Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T16:44:25.550Z Has data issue: false hasContentIssue false

Gene × Environment interactions in speech sound disorder predict language and preliteracy outcomes

Published online by Cambridge University Press:  11 October 2007

Lauren M. McGrath*
Affiliation:
University of Denver
Bruce F. Pennington
Affiliation:
University of Denver
Erik G. Willcutt
Affiliation:
University of Colorado at Boulder
Richard Boada
Affiliation:
University of Colorado at Denver
Lawrence D. Shriberg
Affiliation:
University of Wisconsin–Madison
Shelley D. Smith
Affiliation:
University of Nebraska
*
Address correspondence and reprint requests to: Lauren M. McGrath, University of Denver, Department of Psychology, Frontier Hall, 2155 S. Race Street, Denver, CO 80209; E-mail: [email protected].

Abstract

Few studies have investigated the role of gene × environment interactions (G × E) in speech, language, and literacy disorders. Currently, there are two theoretical models, the diathesis–stress model and the bioecological model, that make opposite predictions about the expected direction of G × E, because environmental risk factors may either strengthen or weaken the effect of genes on phenotypes. The purpose of the current study was to test for G × E at two speech sound disorder and reading disability linkage peaks using a sib-pair linkage design and continuous measures of socioeconomic status, home language/literacy environment, and number of ear infections. The interactions were tested using composite speech, language, and preliteracy phenotypes and previously identified linkage peaks on 6p22 and 15q21. Results showed five G × E at both the 6p22 and 15q21 locations across several phenotypes and environmental measures. Four of the five interactions were consistent with the bioecological model of G × E. Each of these four interactions involved environmental measures of the home language/literacy environment. The only interaction that was consistent with the diathesis–stress model was one involving the number of ear infections as the environmental risk variable. The direction of these interactions and possible interpretations are explored in the discussion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abecasis, G. R., Cherny, S. S., Cookson, W. O., & Cardon, L. R. (2002). Merlin—Rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genetics, 30, 97101.CrossRefGoogle ScholarPubMed
Abecasis, G. R., & Wigginton, J. E. (2005). Handling marker–marker linkage disequilibrium: Pedigree analysis with clustered markers. American Journal of Human Genetics, 77, 754767.CrossRefGoogle ScholarPubMed
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.Google Scholar
Allen, L., Cipielewski, J., & Stanovich, K. E. (1992). Multiple indicators of children's reading habits and attitudes: Construct validity and cognitive correlates. Journal of Educational Psychology, 84, 489503.CrossRefGoogle Scholar
Asbury, K., Wachs, T. D., & Plomin, R. (2005). Environmental moderators of genetic influence on verbal and nonverbal abilities in early childhood. Intelligence, 33, 643661.CrossRefGoogle Scholar
Bartlett, C. W., Flax, J. F., Logue, M. W., Vieland, V. J., Bassett, A. S., Tallal, P., et al. (2002). A major susceptibility locus for specific language impairment is located on 13q21. American Journal of Human Genetics, 71, 4555.CrossRefGoogle Scholar
Beitchman, J. H., Nair, R., Clegg, M., Ferguson, B., & Patel, P. G. (1986). Prevalence of psychiatric disorders in children with speech and language disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 25, 528535.Google ScholarPubMed
Bellini, G., Bravaccio, C., Calamoneri, F., Donatella Cocuzza, M., Fiorillo, P., Gagliano, A., et al. (2005). No evidence for association between dyslexia and dyx1c1 functional variants in a group of children and adolescents from southern Italy. Journal of Molecular Neuroscience, 27, 311314.CrossRefGoogle Scholar
