Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T18:17:15.925Z Has data issue: false hasContentIssue false

The gene in its natural habitat: The importance of gene–trait interactions

Published online by Cambridge University Press:  15 October 2012

Colin G. DeYoung*
Affiliation:
University of Minnesota
Rachel Clark
Affiliation:
University of Minnesota
*
Address correspondence and reprint requests to: Colin G. DeYoung, Department of Psychology, 75 East River Road, University of Minnesota, Minneapolis, MN 55455; E-mail: [email protected].

Abstract

Despite the substantial heritability of nearly all psychological traits, it has been difficult to identify specific genetic variants that account for more than a tiny percentage of genetic variance in phenotypes. Common explanations for this “missing heritability” include massive polygenicity, rare variants, epigenetics, epistasis, and gene–environment interactions. Gene–trait (G × T) interaction is another concept useful for understanding the lack of obvious genetic main effects. Both genes and environments are distal contributors to human behavior, but the brain is the proximal driver of behavior. The effect of any single genetic variant is dependent on the configuration of the brain in which it is expressed. One method to begin studying how single genes interact with variations in the rest of the brain is to investigate G × T interactions. A psychological trait reflects a characteristic pattern of psychological function (and, therefore, of brain function), which has its origin in the cumulative effects of both the genome and the environment. A trait therefore describes variation in the broad organismic context in which any single gene operates. We describe the nature and significance of G × T interactions for understanding psychopathology and normal trait variation, which are illustrated with empirical examples.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnsten, A. F. T., & Robbins, T. W. (2002). Neurochemical modulation of prefrontal cortical function. In Stuss, D. T. & Knight, R. T. (Eds.), Principles of frontal lobe function (pp. 5184). New York: Oxford University Press.CrossRefGoogle Scholar
Asghari, V., Sanyal, S., Buchwaldt, S., Paterson, A., Jovanovic, V., & Van Tol, H. M. M. (1995). Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. Journal of Neurochemistry, 65, 11571165.CrossRefGoogle ScholarPubMed
Barnett, J. H., Scoriels, L., & Munafo, M. R. (2008). Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biological Psychiatry, 64, 137144.CrossRefGoogle ScholarPubMed
Bau, C. H. D., Almeida, S., & Hutz, M. H. (2000). The TaqI A1 allele of the dopamine D2 receptor gene and alcoholism in Brazil: Association and interaction with stress and harm avoidance on severity prediction. American Journal of Medical Genetics, 96, 302306.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Berman, S., Ozkaragoz, T., Young, R. M., & Noble, E. P. (2002). D2 dopamine receptor gene polymorphism discriminates two kinds of novelty seeking. Personality & Individual Differences, 33, 867882.CrossRefGoogle Scholar
Biederman, J., Kim, J. W., Doyle, A. E., Mick, E., Fagerness, J., Smoller, J. W., et al. (2008). Sexually dimorphic effects of four genes (COMT, SLC6A2, MAOA, SLC6A4) in genetic associations of ADHD: A preliminary study. American Journal of Medical Genetics, Part B, Neuropsychiatric Genetics, 147B, 15111518.CrossRefGoogle ScholarPubMed
Blasi, G., Lo Bianco, L., Taurisano, P., Gelao, B., Romano, R., Fazio, L., et al. (2009). Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans. Journal of Neuroscience, 29, 1481214819.CrossRefGoogle ScholarPubMed
Bouchard, T. J., & McGue, M. (2003). Genetic and environmental influences on human psychological differences. Journal of Neurobiology, 54, 445.CrossRefGoogle ScholarPubMed
Bush, G., & Shin, L. M. (2006). The multi-source interference task: An fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network. Nature Protocols, 1, 308313.CrossRefGoogle ScholarPubMed
Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry, 167, 509527.CrossRefGoogle Scholar
