high-risk youths. Violence and Victims, 4, 121138.Google Scholar
Deminière, J. M., Piazza, P. V., Guegan, G., Abrous, N., Maccari, S., Le Moal, M., et al. (1992). Increased locomotor response to novelty and propensity to intravenous amphetamine self-administration in adult offspring of stressed mothers. Brain Research, 586, 135139.Google Scholar
Deppermann, S., Storchak, H., Fallgatter, A. J., & Ehlis, A. C. (2014). Stress-induced neuroplasticity: (mal)adaptation to adverse life events in patients with PTSD—A critical overview. Neuroscience, 283, 166177.CrossRefGoogle ScholarPubMed
De Ruijter, A., Van Gennip, A., Caron, H., Kemp, S., & van Kuilenburg, A. (2003). Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochemistry Journal, 370, 737749.Google Scholar
Detich, N., Bovenzi, V., & Szyf, M. (2003). Valproate induces replication-independent active DNA demethylation. Journal of Biological Chemistry, 278, 2758627592.Google Scholar
Detich, N., Theberge, J., & Szyf, M. (2002). Promoter-specific activation and demethylation by MBD2/demethylase. Journal of Biological Chemistry, 277, 3579135794.Google Scholar
Devlin, A. M., Brain, U., Austin, J., & Oberlander, T. F. (2010). Prenatal exposure to maternal depressed mood and the MTHFR C677t variant affect SLC6A4 methylation in infants at birth. PLOS ONE, 5, e12201.Google Scholar
Doherty, T. S., Forster, A., & Roth, T. L. (2015). Global and gene-specific DNA methylation alterations in the adolescent amygdala and hippocampus in an animal model of caregiver maltreatment. Behavioural Brain Research. Advance online publication.Google Scholar
Dolinoy, D. C. (2008). The agouti mouse model: An epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutrition Reviews, 66, S7S11.Google Scholar
Dolinoy, D. C., Huang, D., & Jirtle, R. L. (2007). Maternal nutrient supplementation counteracts bisphenol a-induced DNA hypomethylation in early development. Proceedings of the National Academy of Sciences, 104, 1305613061.Google Scholar
Dong, E., Gavin, D. P., Chen, Y., & Davis, J. (2012). Upregulation of TET1 and downregulation of APOBEC3A and APOBEC3C in the parietal cortex of psychotic patients. Translational Psychiatry, 2, e159.Google Scholar
Elliott, E., Ezra-Nevo, G., Regev, L., Neufeld-Cohen, A., & Chen, A. (2010). Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nature Neuroscience, 13, 13511353.Google Scholar
Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M., & Tsai, L.-H. (2007). Recovery of learning and memory is associated with chromatin remodelling. Nature, 447, 178182.Google Scholar
Francis, D. D., Champagne, F. C., & Meaney, M. J. (2000). Variations in maternal behaviour are associated with differences in oxytocin receptor levels in the rat. Journal of Neuroendocrinology, 12, 11451148.Google Scholar
Francis, D. D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286, 11551158.Google Scholar
Francis, D. D., Diorio, J., Plotsky, P. M., & Meaney, M. J. (2002). Environmental enrichment reverses the effects of maternal separation on stress reactivity. Journal of Neuroscience, 22, 78407843.Google Scholar
Frodl, T., & O'Keane, V. (2013). How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans. Neurobiology of Disease, 52, 2437.Google Scholar
Fuchikami, M., Morinobu, S., Kurata, A., Yamamoto, S., & Yamawaki, S. (2009). Single immobilization stress differentially alters the expression profile of transcripts of the brain-derived neurotrophic factor (BDNF) gene and histone acetylation at its promoters in the rat hippocampus. International Journal of Neuropsychopharmacology, 12, 7382.Google Scholar
Gomez-Pinilla, F., Zhuang, Y., Feng, J., Ying, Z., & Fan, G. (2011). Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. European Journal of Neuroscience, 33, 383390.Google Scholar
Grayson, D. R., Jia, X., Chen, Y., Sharma, R. P., Mitchell, C. P., Guidotti, A., et al. (2005). Reelin promoter hypermethylation in schizophrenia. Proceedings of the National Academy of Sciences, 102, 93419346.Google Scholar