Bird, J., & Bishop, D. (1992). Perception and awareness of phonemes in phonologically impaired children. European Journal of Disorders of Communication, 27, 289311.CrossRefGoogle ScholarPubMed
Bishop, D. V. M. (1997a). Pre- and perinatal hazards and family background in children with specific language impairments: A study of twins. Brain and Language, 56, 126.CrossRefGoogle ScholarPubMed
Bishop, D. V. M. (1997b). Uncommon understanding: Development and disorders of language comprehension in children. Cambridge: Psychology Press.Google Scholar
Bishop, D. V. M., & Adams, C. (1990). A prospective study of the relationship between specific language impairment, phonological disorders and reading retardation. Journal of Child Psychology and Psychiatry, 31, 10271050.CrossRefGoogle ScholarPubMed
Bradley, R. H. (1993). Children's home environments, health, behavior, and intervention efforts: A review using the home inventory as a marker measure. Genetic, Social, and General Psychology Monographs, 119, 437490.Google ScholarPubMed
Bronfenbrenner, U., & Ceci, S. J. (1994). Nature–nurture reconceptualized in developmental perspective: A bioecological model. Psychological Review, 101, 568586.CrossRefGoogle ScholarPubMed
Bus, A. G., van IJzendoorn, M. H., & Pellegrini, A. D. (1995). Joint book reading makes for success in learning to read: A meta-analysis on intergenerational transmission of literacy. Review of Educational Research, 65, 121.CrossRefGoogle Scholar
Byrne, B., Delaland, C., Fielding-Barnsley, R., Quain, P., Samuelsson, S., Hoien, T., et al. (2002). Longitudinal twin study of early reading development in three countries: Preliminary results. Annals of Dyslexia, 52, 49.CrossRefGoogle Scholar
Byrne, B., Wadsworth, S., Corley, R., Samuelsson, S., Quain, P., DeFries, J. C., et al. (2005). Longitudinal twin study of early literacy development: Preschool and kindergarten phases. Scientific Studies of Reading, 9, 219.CrossRefGoogle Scholar
Cadoret, R. J., Yates, W. R., Troughton, E., Woodworth, G., & Stewart, M. A. (1995). Genetic–environmental interaction in the genesis of aggressivity and conduct disorders. Archives of General Psychiatry, 52, 916924.CrossRefGoogle ScholarPubMed
Caldwell, B. M., & Bradley, R. H. (1984). Home Observation for Measurement of the Environment. Little Rock, AR: University of Arkansas at Little Rock.Google Scholar
Campbell, T. F., Dollaghan, C. A., Rockette, H. E., Paradise, J. L., Feldman, H. M., Shriberg, L. D., et al. (2003). Risk factors for speech delay of unknown origin in 3-year-old children. Child Development, 74, 346357.CrossRefGoogle ScholarPubMed
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Colledge, E., Bishop, D. V. M., Koeppen-Schomerus, G., Price, T. S., Happe, F. G., Eley, T. C., et al. (2002). The structure of language abilities at 4 years: A twin study. Developmental Psychology, 38, 749757.CrossRefGoogle Scholar
Cope, N., Harold, D., Hill, G., Moskvina, V., Stevenson, J., Holmans, P., et al. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. American Journal of Human Genetics, 76, 581591.CrossRefGoogle ScholarPubMed
Cope, N., Hill, G., van den Bree, M., Harold, D., Moskvina, V., Green, E. K., et al. (2005). No support for association between dyslexia susceptibility 1 candidate 1 and developmental dyslexia. Molecular Psychiatry, 10, 237238.CrossRefGoogle ScholarPubMed
Deffenbacher, K. E., Kenyon, J. B., Hoover, D. M., Olson, R. K., Pennington, B. F., DeFries, J. C., et al. (2004). Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: Linkage and association analyses. Human Genetics, 115, 128138.CrossRefGoogle ScholarPubMed
DeFries, J. C., & Fulker, D. W. (1985). Multiple regression analysis of twin data. Behavior Genetics, 15, 467473.CrossRefGoogle ScholarPubMed
DeFries, J. C., & Fulker, D. W. (1988). Multiple regression analysis of twin data: Etiology of deviant scores versus individual differences. Acta Geneticae Medicae et Gemellologiae, 37, 205216.CrossRefGoogle ScholarPubMed
