Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-20T17:46:46.786Z Has data issue: false hasContentIssue false

The development of depressogenic self-schemas: Associations with children's regional grey matter volume in ventrolateral prefrontal cortex

Published online by Cambridge University Press:  15 September 2021

Pan Liu*
Affiliation:
Department of Psychology, Brain and Mind Institute, Western University, London, ON, Canada
Elizabeth P. Hayden
Affiliation:
Department of Psychology, Brain and Mind Institute, Western University, London, ON, Canada
Lea R. Dougherty
Affiliation:
Department of Psychology, University of Maryland, College Park, MD, USA
Hoi-Chung Leung
Affiliation:
Department of Psychology, Stony Brook University, Stony Brook, NY, USA
Brandon Goldstein
Affiliation:
Department of Psychiatry, University of Connecticut Health Center, Farmington, CT, USA
Daniel N. Klein
Affiliation:
Department of Psychology, Stony Brook University, Stony Brook, NY, USA
*
Author for Correspondence: Pan Liu, Western Interdisciplinary Research Building, Room 2172, London, Ontario N6A 3K7, Canada; E-mail: [email protected]

Abstract

Cognitive theories of depression contend that biased cognitive information processing plays a causal role in the development of depression. Extensive research shows that deeper processing of negative and/or shallower processing of positive self-descriptors (i.e., negative and positive self-schemas) predicts current and future depression in adults and children. However, the neural correlates of the development of self-referent encoding are poorly understood. We examined children's self-referential processing using the self-referent encoding task (SRET) collected from 74 children at ages 6, 9, and 12; around age 10, these children also contributed structural magnetic resonance imaging data. From age 6 to age 12, both positive and negative self-referential processing showed mean-level growth, with positive self-schemas increasing relatively faster than negative ones. Further, voxel-based morphometry showed that slower growth in positive self-schemas was associated with lower regional gray matter volume (GMV) in ventrolateral prefrontal cortex (vlPFC). Our results suggest that smaller regional GMV within vlPFC, a critical region for regulatory control in affective processing and emotion development, may have implications for the development of depressogenic self-referential processing in mid-to-late childhood.