Greenberg, M. E., Xu, B., Lu, B., & Hempstead, B. L. (2009). New insights in the biology of BDNF synthesis and release: Implications in CNS function. Journal of Neuroscience, 29, 1276412767.Google Scholar
Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature, 389, 349352.Google Scholar
Guo, J. U., Su, Y., Shin, J. H., Shin, J., Li, H., Xie, B., et al. (2014). Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nature Neuroscience, 17, 215222.CrossRefGoogle ScholarPubMed
Guo, J. U., Su, Y., Zhong, C., Ming, G.-L., & Song, H. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145, 423434.Google Scholar
Haapasalo, J., & Aaltonen, T. (1999). Mothers’ abusive childhood predicts child abuse. Child Abuse Review, 8, 231250.Google Scholar
Hao, Y., Huang, W., Nielsen, D. A., & Kosten, T. A. (2011). Litter gender composition and sex affect maternal behavior and DNA methylation levels of the oprm1 gene in rat offspring. Frontiers in Psychiatry, 2, 21.Google Scholar
He, Y.-F., Li, B.-Z., Li, Z., Liu, P., Wang, Y., Tang, Q., et al. (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science, 333, 13031307.Google Scholar
Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., et al. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences, 105, 1704617049.Google Scholar
Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry, 49, 10231039.Google Scholar
Heller, E. A., Cates, H. M., Pena, C. J., Sun, H., Shao, N., Feng, J., et al. (2014). Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nature Neuroscience, 17, 17201727.Google Scholar
Herman, J. P., & Cullinan, W. E. (1997). Neurocircuitry of stress: Central control of the hypothalamo–pituitary–adrenocortical axis. Trends in Neurosciences, 20, 7884.Google Scholar
Hoeijmakers, L., Lucassen, P., & Korosi, A. (2015). The interplay of early-life stress, nutrition and immune activation programs adult hippocampal structure and function. Frontiers in Molecular Neuroscience, 7, 103.Google Scholar
Huang, S., Trapido, E., Fleming, L., Arheart, K., Crandall, L., French, M., et al. (2011). The long-term effects of childhood maltreatment experiences on subsequent illicit drug use and drug-related problems in young adulthood. Addictive Behaviors, 36, 95102.Google Scholar
Hunter, R. G., McCarthy, K. J., Milne, T. A., Pfaff, D. W., & McEwen, B. S. (2009). Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proceedings of the National Academy of Sciences, 106, 2091220917.Google Scholar
Irier, H., Street, R. C., Dave, R., Lin, L., Cai, C., Davis, T. H., et al. (2014). Environmental enrichment modulates 5-hydroxymethylcytosine dynamics in hippocampus. Genomics, 104, 376382.Google Scholar
Ivy, A. S., Rex, C. S., Chen, Y., Dubé, C., Maras, P. M., Grigoriadis, D. E., et al. (2010). Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors. Journal of Neuroscience, 30, 1300513015.CrossRefGoogle ScholarPubMed
Jans, L., Riedel, W., Markus, C., & Blokland, A. (2007). Serotonergic vulnerability and depression: Assumptions, experimental evidence and implications. Molecular Psychiatry, 12, 522543.Google Scholar
Jovanovic, T., Blanding, N. Q., Norrholm, S. D., Duncan, E., Bradley, B., & Ressler, K. J. (2009). Childhood abuse is associated with increased startle reactivity in adulthood. Depression and Anxiety, 26, 10181026.Google Scholar
Kaffman, A., & Meaney, M. J. (2007). Neurodevelopmental sequelae of postnatal maternal care in rodents: Clinical and research implications of molecular insights. Journal of Child Psychology and Psychiatry, 48, 224244.Google Scholar
Kao, G.-S., Cheng, L.-Y., Chen, L.-H., Tzeng, W.-Y., Cherng, C. G., Su, C.-C., et al. (2012). Neonatal isolation decreases cued fear conditioning and frontal cortical histone 3 lysine 9 methylation in adult female rats. European Journal of Pharmacology, 697, 6572.Google Scholar