DeFries, J. C., Fulker, D. W., & LaBuda, M. C. (1987). Evidence for a genetic aetiology in reading disability of twins. Nature, 329, 537539.CrossRefGoogle ScholarPubMed
DeFries, J. C., & Gillis, J. J. (1991). Etiology of reading deficits in learning disabilities: Quantitative genetic analysis. In Obrzut, J. E. & Hynd, G. W. (Eds.), Neuropsychological foundations of learning disabilities: A handbook of issues, methods, and practice (pp. 2947). San Diego, CA: Academic Press.Google Scholar
Dollaghan, C., & Campbell, T. F. (1998). Nonword repetition and child language impairment. Journal of Speech, Language, and Hearing Research, 41, 11361146.CrossRefGoogle ScholarPubMed
Dunning, D. B., Mason, J. M., & Stewart, J. P. (1994). Reading to preschoolers: A response to Scarborough and Dorich (1994) and recommendations for future research. Developmental Review, 14, 324339.CrossRefGoogle Scholar
Eley, T. C., Sugden, K., Corsico, A., Gregory, A. M., Sham, P., McGuffin, P., et al. (2004). Gene–environment interaction analysis of serotonin system markers with adolescent depression. Molecular Psychiatry, 9, 908915.CrossRefGoogle ScholarPubMed
Elliott, C. D. (1990). Differential Ability Scales. San Antonio, TX: Psychological Corporation.Google Scholar
Faraone, S. V., Tsuang, M. T., & Tsuang, D. W. (1999). Genetics of mental disorders: A guide for students, clinicians, and researchers. New York: Guilford Press.Google Scholar
Feldman, H. M., Dollaghan, C. A., Campbell, T. F., Colborn, D. K., Janosky, J., Kurs-Lasky, M., et al. (2003). Parent-reported language skills in relation to otitis media during the first 3 years of life. Journal of Speech, Language, and Hearing Research, 46, 273287.CrossRefGoogle ScholarPubMed
Felsenfeld, S., McGue, M., & Broen, P. A. (1995). Familial aggregation of phonological disorders: Results from a 28-year follow-up. Journal of Speech and Hearing Research, 38, 10911107.CrossRefGoogle ScholarPubMed
Fisher, S. E., & DeFries, J. C. (2002). Developmental dyslexia: Genetic dissection of a complex cognitive trait. Nature Reviews Neuroscience, 3, 767780.CrossRefGoogle ScholarPubMed
Fisher, S. E., & Francks, C. (2006). Genes, cognition and dyslexia: Learning to read the genome. Trends in Cognitive Sciences, 10, 250257.CrossRefGoogle ScholarPubMed
Francks, C., Paracchini, S., Smith, S. D., Richardson, A. J., Scerri, T. S., Cardon, L. R., et al. (2004). A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. American Journal of Human Genetics, 75, 10461058.CrossRefGoogle ScholarPubMed
Fulker, D. W., Cardon, L. R., DeFries, J. C., Kimberling, W. J., Pennington, B. F., & Smith, S. D. (1991). Multiple regression analysis of sib-pair data on reading to detect quantitative trait loci. Reading & Writing, 3, 299313.CrossRefGoogle Scholar
Gathercole, S. E., & Baddeley, A. D. (1990). Phonological memory deficits in language disordered children: Is there a causal connection? Journal of Memory and Language, 29, 336.CrossRefGoogle Scholar
Gilger, J. W., Ho, H.-Z., Whipple, A. D., & Spitz, R. (2001). Genotype–environment correlations for language-related abilities. Journal of Learning Disabilities, 34, 492502.CrossRefGoogle ScholarPubMed
Goldman, R., & Fristoe, M. (1986). The Goldman Fristoe Test of Articulation. Circle Pine, MN: American Guidance Service.Google Scholar
Gottesman, I. (1963). Genetic aspects of intelligent behavior. In Ellis, N. (Ed.), The handbook of mental deficiency: Psychological theory and research (pp. 253296). New York: McGraw–Hill.Google Scholar
Grigorenko, E. L. (2005). The inherent complexities of gene–environment interactions. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60, 5364.CrossRefGoogle ScholarPubMed
Grigorenko, E. L., Wood, F. B., Meyer, M. S., Hart, L. A., Speed, W. C., Shuster, A., et al. (1997). Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. American Journal of Human Genetics, 60, 2739.Google ScholarPubMed
Hart, B., & Risley, T. R. (1992). American parenting of language-learning children: Persisting differences in family–child interactions observed in natural home environments. Developmental Psychology, 28, 10961105.CrossRefGoogle Scholar