Caspi, A., Langley, K., Milne, B., Moffitt, T. E., O'Donovan, M., Owen, M. J., et al. (2008). A replicated molecular genetic basis for subtyping antisocial behavior in children with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 65, 203210.CrossRefGoogle ScholarPubMed
Chabris, C. F., Hebert, B. M., Benjamin, D. J., Beauchamp, J. P., Cesarini, D., van der Loos, M. J. H. M., et al. (in press). Most reported genetic associations with general intelligence are probably false positives. Psychological Science.Google Scholar
Chambers, R. A., Taylor, J. R., & Potenza, M. N. (2003). Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. American Journal of Psychiatry, 160, 10411052.CrossRefGoogle ScholarPubMed
Conrod, P. J., Castellanos-Ryan, N., & Strang, J. (2010). Brief, personality-targeted coping skills interventions and survival as a non-drug user over a 2-year period during adolescence. Archives of General Psychiatry, 67, 8593.CrossRefGoogle Scholar
Conrod, P. J., Stewart, S. H., Comeau, N., & Maclean, A. M. (2006). Efficacy of cognitive-behavioral interventions targeting personality risk factors for youth alcohol misuse. Journal of Clinical Child & Adolescent Psychology, 35, 550563.CrossRefGoogle ScholarPubMed
Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7, 547552.CrossRefGoogle ScholarPubMed
Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., et al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16, 9961005.CrossRefGoogle ScholarPubMed
DeYoung, C. G. (2010a). Personality neuroscience and the biology of traits. Social & Personality Psychology Compass, 4, 11651180.CrossRefGoogle Scholar
DeYoung, C. G. (2010b). Toward a theory of the Big Five. Psychological Inquiry, 21, 2633.CrossRefGoogle Scholar
DeYoung, C. G., Grazioplene, R. G., & Peterson, J. B. (2012). From madness to genius: The openness/intellect trait domain as a paradoxical simplex. Journal of Research in Personality, 46, 6378.CrossRefGoogle Scholar
DeYoung, C. G., & Gray, J. R. (2009). Personality neuroscience: Explaining individual differences in affect, behavior, and cognition. In Corr, P. J. & Matthews, G. (Eds.), The Cambridge handbook of personality psychology (pp. 323346). New York: Cambridge University Press.CrossRefGoogle Scholar
DeYoung, C. G., Peterson, J. B., Séguin, J. R., Mejia, J. M., Pihl, R. O., Beitchman, J. H., et al. (2006). The dopamine D4 receptor gene and moderation of the association between externalizing behavior and IQ. Archives of General Psychiatry, 63, 14101416.CrossRefGoogle ScholarPubMed
DeYoung, C. G., Shamosh, N. A., Green, A. E., Braver, T. S., & Gray, J. R. (2009). Intellect as distinct from Openness: Differences revealed by fMRI of working memory. Journal of Personality & Social Psychology, 97, 883892.CrossRefGoogle ScholarPubMed
Drabant, E. M., Hariri, A. R., Meyer-Lindenberg, A., Munoz, K. E., Mattay, V. S., Kolachana, B. S., et al. (2006). Catechol-O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation. Archives of General Psychiatry, 63, 13961406.CrossRefGoogle ScholarPubMed
Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168, 10411049.CrossRefGoogle ScholarPubMed
Eaton, N. R., Krueger, R. F., South, S. C., Simms, L., & Clark, L. A. (2011). Contrasting prototypes and dimensions in the classification of personality pathology: Evidence that dimensions, but not prototypes, are robust. Psychological Medicine, 41, 11511163.CrossRefGoogle Scholar
Edmundson, M., Lynam, D. R., Miller, J. D., Gore, W. L., & Widiger, T. A. (2011). A five-factor measure of schizotypal personality traits. Assessment. Advance online publication. doi:10.1177/1073191111408228CrossRefGoogle ScholarPubMed
Faraone, S. V., Perlis, R. H., Doyle, A. E., Smoller, J. W., Goralnick, J. J., Holmgren, M. A., et al. (2005). Molecular genetics of attention-deficit/hyperactivity disorder. Biological Psychiatry, 57, 13131323.CrossRefGoogle ScholarPubMed
Goldstein, D. B. (2009). Common genetic variation and human traits. New England Journal of Medicine, 360, 16961698.CrossRefGoogle ScholarPubMed