Kato, T., & Iwamoto, K. (2014). Comprehensive DNA methylation and hydroxymethylation analysis in the human brain and its implication in mental disorders. Neuropharmacology, 80, 133139.Google Scholar
Kieffer, B. L., & Gavériaux-Ruff, C. (2002). Exploring the opioid system by gene knockout. Progress in Neurobiology, 66, 285306.Google Scholar
Kinnally, E. L., Feinberg, C., Kim, D., Ferguson, K., Leibel, R., Coplan, J. D., et al. (2011). DNA methylation as a risk factor in the effects of early life stress. Brain, Behavior, and Immunity, 25, 15481553.Google Scholar
Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., et al. (2013). Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nature Neuroscience, 16, 3341.Google Scholar
Knapska, E., & Kaczmarek, L. (2004). A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Progress in Neurobiology, 74, 183211.Google Scholar
Koenen, K. C., Uddin, M., Chang, S.-C., Aiello, A. E., Wildman, D. E., Goldmann, E., et al. (2011). SLC6A4 methylation modifies the effect of the number of traumatic events on risk for posttraumatic stress disorder. Depression and Anxiety, 28, 639647.Google Scholar
Kohli, R. M., & Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502, 472479.CrossRefGoogle ScholarPubMed
Konermann, S., Brigham, M. D., Trevino, A., Hsu, P. D., Heidenreich, M., Le, C., et al. (2013). Optical control of mammalian endogenous transcription and epigenetic states. Nature, 500, 472476.Google Scholar
Kosten, T. A., Huang, W., & Nielsen, D. A. (2014). Sex and litter effects on anxiety and DNA methylation levels of stress and neurotrophin genes in adolescent rats. Developmental Psychobiology, 56, 392406.Google Scholar
Kosten, T. A., Miserendino, M. J., & Kehoe, P. (2000). Enhanced acquisition of cocaine self-administration in adult rats with neonatal isolation stress experience. Brain Research, 875, 4450.Google Scholar
Kozlovsky, N., Matar, M. A., Kaplan, Z., Kotler, M., Zohar, J., & Cohen, H. (2007). Long-term down-regulation of BDNF mRNA in rat hippocampal CA1 subregion correlates with PTSD-like behavioural stress response. International Journal of Neuropsychopharmacology, 10, 741758.Google Scholar
Kundakovic, M., & Champagne, F. A. (2011). Epigenetic perspective on the developmental effects of bisphenol A. Brain, Behavior, and Immunity, 25, 10841093.Google Scholar
Kundakovic, M., Gudsnuk, K., Herbstman, J. B., Tang, D., Perera, F. P., & Champagne, F. A. (2015). DNA methylation of BDNF as a biomarker of early-life adversity. Proceedings of the National Academy of Sciences, 112, 68076813.Google Scholar
Kuzumaki, N., Ikegami, D., Tamura, R., Hareyama, N., Imai, S., Narita, M., et al. (2011). Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus, 21, 127132.Google Scholar
LaPlant, Q., Vialou, V., Covington, H. E., Dumitriu, D., Feng, J., Warren, B. L., et al. (2010). Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nature Neuroscience, 13, 11371143.Google Scholar
Lee, M. G., Wynder, C., Schmidt, D. M., McCafferty, D. G., & Shiekhattar, R. (2006). Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chemistry and Biology, 13, 563567.Google Scholar
Lee, V., & Hoaken, P. N. (2007). Cognition, emotion, and neurobiological development: Mediating the relation between maltreatment and aggression. Child Maltreatment, 12, 281298.Google Scholar
Leonard, B. (2005). The HPA and immune axes in stress: The involvement of the serotonergic system. European Psychiatry, 20, S302S306.Google Scholar
Levenson, J. M., Roth, T. L., Lubin, F. D., Miller, C. A., Huang, I.-C., Desai, P., et al. (2006). Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. Journal of Biological Chemistry, 281, 1576315773.Google Scholar
Levine, A., Worrell, T. R., Zimnisky, R., & Schmauss, C. (2012). Early life stress triggers sustained changes in histone deacetylase expression and histone H4 modifications that alter responsiveness to adolescent antidepressant treatment. Neurobiology of Disease, 45, 488498.Google Scholar