Hayden, D. A., & Square, P. (1997). The Verbal Motor Production Assessment for Children (VMPAC). San Antonio, TX: Psychological Corporation.Google Scholar
Holm, V. A., & Kunze, L. H. (1969). Effect of chronic otitis media on language and speech development. Pediatrics, 43, 833839.CrossRefGoogle ScholarPubMed
Kashy, D. A., Kenny, D. A., Reis, H. T., & Judd, C. M. (2000). The analysis of data from dyads and groups. In Reis, H. T. (Ed.), Handbook of research methods in social and personality psychology (p. 451). New York: Cambridge University Press.Google Scholar
Kendler, K. S., & Eaves, L. J. (1986). Models for the joint effect of genotype and environment on liability to psychiatric illness. American Journal of Psychiatry, 143, 279289.Google ScholarPubMed
Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). New York: Guilford Press.Google Scholar
Kohler, H. P., & Rodgers, J. L. (2001). DF-analyses of heritability with double-entry twin data: Asymptotic standard errors and efficient estimation. Behavior Genetics, 31, 179191.CrossRefGoogle ScholarPubMed
Kong, X., Murphy, K., Raj, T., He, C., White, P. S., & Matise, T. C. (2004). A combined linkage-physical map of the human genome. American Journal of Human Genetics, 75, 11431148.CrossRefGoogle ScholarPubMed
Kovas, Y., Hayiou-Thomas, M. E., Oliver, B., Dale, P. S., Bishop, D. V. M., & Plomin, R. (2005). Genetic influences in different aspects of language development: The etiology of language skills in 4.5-year-old twins. Child Development, 76, 632651.CrossRefGoogle Scholar
Kremen, W. S., Jacobson, K. C., Xian, H., Eisen, S. A., Waterman, B., Toomey, R., et al. (2005). Heritability of word recognition in middle-aged men varies as a function of parental education. Behavior Genetics, 35, 417433.CrossRefGoogle ScholarPubMed
Kruglyak, L., Daly, M. J., Reeve-Daly, M. P., & Lander, E. S. (1996). Parametric and nonparametric linkage analysis: A unified multipoint approach. American Journal of Human Genetics, 58, 13471363.Google ScholarPubMed
Lander, E., & Kruglyak, L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nature Genetics, 11, 241247.CrossRefGoogle ScholarPubMed
Lewis, B. A., Shriberg, L. D., Freebairn, L. A., Hansen, A. J., Stein, C. M., Taylor, H. G., et al. (in press). The genetic bases of speech sound disorders: Evidence from spoken and written language. Journal of Speech, Language, and Hearing Research.Google Scholar
Lewis, B. A., & Thompson, L. A. (1992). A study of developmental speech and language disorders in twins. Journal of Speech and Hearing Research, 35, 10861094.CrossRefGoogle ScholarPubMed
Lewontin, R. (1970). Race and intelligence. Bulletin of the Atomic Scientists, 26, 28.CrossRefGoogle Scholar
Lonigan, C. J. (1994). Reading to preschoolers exposed: Is the emperor really naked? Developmental Review, 14, 303323.CrossRefGoogle Scholar
Marino, C., Giorda, R., Luisa Lorusso, M., Vanzin, L., Salandi, N., Nobile, M., et al. (2005). A family-based association study does not support dyx1c1 on 15q21.3 as a candidate gene in developmental dyslexia. European Journal of Human Genetics, 13, 491499.CrossRefGoogle Scholar
McGrath, L. M., Smith, S. D., & Pennington, B. F. (2006). Breakthroughs in the search for dyslexia candidate genes. Trends in Molecular Medicine, 12, 333341.CrossRefGoogle ScholarPubMed
Meng, H., Hager, K., Held, M., Page, G. P., Olson, R. K., Pennington, B. F., et al. (2005). Tdt-association analysis of ekn1 and dyslexia in a Colorado twin cohort. Human Genetics, 118, 8790.CrossRefGoogle Scholar
Meng, H., Smith, S. D., Hager, K., Held, M., Liu, J., Olson, R. K., et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences of the USA, 102, 1705317058.CrossRefGoogle ScholarPubMed
Miscimarra, L., Stein, C., Millard, C., Kluge, A., Cartier, K., Freebairn, L., et al. (in press). Further evidence of pleiotropy influencing speech and language: Analysis of the dyx8 region. Human Heredity.Google Scholar