Gornick, M. C., Addington, A., Shaw, P., Bobb, A. J., Sharp, W., Greenstein, D., et al. (2007). Association of the dopamine receptor D4 (DRD4) gene 7-repeat allele with children with attention-deficit/hyperactivity disorder (ADHD): An update. American Journal of Medical Genetics, Part B, Neuropsychiatric Genetics, 144B, 379382.CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J. M., DeYoung, C. G., Fossella, J. A., & Gray, J. R. (2012). A gene–brain-cognition pathway: Prefrontal activity mediates the effect of COMT on cognitive control and IQ. Cerebral Cortex. Advance online publication. doi:10.1093/cercor/bhs035Google ScholarPubMed
Green, A. E., Munafo, M. R., DeYoung, C. G., Fossella, J. A., Fan, J., & Gray, J. R. (2008). Using genetic data in cognitive neuroscience: From growing pains to genuine insights. Nature Reviews Neuroscience, 9, 710720.CrossRefGoogle ScholarPubMed
Griffith, J. W., Zinbarg, R. E., Craske, M. G., Mineka, S., Rose, R. D., Waters, A. M., et al. (2010). Neuroticism as a common dimension in the internalizing disorders. Psychological Medicine, 40, 11251136.CrossRefGoogle ScholarPubMed
Harrison, P. J., & Tunbridge, E. M. (2008). Catechol-O-methyltransferase (COMT): A gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders. Neuropsychopharmocology, 33, 30373045.CrossRefGoogle ScholarPubMed
Hatchwell, E., & Greally, J. M. (2007). The potential role of epigenomic regulation in complex human disease. Trends in Genetics, 23, 588595.CrossRefGoogle ScholarPubMed
Hu, S., Brody, C. L., Fisher, C., Gunzerath, L., Nelson, M. L., Sabol, S. Z., et al. (2000). Interaction between the serotonin transporter gene and neuroticism in cigarette smoking behavior. Molecular Psychiatry, 5, 181188.CrossRefGoogle ScholarPubMed
International HapMap 3 Consortium. (2010). Integrating common and rare genetic variation in diverse human populations. Nature, 467, 5258.CrossRefGoogle Scholar
International Schizophrenia Consortium, Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O'Donovan, M. C., et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460, 748752.Google ScholarPubMed
Jedema, H. P., Gianaros, P. J., Greer, P. J., Kerr, D. D., Liu, S., Higley, J. D., et al. (2010). Cognitive impact of genetic variation of the serotonin transporter in primates is associated with differences in brain morphology rather than serotonin neurotransmission. Molecular Psychiatry, 15, 512522.CrossRefGoogle ScholarPubMed
Jovanovic, V., Guan, H. C., & Van Tol, H. H. M. (1999). Comparative pharmacological and functional analysis of the human dopamine D4.2 and D4.10 receptor variants. Pharmacogenetics, 9, 561568.CrossRefGoogle ScholarPubMed
Kendler, K. S., Prescott, C. A., Myers, J., & Neale, M. C. (2003). The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Archives of General Psychiatry, 60, 929937.CrossRefGoogle ScholarPubMed
Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM–IV disorders in the National Comorbidity Survey replication. Archives of General Psychiatry, 62, 617627.CrossRefGoogle ScholarPubMed
Koenen, K. C., Caspi, A., Moffitt, T. E., Rijsdijk, F., & Taylor, A. (2006). Genetic influences on the overlap between low IQ and antisocial behavior in young children. Journal of Abnormal Psychology, 115, 787797.CrossRefGoogle ScholarPubMed
Krueger, R. F. (1999). The structure of common mental disorders. Archives of General Psychiatry, 56, 921926.CrossRefGoogle ScholarPubMed
Krueger, R. F. (2005). Continuity of Axes I and II: Toward a unified model of personality, personality disorders, and clinical disorders. Journal of Personality Disorders, 19, 233261.CrossRefGoogle Scholar
Krueger, R. F., Derringer, J., Markon, K. E., Watson, D., & Skodol, A. E. (2011). Initial construction of a maladaptive personality trait model and inventory for DSM-5. Psychological Medicine. Advance online publication. doi:10.1017/S0033291711002674Google ScholarPubMed
Krueger, R. F., Eaton, N. R., Clark, L. A., Watson, D., Markon, K. E., Derringer, J., et al. (2011). Deriving an empirical structure of personality pathology for DSM-5. Journal of Personality Disorders, 25, 170191.CrossRefGoogle ScholarPubMed
Krueger, R. F., Hicks, B. M., Patrick, C. J., Carlson, S. R., Iacono, W. G., & McGue, M. (2002). Etiologic connections among substance dependence, antisocial behavior, and personality: Modeling the externalizing spectrum. Journal of Abnormal Psychology, 111, 411424.CrossRefGoogle ScholarPubMed