Levine, S. (1994). The ontogeny of the hypothalamic–pituitary–adrenal axis: The influence of maternal factors. Annals of the New York Academy of Sciences, 746, 275288.Google Scholar
Li, X., Wei, W., Zhao, Q.-Y., Widagdo, J., Baker-Andresen, D., Flavell, C. R., et al. (2014). Neocortical Tet3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proceedings of the National Academy of Sciences, 111, 71207125.Google Scholar
Lindholm, M. E., Marabita, F., Gomez-Cabrero, D., Rundqvist, H., Ekström, T. J., Tegnér, J., et al. (2014). An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics, 9, 15571569.CrossRefGoogle ScholarPubMed
Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., et al. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462, 315322.Google Scholar
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science, 277, 16591662.CrossRefGoogle ScholarPubMed
Lopez, J., Mamdani, F., Labonte, B., Beaulieu, M., Yang, J., Berlim, M., et al. (2013). Epigenetic regulation of BDNF expression according to antidepressant response. Molecular Psychiatry, 18, 398399.Google Scholar
Lubin, F. D., Roth, T. L., & Sweatt, J. D. (2008). Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. Journal of Neuroscience, 28, 1057610586.Google Scholar
Lucassen, P. J., Naninck, E. F., van Goudoever, J. B., Fitzsimons, C., Joels, M., & Korosi, A. (2013). Perinatal programming of adult hippocampal structure and function: Emerging roles of stress, nutrition and epigenetics. Trends in Neurosciences, 36, 621631.Google Scholar
Ma, D. K., Jang, M.-H., Guo, J. U., Kitabatake, Y., Chang, M.-L., Pow-Anpongkul, N., et al. (2009). Neuronal activity–induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 323, 10741077.Google Scholar
Maccari, S., Darnaudery, M., Morley-Fletcher, S., Zuena, A., Cinque, C., & Van Reeth, O. (2003). Prenatal stress and long-term consequences: Implications of glucocorticoid hormones. Neuroscience & Biobehavioral Reviews, 27, 119127.Google Scholar
Maeder, M. L., Angstman, J. F., Richardson, M. E., Linder, S. J., Cascio, V. M., Tsai, S. Q., et al. (2013). Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nature Biotechnology, 31, 11371142.Google Scholar
Mahan, A. L., Mou, L., Shah, N., Hu, J.-H., Worley, P. F., & Ressler, K. J. (2012). Epigenetic modulation of Homer1a transcription regulation in amygdala and hippocampus with Pavlovian fear conditioning. Journal of Neuroscience, 32, 46514659.Google Scholar
Mahan, A. L., & Ressler, K. J. (2012). Fear conditioning, synaptic plasticity and the amygdala: Implications for posttraumatic stress disorder. Trends in Neurosciences, 35, 2435.CrossRefGoogle ScholarPubMed
Mairesse, J., Lesage, J., Breton, C., Bréant, B., Hahn, T., Darnaudéry, M., et al. (2007). Maternal stress alters endocrine function of the feto-placental unit in rats. American Journal of Physiology—Endocrinology and Metabolism, 292, E1526E1533.Google Scholar
Maiti, A., & Drohat, A. C. (2011). Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: Potential implications for active demethylation of CpG sites. Journal of Biological Chemistry, 286, 3533435338.CrossRefGoogle ScholarPubMed
Massart, R., Suderman, M., Provencal, N., Yi, C., Bennett, A., Suomi, S., et al. (2014). Hydroxymethylation and DNA methylation profiles in the prefrontal cortex of the non-human primate rhesus macaque and the impact of maternal deprivation on hydroxymethylation. Neuroscience, 268, 139148.Google Scholar
Matrisciano, F., Tueting, P., Dalal, I., Kadriu, B., Grayson, D. R., Davis, J. M., et al. (2013). Epigenetic modifications of gabaergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology, 68, 184194.Google Scholar
Matrisciano, F., Tueting, P., Maccari, S., Nicoletti, F., & Guidotti, A. (2012). Pharmacological activation of group-II metabotropic glutamate receptors corrects a schizophrenia-like phenotype induced by prenatal stress in mice. Neuropsychopharmacology, 37, 929938.Google Scholar