Neisser, U., Boodoo, G., Bouchard, T. J. Jr., Boykin, A. W., Brody, N., Ceci, S. J., et al. (1996). Intelligence: Knowns and unknowns. American Psychologist, 51, 77.CrossRefGoogle Scholar
Newcomer, P. L., & Hammill, D. D. (1997). Test of Language Development: Primary (TOLD-P:3). Austin, TX: Pro-Ed.Google Scholar
Nopola-Hemmi, J., Myllyluoma, B., Haltia, T., Taipale, M., Ollikainen, V., Ahonen, T., et al. (2001). A dominant gene for developmental dyslexia on chromosome 3. Journal of Medical Genetics, 38, 658664.CrossRefGoogle ScholarPubMed
O'Connor, T. G., Caspi, A., Defries, J. C., & Plomin, R. (2003). Genotype–environment interaction in children's adjustment to parental separation. Journal of Child Psychology & Psychiatry, 44, 849856.CrossRefGoogle ScholarPubMed
Paracchini, S., Thomas, A., Castro, S., Lai, C., Paramasivam, M., Wang, Y., et al. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics.CrossRefGoogle ScholarPubMed
Paradise, J. L., Rockette, H. E., Colborn, D. K., Bernard, B. S., Smith, C. G., Kurs-Lasky, M., et al. (1997). Otitis media in 2253 Pittsburgh-area infants: Prevalence and risk factors during the first two years of life. Pediatrics, 99, 318333.CrossRefGoogle ScholarPubMed
Pennington, B. F. (1997). Using genetics to dissect cognition. American Journal of Human Genetics, 60, 1316.Google ScholarPubMed
Pennington, B. F. (2002). The development of psychopathology: Nature and nurture. New York: Guilford Press.Google Scholar
Phillips, B. M., & Lonigan, C. J. (2005). Social correlates of emergent literacy. In Snowling, M. J. & Hulme, C. (Eds.), The science of reading: A handbook (pp. 173187). Malden, MA: Blackwell.CrossRefGoogle Scholar
Plomin, R., DeFries, J. C., McClearn, G. E., & Rutter, M. (1997). Behavioral genetics (3rd ed.). New York: W. H. Freeman.Google Scholar
Purcell, S. (2002). Variance components models for gene–environment interaction in twin analysis. Twin Research, 5, 554571.CrossRefGoogle ScholarPubMed
Raitano, N. A., Pennington, B. F., Tunick, R. A., Boada, R., & Shriberg, L. D. (2004). Pre-literacy skills of subgroups of children with speech sound disorders. Journal of Child Psychology and Psychiatry, 45, 821835.CrossRefGoogle ScholarPubMed
Rende, R., & Plomin, R. (1992). Diathesis–stress models of psychopathology: A quantitative genetic perspective. Applied and Preventive Psychology, 1, 177182.CrossRefGoogle Scholar
Roberts, J., Hunter, L., Gravel, J., Rosenfeld, R., Berman, S., Haggard, M., et al. (2004). Otitis media, hearing loss, and language learning: Controversies and current research. Journal of Developmental and Behavioral Pediatrics, 25, 110122.CrossRefGoogle ScholarPubMed
Rodgers, J. L., & Kohler, H. P. (2005). Reformulating and simplifying the df analysis model. Behavior Genetics, 35, 211217.CrossRefGoogle Scholar
Rowe, D. C., Jacobson, K. C., & Van den Oord, E. J. (1999). Genetic and environmental influences on vocabulary IQ: Parental education level as moderator. Child Development, 70, 11511162.CrossRefGoogle ScholarPubMed
Rutter, M. (1983). Statistical and personal interactions: Facets and perspectives. In Magnusson, D. & Allen, V. (Eds.), Human development: An interactional perspective (pp. 295319). New York: Academic Press.Google Scholar
Rutter, M., Dunn, J., Plomin, R., Simonoff, E., Pickles, A., Maughan, B., et al. (1997). Integrating nature and nurture: Implications of person–environment correlations and interactions for developmental psychopathology. Development and Psychopathology, 9, 335364.CrossRefGoogle ScholarPubMed
Rutter, M., Moffitt, T. E., & Caspi, A. (2006). Gene–environment interplay and psychopathology: Multiple varieties but real effects. Journal of Child Psychology and Psychiatry, 47, 226261.CrossRefGoogle ScholarPubMed
Samuelsson, S., Byrne, B., Quain, P., Wadsworth, S., Corley, R., DeFries, J. C., et al. (2005). Environmental and genetic influences on prereading skills in Australia, Scandinavia, and the United States. Journal of Educational Psychology, 97, 705722.CrossRefGoogle Scholar