Krueger, R. F., Watson, D., & Barlow, D. H. (2005). Introduction to the special section: Toward a dimensionally based taxonomy of psychopathology. Journal of Abnormal Psychology, 114, 491493.CrossRefGoogle Scholar
Kuntsi, J., Eley, T. C., Taylor, A., Hughes, C., Asherson, P., Caspi, A., et al. (2004). Co-occurrence of ADHD and low IQ has genetic origins. American Journal of Medical Genetics, Part B, Neuropsychiatric Genetics, 124B, 4147.CrossRefGoogle ScholarPubMed
Lahti, R. A., Roberts, R. C., Cochrane, E. V., Primus, R. J., Gallager, D. W., Conley, R. R., et al. (1998). Direct determination of dopamine D4 receptors in normal and schizophrenic postmortem brain tissue: A [3H]NGD-94–1 study. Molecular Psychiatry, 3, 528533.CrossRefGoogle Scholar
Lango Allen, H., Estrada, K., Lettre, G., Berndt, S. I., Weedon, M. N., Rivadeneira, F., et al. (2010). Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature, 467, 832838.CrossRefGoogle ScholarPubMed
Lee, S. H., DeCandia, T., Ripke, S., Yang, J., Sullivan, P. S., Goddard, M. E., et al. (2012). Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nature Genetics, 44, 247250.CrossRefGoogle ScholarPubMed
Lerman, C., Caporaso, N. E., Audrain, J., Main, D., Cobb, B., Boyd, N. R., et al. (2000). Interacting effects of the serotonin transporter gene and neuroticism in smoking practices and nicotine dependence. Molecular Psychiatry, 5, 189192.CrossRefGoogle ScholarPubMed
Maher, B. (2008). Personal genomes: The case of the missing heritability. Nature, 456, 1821.CrossRefGoogle ScholarPubMed
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747753.CrossRefGoogle ScholarPubMed
Markon, K. E. (2010). Modeling psychopathology structure: A symptom-level analysis of Axis I and II disorders. Psychological Medicine, 40, 273288.CrossRefGoogle ScholarPubMed
Markon, K. E., Chmielewski, M., & Miller, C. J. (2011). The reliability and validity of discrete and continuous measures of psychopathology: A quantitative review. Psychological Bulletin, 137, 856879.CrossRefGoogle ScholarPubMed
Markon, K. E., Krueger, R. F., & Watson, D. (2005). Delineating the structure of normal and abnormal personality: An integrative hierarchical approach. Journal of Personality & Social Psychology, 88, 139157.CrossRefGoogle ScholarPubMed
Marques, F. Z. C., Hutz, M. H., & Bau, C. H. D. (2006). Influence of the serotonin transporter gene on comorbid disorders among alcohol-dependent individuals. Psychiatric Genetics, 16, 125131.CrossRefGoogle ScholarPubMed
McHugh, R. K., Hofmann, S. G., Asnaani, A., Sawyer, A. T., & Otto, M. W. (2010). The serotonin transporter gene and risk for alcohol dependence: A meta-analytic review. Drug & Alcohol Dependence, 108, 16.CrossRefGoogle ScholarPubMed
Meador-Woodruff, J. H., Damask, S. P., Wang, J., Haroutunian, V., Davis, K. L., & Watson, S. J. (1996). Dopamine receptor mRNA expression in human striatum and neocortex. Neuropsychopharmacology, 15, 1729.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Nichols, T., Callicott, H., Ding, J., Kolachana, B., Buckholtz, J., et al. (2006). Impact of complex genetic variation in COMT on human brain function. Molecular Psychiatry, 11, 867877.CrossRefGoogle ScholarPubMed
Mier, D., Kirsch, P., & Meyer-Lindenberg, A. (2010). Neural substrates of pleiotropic action of genetic variation in COMT: A meta-analysis. Molecular Psychiatry, 15, 918927.CrossRefGoogle ScholarPubMed
Moffitt, T. E., Harrington, H., Caspi, A., Kim-Cohen, K., Goldberg, D., Gregory, A. M., et al. (2007). Depression and generalized anxiety disorder: Cumulative and sequential comorbidity in a birth cohort followed prospectively to age 32 years. Archives of General Psychiatry, 64, 651660.CrossRefGoogle Scholar
Monteleone, P., Santonastaso, P., Mauri, M., Bellodi, L., Erzegovesi, S., Fuschino, A., et al. (2006). Investigation of the serotonin transporter regulatory region polymorphism in bulimia nervosa: Relationships to harm avoidance, nutritional parameters, and psychiatric comorbidity. Psychosomatic Medicine, 68, 99103.CrossRefGoogle ScholarPubMed
Munafo, M. R., Brown, S. M., & Hariri, A. R. (2008). Serotonin transporter (5-HTTLPR) genotype and amygdala activation: A meta-analysis. Biological Psychiatry, 63, 852857.CrossRefGoogle ScholarPubMed