Matthes, H. W. D., Maldonado, R., Simonin, F., Valverde, O., Slowe, S., Kitchen, I., et al. (1996). Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature, 383, 819823.Google Scholar
McGowan, P. O., Sasaki, A., D'Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348.Google Scholar
Mehta, D., Gonik, M., Klengel, T., Rex-Haffner, M., Menke, A., Rubel, J., et al. (2011). Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: Evidence from endocrine and gene expression studies. Archives of General Psychiatry, 68, 901910.Google Scholar
Milagro, F., Campion, J., Garcia-Diaz, D., Goyenechea, E., Paternain, L., & Martinez, J. (2009). High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. Journal of Physiology and Biochemistry, 65, 19.Google Scholar
Miller, G. E., Chen, E., Fok, A. K., Walker, H., Lim, A., Nicholls, E. F., et al. (2009). Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proceedings of the National Academy of Sciences, 106, 1471614721.Google Scholar
Moles, A., Kieffer, B. L., & D'Amato, F. R. (2004). Deficit in attachment behavior in mice lacking the μ-opioid receptor gene. Science, 304, 19831986.Google Scholar
Monsey, M. S., Ota, K. T., Akingbade, I. F., Hong, E. S., & Schafe, G. E. (2011). Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLOS ONE, 6, e19958.Google Scholar
Moore, C. L., & Morelli, G. A. (1979). Mother rats interact differently with male and female offspring. Journal of Comparative and Physiological Psychology, 93, 677.Google Scholar
Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38, 2338.Google Scholar
Morley-Fletcher, S., Rea, M., Maccari, S., & Laviola, G. (2003). Environmental enrichment during adolescence reverses the effects of prenatal stress on play behaviour and hpa axis reactivity in rats. European Journal of Neuroscience, 18, 33673374.Google Scholar
Mueller, B. R., & Bale, T. L. (2008). Sex-specific programming of offspring emotionality after stress early in pregnancy. Journal of Neuroscience, 28, 90559065.Google Scholar
Murgatroyd, C., Patchev, A. V., Wu, Y., Micale, V., Bockmuhl, Y., Fischer, D., et al. (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neuroscience, 12, 15591566.Google Scholar
Murgatroyd, C., Quinn, J. P., Sharp, H. M., Pickles, A., & Hill, J. (2015). Effects of prenatal and postnatal depression, and maternal stroking, at the glucocorticoid receptor gene. Translational Psychiatry, 5, e560.Google Scholar
Mychasiuk, R., Zahir, S., Schmold, N., Ilnytskyy, S., Kovalchuk, O., & Gibb, R. (2012). Parental enrichment and offspring development: Modifications to brain, behavior and the epigenome. Behavioural Brain Research, 228, 294298.Google Scholar
Nan, X., Ng, H.-H., Johnson, C. A., Laherty, C. D., Turner, B. M., Eisenman, R. N., et al. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393, 386389.Google Scholar
Nelson, E. E., & Panksepp, J. (1998). Brain substrates of infant–mother attachment: Contributions of opioids, oxytocin, and norepinephrine. Neuroscience & Biobehavioral Reviews, 22, 437452.Google Scholar
Ney, P. G. (1988). Transgenerational child abuse. Child Psychiatry and Human Development, 18, 151168.Google Scholar
O'Mahony, S. M., Marchesi, J. R., Scully, P., Codling, C., Ceolho, A.-M., Quigley, E. M. M., et al. (2009). Early life stress alters behavior, immunity, and microbiota in rats: Implications for irritable bowel syndrome and psychiatric illnesses. Biological Psychiatry, 65, 263267.Google Scholar
Patil, S. T., Zhang, L., Martenyi, F., Lowe, S. L., Jackson, K. A., Andreev, B. V., et al. (2007). Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: A randomized phase 2 clinical trial. Nature Medicine, 13, 11021107.Google Scholar
Peña, C. J., Monk, C., & Champagne, F. A. (2012). Epigenetic effects of prenatal stress on 11β-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLOS ONE, 7, e39791.Google Scholar