Scarborough, H. S. (1990). Very early language deficits in dyslexic children. Child Development, 61, 17281743.CrossRefGoogle ScholarPubMed
Scarborough, H. S., & Dobrich, W. (1994a). Another look at parent–preschooler bookreading: How naked is the emperor? A response to Lonigan (1994) and Dunning, Mason, and Stewart (1994). Developmental Review, 14, 340347.CrossRefGoogle Scholar
Scarborough, H. S., & Dobrich, W. (1994b). On the efficacy of reading to preschoolers. Developmental Review, 14, 245302.CrossRefGoogle Scholar
Scarr, S. (1992). Developmental theories for the 1990s: Development and individual differences. Child Development, 63, 119.CrossRefGoogle ScholarPubMed
Scarr, S., & McCartney, K. (1983). How people make their own environments: A theory of genotype–environment effects. Child Development, 54, 424435.Google Scholar
Scerri, T. S., Fisher, S. E., Francks, C., MacPhie, I. L., Paracchini, S., Richardson, A. J., et al. (2004). Putative functional alleles of dyx1c1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK. Journal of Medical Genetics, 41, 853857.CrossRefGoogle ScholarPubMed
Schumacher, J., Anthoni, H., Dahdouh, F., Konig, I. R., Hillmer, A. M., Kluck, N., et al. (2006). Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. American Journal of Human Genetics, 78, 5262.CrossRefGoogle ScholarPubMed
Sham, P. C., Purcell, S., Cherny, S. S., & Abecasis, G. R. (2002). Powerful regression-based quantitative-trait linkage analysis of general pedigrees. American Journal of Human Genetics, 71, 238253.CrossRefGoogle ScholarPubMed
Shanahan, M. J., & Hofer, S. M. (2005). Social context in gene–environment interactions: Retrospect and prospect. Journal of Gerontology Series B: Psychological Sciences and Social Sciences, 60, 6576.CrossRefGoogle ScholarPubMed
Shriberg, L. D. (2003). Diagnostic markers for child speech-sound disorders: Introductory comments. Clinical Linguistics and Phonetics, 17, 501505.CrossRefGoogle ScholarPubMed
Shriberg, L. D., Austin, D., Lewis, B. A., McSweeny, J. L., & Wilson, D. L. (1997a). The percentage of consonants correct (PCC) metric: Extensions and reliability data. Journal of Speech, Language, and Hearing Research, 40, 708722.CrossRefGoogle ScholarPubMed
Shriberg, L. D., Austin, D., Lewis, B. A., McSweeny, J. L., & Wilson, D. L. (1997b). The Speech Disorders Classification System (SDCS): Extensions and lifespan reference data. Journal of Speech, Language, and Hearing Research, 40, 723740.CrossRefGoogle ScholarPubMed
Shriberg, L. D., Flipsen, P. Jr., Thielke, H., Kwiatkowski, J., Kertoy, M. K., Katcher, M. L., et al. (2000). Risk for speech disorder associated with early recurrent otitis media with effusion: Two retrospective studies. Journal of Speech, Language, and Hearing Research, 43, 7999.CrossRefGoogle ScholarPubMed
Shriberg, L. D., Friel-Patti, S., Flipsen, P. Jr., & Brown, R. L. (2000). Otitis media, fluctuant hearing loss, and speech–language outcomes: A preliminary structural equation model. Journal of Speech, Language, and Hearing Research, 43, 100120.CrossRefGoogle ScholarPubMed
Shriberg, L. D., Tomblin, J. B., & McSweeny, J. L. (1999). Prevalence of speech delay in 6-year-old children and comorbidity with language impairment. Journal of Speech, Language, and Hearing Research, 42, 14611481.CrossRefGoogle ScholarPubMed
Silberg, J., Rutter, M., Neale, M., & Eaves, L. (2001). Genetic moderation of environmental risk for depression and anxiety in adolescent girls. British Journal of Psychiatry, 179, 116121.CrossRefGoogle ScholarPubMed
SLI Consortium. (2002). A genomewide scan identifies two novel loci involved in specific language impairment. American Journal of Human Genetics, 70, 384398.CrossRefGoogle Scholar
SLI Consortium. (2004). Highly significant linkage to the sli1 locus in an expanded sample of individuals affected by specific language impairment. American Journal of Human Genetics, 74, 12251238.CrossRefGoogle Scholar