Munafo, M. R., Freimer, N. B., Ng, W., Ophoff, R., Veijola, J., Miettunen, J., et al. (2009). 5-HTTLPR genotype and anxiety-related personality traits: A meta-analysis and new data. American Journal of Medical Genetics Part B, 150B, 271281.CrossRefGoogle ScholarPubMed
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience & Biobehavioral Reviews, 33, 10041023.CrossRefGoogle ScholarPubMed
Neumeister, A., Hu, X. Z., Luckenbaugh, D. A., Schwarz, M., Nugent, A. C., Bonne, O., et al. (2006). Differential effects of 5-HTTLPR genotypes on the behavioral and neural responses to tryptophan depletion in patients with major depression and controls. Archives of General Psychiatry, 63, 978986.CrossRefGoogle ScholarPubMed
Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., et al. (2005). 5-HTTLPR polymorphism impacts human cingulated–amygdala interactions: A genetic susceptibility mechanism for depression. Nature Neuroscience, 8, 828834.CrossRefGoogle ScholarPubMed
Plomin, R. Corley, R., DeFries, J. C., & Fulker, D.W. (1990). Individual differences in television viewing in early childhood: Nature as well as nurture. Psychological Science, 1, 371377.CrossRefGoogle Scholar
Regier, D. A., Rae, D. S., Narrow, W. E., Kaelber, C. T., & Schatzberg, A. F. (1998). Prevalence of anxiety and their comorbidity with mood and addictive disorders. British Journal of Psychiatry, 173, 2428.CrossRefGoogle Scholar
Riemann, R., Angleitner, A., & Strelau, J. (1997). Genetic and environmental influences on personality: A study of twins reared together using the self- and peer report NEO-FFI scales. Journal of Personality, 65, 449476.CrossRefGoogle Scholar
Schoots, O., & Van Tol, H. H. M. (2003). The human dopamine receptor repeat sequences modulate expression. Pharmacogenomic Journal, 3, 343348.CrossRefGoogle ScholarPubMed
Shehzad, Z., DeYoung, C. G., Kang, Y., Grigorenko, E. L., & Gray, J. R. (2012). Interaction of COMT Val158Met and externalizing behavior: Relation to prefrontal brain activity and behavioral performance. NeuroImage, 60, 21582168.CrossRefGoogle ScholarPubMed
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22, 13591366.CrossRefGoogle ScholarPubMed
Solanto, M. V. (1998). Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: A review and integration. Behavioural Brain Research, 94, 127152.CrossRefGoogle ScholarPubMed
Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depression: Review and meta-analysis. American Journal of Psychiatry, 157, 15521562.CrossRefGoogle ScholarPubMed
Swanson, J., Oosterlaan, J., Murias, M., Schuck, S., Flodman, P., Spence, M. A., et al. (2000). Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention. Proceedings of the National Academy of Science, 97, 47544759.CrossRefGoogle ScholarPubMed
Tunbridge, E. M., Harrison, P. J., & Weinberger, D. R. (2006). Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biological Psychiatry, 60, 141151.CrossRefGoogle ScholarPubMed
Turkheimer, E. (2000). Three laws of behavior genetics and what they mean. Current Directions in Psychological Science, 9, 160164.CrossRefGoogle Scholar
Uher, R., Caspi, A., Houts, R., Sugden, K., Williams, B., Poulton, R., et al. (2011). Serotonin transporter gene moderates childhood maltreatment's effects on persistent but not single-episode depression: Replications and implications for resolving inconsistent results. Journal of Affective Disorders, 135, 5665.CrossRefGoogle Scholar
Widiger, T. A. (2011). Integrating normal and abnormal personality structure: A proposal for DSM-V. Journal of Personality Disorders, 25, 338363.CrossRefGoogle ScholarPubMed
Wolf, E. J., Miller, M. W., Krueger, R. F., Lyons, M. J., Tsuang, M. T., & Koenen, K. C. (2010). Posttraumatic stress disorder and the structure of comorbidity. Journal of Abnormal Psychology, 119, 320330.CrossRefGoogle ScholarPubMed
Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., et al. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42, 565569.CrossRefGoogle ScholarPubMed
Zuckerman, M. (2005). Psychobiology of personality (2nd ed., rev.). New York: Cambridge University Press.CrossRefGoogle Scholar