Perroud, N., Salzmann, A., Prada, P., Nicastro, R., Hoeppli, M., Furrer, S., et al. (2013). Response to psychotherapy in borderline personality disorder and methylation status of the bdnf gene. Translational Psychiatry, 3, e207.Google Scholar
Provençal, N., Suderman, M. J., Guillemin, C., Massart, R., Ruggiero, A., Wang, D., et al. (2012). The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. Journal of Neuroscience, 32, 1562615642.Google Scholar
Pusalkar, M., Suri, D., Kelkar, A., Bhattacharya, A., Galande, S., & Vaidya, V. A. (2016). Early stress evokes dysregulation of histone modifiers in the medial prefrontal cortex across the life span. Developmental Psychobiology, 58, 198210.Google Scholar
Ramsahoye, B. H., Biniszkiewicz, D., Lyko, F., Clark, V., Bird, A. P., & Jaenisch, R. (2000). Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proceedings of the National Academy of Sciences, 97, 52375242.Google Scholar
Ranta, S., Zhang, Y., Ross, B., Takkunen, E., Hirvasniemi, A., de la Chapelle, A., et al. (2000). Positional cloning and characterisation of the human DLGAP2 gene and its exclusion in progressive epilepsy with mental retardation. European Journal of Human Genetics, 8, 381384.Google Scholar
Ren, H., Collins, V., Clarke, S. J., Han, J.-S., Lam, P., Clay, F., et al. (2012). Epigenetic changes in response to Tai Chi practice: A pilot investigation of DNA methylation marks. Evidence-Based Complementary and Alternative Medicine, 2012, 841810.Google Scholar
Reuter, S., Gupta, S., Park, B., Goel, A., & Aggarwal, B. (2011). Epigenetic changes induced by curcumin and other natural compounds. Genes and Nutrition, 6, 93108.Google Scholar
Richmond, G., & Sachs, B. D. (1984). Maternal discrimination of pup sex in rats. Developmental Psychobiology, 17, 8789.Google Scholar
Roberts, S., Lester, K., Hudson, J., Rapee, R., Creswell, C., Cooper, P., et al. (2014). Serotonin tranporter methylation and response to cognitive behaviour therapy in children with anxiety disorders. Translational Psychiatry, 4, e444.Google Scholar
Robertson, J., Robertson, A. B., & Klungland, A. (2011). The presence of 5-hydroxymethylcytosine at the gene promoter and not in the gene body negatively regulates gene expression. Biochemical and Biophysical Research Communications, 411, 4043.Google Scholar
Rönn, T., Volkov, P., Davegårdh, C., Dayeh, T., Hall, E., Olsson, A. H., et al. (2013). A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLOS Genetics, 9, e1003572.Google Scholar
Rossi, C., Angelucci, A., Costantin, L., Braschi, C., Mazzantini, M., Babbini, F., et al. (2006). Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. European Journal of Neuroscience, 24, 18501856.Google Scholar
Roth, E. D., Roth, T. L., Money, K. M., SenGupta, S., Eason, D. E., & Sweatt, J. D. (2015). DNA methylation regulates neurophysiological spatial representation in memory formation. Neuroepigenetics, 2, 18.Google Scholar
Roth, T., Lubin, F., Funk, A., & Sweatt, J. (2009). Lasting epigenetic influence of early-life adversity on the BDNF gene. Biological Psychiatry, 65, 760769.Google Scholar
Roth, T., Matt, S., Chen, K., & Blaze, J. (2014). Bdnf DNA methylation modifications in the hippocampus and amygdala of male and female rats exposed to different caregiving environments outside the homecage. Developmental Psychobiology, 56, 17551763.Google Scholar
Roth, T., Zoladz, P., Sweatt, J., & Diamond, D. (2011). Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. Journal of Psychiatric Research, 45, 919926.Google Scholar
Roth, T. L., & Sullivan, R. M. (2006). Examining the role of endogenous opioids in learned odor–stroke associations in infant rats. Developmental Psychobiology, 48, 7178.CrossRefGoogle ScholarPubMed
3Rountree, M. R., Bachman, K. E., Herman, J. G., & Baylin, S. B. (2001). DNA methylation, chromatin inheritance, and cancer. Oncogene, 20, 31563165.Google Scholar