Smith, S. D., Pennington, B. F., Boada, R., & Shriberg, L. D. (2005). Linkage of speech sound disorder to reading disability loci. Journal of Child Psychology and Psychiatry, 46, 10571066.CrossRefGoogle ScholarPubMed
Stanovich, K. E., & West, R. F. (1989). Exposure to print and orthographic processing. Reading Research Quarterly, 24, 402433.CrossRefGoogle Scholar
Stein, C. M., Millard, C., Kluge, A., Miscimarra, L. E., Cartier, K. C., Freebairn, L. A., et al. (2006). Speech sound disorder influenced by a locus in 15q14 region. Behavior Genetics, 36, 858868.CrossRefGoogle ScholarPubMed
Stein, C. M., Schick, J. H., Gerry Taylor, H., Shriberg, L. D., Millard, C., Kundtz-Kluge, A., et al. (2004). Pleiotropic effects of a chromosome 3 locus on speech-sound disorder and reading. American Journal of Human Genetics, 74, 283297.CrossRefGoogle ScholarPubMed
Stevenson, J., Pennington, B. F., Gilger, J. W., DeFries, J. C., & Gillis, J. J. (1993). Hyperactivity and spelling disability: Testing for shared genetic aetiology. Journal of Child Psychology and Psychiatry, 34, 11371152.CrossRefGoogle ScholarPubMed
Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Boston: Allyn & Bacon.Google Scholar
Taipale, M., Kaminen, N., Nopola-Hemmi, J., Haltia, T., Myllyluoma, B., Lyytinen, H., et al. (2003). A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proceedings of the National Academy of Sciences of the USA, 100, 1155311558.CrossRefGoogle ScholarPubMed
Thorpe, K., Rutter, M., & Greenwood, R. (2003). Twins as a natural experiment to study the causes of mild language delay: II: Family interaction risk factors. Journal of Child Psychology and Psychiatry, 44, 342355.CrossRefGoogle Scholar
Tomblin, J. B., & Buckwalter, P. R. (1998). Heritability of poor language achievement among twins. Journal of Speech, Language, and Hearing Research, 41, 188199.CrossRefGoogle ScholarPubMed
Totsika, V., & Sylva, K. (2004). The Home Observation for Measurement of the Environment revisited. Child and Adolescent Mental Health, 9, 2535.CrossRefGoogle ScholarPubMed
Treiman, R., Tincoff, R., Rodriguez, K., Mouzaki, A., & Francis, D. J. (1998). The foundations of literacy: Learning the sounds of letters. Child Development, 69, 15241540.CrossRefGoogle ScholarPubMed
Turkheimer, E., Haley, A., Waldron, M., D'Onofrio, B., & Gottesman, II. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14, 623628.CrossRefGoogle ScholarPubMed
van den Oord, E. J., & Rowe, D. C. (1998). An examination of genotype–environment interactions for academic achievement in an U.S. National Longitudinal Survey. Intelligence, 25, 205228.CrossRefGoogle Scholar
Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1999). The Comprehensive Test of Phonological Processing (CTOPP). Austin, TX: Pro-Ed.Google Scholar
Wang, Y., Paramasivam, M., Thomas, A., Bai, J., Kaminen-Ahola, N., Kere, J., et al. (2006). Dyx1c1 functions in neuronal migration in developing neocortex. Neuroscience, 143, 515522.CrossRefGoogle ScholarPubMed
Wechsler, D. (1992). Wechsler Individual Achievement Test (WIAT). San Antonio, TX: Psychological Corporation.Google Scholar
Wiederholt, J., & Bryant, B. R. (1992). Gray Oral Reading Test—III. Austin, TX: Psychological Corporation.Google Scholar
Wigg, K. G., Couto, J. M., Feng, Y., Anderson, B., Cate-Carter, T. D., Macciardi, F., et al. (2004). Support for ekn1 as the susceptibility locus for dyslexia on 15q21. Molecular Psychiatry, 9, 11111121.CrossRefGoogle ScholarPubMed
Willcutt, E. G., & Pennington, B. F. (2000). Psychiatric comorbidity in children and adolescents with reading disability. Journal of Child Psychology and Psychiatry, 41, 10391048.CrossRefGoogle ScholarPubMed
Willcutt, E. G., Pennington, B. F., Smith, S. D., Cardon, L. R., Gayan, J., Knopik, V. S., et al. (2002). Quantitative trait locus for reading disability on chromosome 6p is pleiotropic for attention-deficit/hyperactivity disorder. American Journal of Medical Genetics, 114, 260268.CrossRefGoogle ScholarPubMed
Young, A. (1995). Genetic analysis system (Version 2.0) [Software]. Oxford: Oxford University.Google Scholar