Rusiecki, J. A., Chen, L., Srikantan, V., Zhang, L., Yan, L., Polin, M. L., et al. (2012). DNA methylation in repetitive elements and post-traumatic stress disorder: A case-control study of us military service members. Epigenomics, 4, 2940.Google Scholar
Saiz, R. J., Carrasco, P. J., & Hernanz, A. (1991). Plasma neuropeptides in affective and anxiety disorders. Archivos de neurobiologia, 55, 15.Google Scholar
Sales, A. J., Biojone, C., Terceti, M. S., Guimarães, F. S., Gomes, M. V., & Joca, S. R. (2011). Antidepressant-like effect induced by systemic and intra-hippocampal administration of DNA methylation inhibitors. British Journal of Pharmacology, 164, 17111721.Google Scholar
Sanjana, N. E., Cong, L., Zhou, Y., Cunniff, M. M., Feng, G., & Zhang, F. (2012). A transcription activator-like effector toolbox for genome engineering. Nature Protocols, 7, 171192.Google Scholar
Sarkar, S., Abujamra, A. L., Loew, J. E., Forman, L. W., Perrine, S. P., & Faller, D. V. (2011). Histone deacetylase inhibitors reverse CpG methylation by regulating DNMT1 through ERK signaling. Anticancer Research, 31, 27232732.Google Scholar
Schroeder, F. A., Lin, C. L., Crusio, W. E., & Akbarian, S. (2007). Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biological Psychiatry, 62, 5564.Google Scholar
Sharma, R. P., Grayson, D. R., & Gavin, D. P. (2008). Histone deactylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: Analysis of the national brain databank microarray collection. Schizophrenia Research, 98, 111117.Google Scholar
Shen, L., Song, C.-X., He, C., & Zhang, Y. (2014). Mechanism and function of oxidative reversal of DNA and RNA methylation. Annual Review of Biochemistry, 83, 585614.Google Scholar
Shilling, P. D., & Feifel, D. (2008). The neurotensin-1 receptor agonist PD149163 blocks fear-potentiated startle. Pharmacology Biochemistry and Behavior, 90, 748752.Google Scholar
Shimabukuro, M., Jinno, Y., Fuke, C., & Okazaki, Y. (2006). Haloperidol treatment induces tissue- and sex-specific changes in DNA methylation: A control study using rats. Behavioral and Brain Functions, 2, 15.Google Scholar
Smith, A. K., Conneely, K. N., Kilaru, V., Mercer, K. B., Weiss, T. E., Bradley, B., et al. (2011). Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156, 700708.Google Scholar
Song, Y., Miyaki, K., Suzuki, T., Sasaki, Y., Tsutsumi, A., Kawakami, N., et al. (2014). Altered DNA methylation status of human brain derived neurotrophic factor gene could be useful as biomarker of depression. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 165, 357364.Google Scholar
St.-Cyr, S., & McGowan, P. (2015). Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor. Frontiers in Behavioral Neuroscience, 9, 145.Google Scholar
Sun, H., Damez-Werno, D. M., Scobie, K. N., Shao, N.-Y., Dias, C., Rabkin, J., et al. (2015). ACF chromatin-remodeling complex mediates stress-induced depressive-like behavior. Nature Medicine, 21, 11461153.Google Scholar
Szulwach, K. E., Li, X., Li, Y., Song, C.-X., Wu, H., Dai, Q., et al. (2011). 5-HMC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nature Neuroscience, 14, 16071616.Google Scholar
Toda, H., Boku, S., Nakagawa, S., Inoue, T., Kato, A., Takamura, N., et al. (2014). Maternal separation enhances conditioned fear and decreases the mrna levels of the neurotensin receptor 1 gene with hypermethylation of this gene in the rat amygdala. PLOS ONE, 9, e97421.Google Scholar
Tremolizzo, L., Doueiri, M.-S., Dong, E., Grayson, D. R., Davis, J., Pinna, G., et al. (2005). Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biological Psychiatry, 57, 500509.Google Scholar
Tsankova, N. M., Berton, O., Renthal, W., Kumar, A., Neve, R. L., & Nestler, E. J. (2006). Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience, 9, 519525.Google Scholar
Unternaehrer, E., Luers, P., Mill, J., Dempster, E., Meyer, A. H., Staehli, S., et al. (2012). Dynamic changes in DNA methylation of stress-associated genes (OXTR, BDNF) after acute psychosocial stress. Translational Psychiatry, 2, e150.Google Scholar
Unternaehrer, E., Meyer, A. H., Burkhardt, S. C., Dempster, E., Staehli, S., Theill, N., et al. (2015). Childhood maternal care is associated with DNA methylation of the genes for brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) in peripheral blood cells in adult men and women. Stress, 18, 451461.Google Scholar
Valinluck, V., Tsai, H.-H., Rogstad, D. K., Burdzy, A., Bird, A., & Sowers, L. C. (2004). Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Research, 32, 41004108.Google Scholar
Van Der Knaap, L. J., Oldehinkel, A. J., Verhulst, F. C., Van Oort, F. V., & Riese, H. (2015). Glucocorticoid receptor gene methylation and HPA-axis regulation in adolescents: The trails study. Psychoneuroendocrinology, 58, 4650.Google Scholar
Vijayendran, M., Beach, S., Plume, J. M., Brody, G., & Philibert, R. (2012). Effects of genotype and child abuse on DNA methylation and gene expression at the serotonin transporter. Frontiers in Psychiatry, 3, 55.Google Scholar
Vucetic, Z., Kimmel, J., Totoki, K., Hollenbeck, E., & Reyes, T. M. (2010). Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology, 151, 47564764.Google Scholar
Waddington, C. H. (1957). The strategy of the genes: A discussion of some aspects of theoretical biology. London: Allen & Unwin.Google Scholar
Waterland, R. A., & Jirtle, R. L. (2003). Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Molecular and Cellular Biology, 23, 52935300.Google Scholar
Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.Google Scholar
Weaver, I. C., Champagne, F. A., Brown, S. E., Dymov, S., Sharma, S., Meaney, M. J., et al. (2005). Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: Altering epigenetic marking later in life. Journal of Neuroscience, 25, 1104511054.Google Scholar
Weaver, I. C., Meaney, M. J., & Szyf, M. (2006). Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proceedings of the National Academy of Sciences, 103, 34803485.Google Scholar
Weder, N., Zhang, H., Jensen, K., Yang, B. Z., Simen, A., Jackowski, A., et al. (2016). Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 417424.Google Scholar
Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Förster, E., Sweatt, J. D., et al. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. Journal of Biological Chemistry, 277, 3994439952.Google Scholar
Weller, A., & Feldman, R. (2003). Emotion regulation and touch in infants: The role of cholecystokinin and opioids. Peptides, 24, 779788.Google Scholar
Wilkinson, M. B., Xiao, G., Kumar, A., LaPlant, Q., Renthal, W., Sikder, D., et al. (2009). Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. Journal of Neuroscience, 29, 78207832.Google Scholar
Wolff, G. L., Kodell, R. L., Moore, S. R., & Cooney, C. A. (1998). Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB Journal, 12, 949957.Google Scholar
Wu, Y., Patchev, A. V., Daniel, G., Almeida, O. F. X., & Spengler, D. (2014). Early-life stress reduces DNA methylation of the Pomc gene in male mice. Endocrinology, 155, 17511762.Google Scholar
Yehuda, R., Daskalakis, N. P., Bierer, L. M., Bader, H. N., Klengel, T., Holsboer, F., et al. (2015). Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biological Psychiatry. Advance online publication.Google Scholar
Yehuda, R., Daskalakis, N. P., Lehrner, A., Desarnaud, F., Bader, H. N., Makotkine, I., et al. (2014). Influences of maternal and paternal ptsd on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring. American Journal of Psychiatry, 171, 872880.Google Scholar
Zaidi, L. Y., Knutson, J. F., & Mehm, J. G. (1989). Transgenerational patterns of abusive parenting: Analog and clinical tests. Aggressive Behavior, 15, 137152.Google Scholar
Zhang, Y., & Reinberg, D. (2001). Transcription regulation by histone methylation: Interplay between different covalent modifications of the core histone tails. Genes and Development, 15, 234323s60.Google Scholar