Type
Regular Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abela, J. R. Z., & Hankin, B. L. (2008). Cognitive vulnerability to depression in children and adolescents: A developmental psychopathology perspective. In Abela, J. R. Z., & Hankin, B. L. (Eds.), Handbook of depression in children and adolescents (pp. 3578). New York, NY: The Guilford Press.Google Scholar
Arnone, D., Job, D., Selvaraj, S., Abe, O., Amico, F., Cheng, Y., … McIntosh, A. M. (2016). Computational meta-analysis of statistical parametric maps in major depression. Human Brain Mapping, 37, 13931404. doi:10.1002/hbm.23108CrossRefGoogle Scholar
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38, 95113. doi:10.1016/j.neuroimage.2007.07.007CrossRefGoogle Scholar
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26, 839851. doi:10.1016/j.neuroimage.2005.02.018CrossRefGoogle ScholarPubMed
Auerbach, R. P., Bondy, E., Stanton, C. H., Webb, C. A., Shankman, S. A., & Pizzagalli, D. A. (2016). Self-referential processing in adolescents: Stability of behavioral and ERP markers. Psychophysiology, 53, 13981406. doi:10.1111/psyp.12686CrossRefGoogle Scholar
Auerbach, R. P., Stanton, C. H., Proudfit, G. H., & Pizzagalli, D. A. (2015). Self-referential processing in depressed adolescents: A high-density event-related potential study. Journal of Abnormal Psychology, 124, 233245. doi:10.1037/abn0000023CrossRefGoogle Scholar
Barendse, M. E. A., Cosme, D., Flournoy, J. C., Vijayakumar, N., Cheng, T. W., Allen, N. B., & Pfeifer, J. H. (2020). Neural correlates of self-evaluation in relation to age and pubertal development in early adolescent girls. Developmental Cognitive Neuroscience, 100799. doi:10.1016/j.dcn.2020.100799CrossRefGoogle Scholar
Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. American Journal of Psychiatry, 165, 969977. doi:10.1176/appi.ajp.2008.08050721CrossRefGoogle Scholar
Boes, A. D., McCormick, L. M., Coryell, W. H., & Nopoulos, P. (2008). Rostral anterior cingulate Cortex volume correlates with depressed mood in normal healthy children. Biological Psychiatry, 63, 391397. doi:10.1016/j.biopsych.2007.07.018CrossRefGoogle Scholar
Bora, E., Harrison, B. J., Davey, C. G., Yücel, M., & Pantelis, C. (2012). Meta-analysis of volumetric abnormalities in cortico-striatal-pallidal- thalamic circuits in major depressive disorder. Psychological Medicine, 42, 671681. doi:10.1017/S0033291711001668CrossRefGoogle Scholar
Bradley, K. A. L., Colcombe, S., Henderson, S. E., Alonso, C. M., Milham, M. P., & Gabbay, V. (2016). Neural correlates of self-perceptions in adolescents with major depressive disorder. Developmental Cognitive Neuroscience, 19, 8797. doi:10.1016/j.dcn.2016.02.007CrossRefGoogle Scholar
Casey, B. J., Jones, R. M., & Hare, T. A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111126. doi:10.1196/annals.1440.010CrossRefGoogle ScholarPubMed
Church, J. A., Petersen, S. E., & Schlaggar, B. L. (2010). The “task B problem” and other considerations in developmental functional neuroimaging. Human Brain Mapping, 31, 852862. doi:10.1002/hbm.21036CrossRefGoogle Scholar
Dahnke, R., & Gaser, C. (2017). Voxel-based preprocessing in CAT. Organization for Human Brain Mapping Annual Meeting, doi:10.13140/RG.2.2.11653.70887Google Scholar
De Bie, H. M. A., Boersma, M., Wattjes, M. P., Adriaanse, S., Vermeulen, R. J., Oostrom, K. J., … Delemarre-Van De Waal, H. A. (2010). Preparing children with a mock scanner training protocol results in high quality structural and functional MRI scans. European Journal of Pediatrics, 169, 10791085. doi:10.1007/s00431-010-1181-zCrossRefGoogle Scholar
Denny, B. T., Kober, H., Wager, T. D., & Ochsner, K. N. (2012). A meta-analysis of functional neuroimaging studies of self- and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. Journal of Cognitive Neuroscience, 24, 17421752. doi:10.1162/jocn_a_00233CrossRefGoogle Scholar
Derry, P. A., & Kuiper, N. A. (1981). Schematic processing and self-reference in clinical depression. Journal of Abnormal Psychology, 90, 286297. doi:10.1037/0021-843X.90.4.286CrossRefGoogle Scholar
Dobson, K. S., & Shaw, B. F. (1987). Specificity and stability of self-referent encoding in clinical depression. Journal of Abnormal Psychology, 96, 3440. doi:10.1037/0021-843X.96.1.34CrossRefGoogle Scholar
Dolcos, F., & McCarthy, G. (2006). Brain systems mediating cognitive interference by emotional distraction. Journal of Neuroscience, 26, 20722079. doi:10.1523/JNEUROSCI.5042-05.2006CrossRefGoogle Scholar
Dunn, L. M., & Dunn, L. M. (2007). Peabody picture vocabulary test (4th ed.). Bloomington, IN: Pearson.Google Scholar
Felton, J. W., Cole, D. A., & Martin, N. C. (2013). Effects of rumination on child and adolescent depressive reactions to a natural disaster: The 2010 Nashville flood. Journal of Abnormal Psychology, 122, 6473. doi:10.1037/a0029303CrossRefGoogle Scholar
Fu, X., Taber-Thomas, B. C., & Pérez-Edgar, K. (2017). Frontolimbic functioning during threat-related attention: Relations to early behavioral inhibition and anxiety in children. Biological Psychology, 122, 98109. doi:10.1016/j.biopsycho.2015.08.010CrossRefGoogle Scholar
Giedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021, 7785. doi:10.1196/annals.1308.009CrossRefGoogle Scholar
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., … Rapoport, J. L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study [2]. Nature Neuroscience, 2, 861863. doi:10.1038/13158CrossRefGoogle Scholar
Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of pediatric brain development: What have we learned and where are we going? Neuron, 67, 728734. doi:10.1016/j.neuron.2010.08.040CrossRefGoogle Scholar
Giorgio, A., Watkins, K. E., Chadwick, M., James, S., Winmill, L., Douaud, G., … James, A. C. (2010). Longitudinal changes in grey and white matter during adolescence. NeuroImage, 49, 94103. doi:10.1016/j.neuroimage.2009.08.003CrossRefGoogle Scholar
Goldsmith, H., Reilly, J., Lemery, K., Longley, S., & Prescott, A. (1995). Laboratory temperament assessment battery: Preschool version. Unpublished Manuscript.Google Scholar
Goldstein, B. L., Hayden, E. P., & Klein, D. N. (2015). Stability of self-referent encoding task performance and associations with change in depressive symptoms from early to middle childhood. Cognition and Emotion, 29, 14451455. doi:10.1080/02699931.2014.990358CrossRefGoogle Scholar
Gotlib, I. H., & Joormann, J. (2010). Cognition and depression: Current status and future directions. Annual Review of Clinical Psychology, 6, 285312. doi:10.1146/annurev.clinpsy.121208.131305CrossRefGoogle Scholar
Gotlib, I. H., Joormann, J., Minor, K. L., & Cooney, R. E. (2006). Cognitive and biological functioning in children at risk for depression. In Canli, T. (Ed.), Biology of personality and individual differences (pp. 353382). New York, NY: The Guilford Press.Google Scholar
Greve, D. N. (2011). An absolute beginner's guide to surface- and voxel-based morphometric analysis. Proceedings of the International Society for Magnetic Resonance in Medicine, i, 17.Google Scholar
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). New York: Pearson.Google Scholar
Hammen, C., & Zupan, B. A. (1984). Self-schemas, depression, and the processing of personal information in children. Journal of Experimental Child Psychology, 37, 598608. doi:10.1016/0022-0965(84)90079-1CrossRefGoogle Scholar
Hankin, B. L., & Abramson, L. Y. (2001). Development of gender differences in depression: An elaborated cognitive vulnerability-transactional stress theory. Psychological Bulletin, 127, 773796. doi:10.1037/0033-2909.127.6.773CrossRefGoogle Scholar
Hardee, J. E., Benson, B. E., Bar-Haim, Y., Mogg, K., Bradley, B. P., Chen, G., … Pérez-Edgar, K. (2013). Patterns of neural connectivity during an attention bias task moderate associations between early childhood temperament and internalizing symptoms in young adulthood. Biological Psychiatry, 74, 273279. doi:10.1016/j.biopsych.2013.01.036CrossRefGoogle Scholar
Hayden, E. P., Hankin, B. L., Mackrell, S. V. M., Sheikh, H. I., Jordan, P. L., Dozois, D. J. A., … Badanes, L. S. (2014). Parental depression and child cognitive vulnerability predict children's cortisol reactivity. Development and Psychopathology, 26, 14451460. doi:10.1017/S0954579414001138CrossRefGoogle Scholar
Hayden, E. P., Olino, T. M., Mackrell, S. V. M., Jordan, P. L., Desjardins, J., & Katsiroumbas, P. (2013). Cognitive vulnerability to depression during middle childhood: Stability and associations with maternal affective styles and parental depression. Personality and Individual Differences, 55, 892897. doi:10.1016/j.paid.2013.07.016CrossRefGoogle Scholar
Hollingshead, A. (1975). Four factor index of social status. Retrieved from https://sociology.yale.edu/sites/default/files/files/yjs_fall_2011.pdf#page=21Google Scholar
Hu, C., Di, X., Eickhoff, S. B., Zhang, M., Peng, K., Guo, H., & Sui, J. (2016). Distinct and common aspects of physical and psychological self-representation in the brain: A meta-analysis of self-bias in facial and self-referential judgements. Neuroscience and Biobehavioral Reviews, 61, 197207. doi:10.1016/j.neubiorev.2015.12.003CrossRefGoogle Scholar
Huang, A. S., Klein, D. N., & Leung, H. C. (2016). Load-related brain activation predicts spatial working memory performance in youth aged 9–12 and is associated with executive function at earlier ages. Developmental Cognitive Neuroscience, doi:10.1016/j.dcn.2015.10.007CrossRefGoogle Scholar
Iordan, A. D., & Dolcos, F. (2017). Brain activity and network interactions linked to valence-related differences in the impact of emotional distraction. Cerebral Cortex, 27, 731749. doi:10.1093/cercor/bhv242Google Scholar
Iordan, A. D., Dolcos, S., & Dolcos, F. (2013). Neural signatures of the response to emotional distraction: A review of evidence from brain imaging investigations. Frontiers in Human Neuroscience, 7, 200. doi:10.3389/fnhum.2013.00200CrossRefGoogle Scholar
Jacobs, R. H., Reinecke, M. A., Gollan, J. K., & Kane, P. (2008). Empirical evidence of cognitive vulnerability for depression among children and adolescents: A cognitive science and developmental perspective. Clinical Psychology Review, 28, 759782. doi:10.1016/j.cpr.2007.10.006CrossRefGoogle Scholar
Kann, S. J., O'Rawe, J. F., Huang, A. S., Klein, D. N., & Leung, H. C. (2017). Preschool negative emotionality predicts activity and connectivity of the fusiform face area and amygdala in later childhood. Social Cognitive and Affective Neuroscience, doi:10.1093/scan/nsx079CrossRefGoogle Scholar
Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., … Ryan, N. (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 980988. doi:10.1097/00004583-199707000-00021CrossRefGoogle Scholar
Kopala-Sibley, D. C., Cyr, M., Finsaas, M. C., Orawe, J., Huang, A., Tottenham, N., & Klein, D. N. (2020). Early childhood parenting predicts late childhood brain functional connectivity during emotion perception and reward processing. Child Development, doi:10.1111/cdev.13126CrossRefGoogle Scholar
Kovacs, M., & Staff, M. (2003). Children's depression inventory (CDI): Technical manual update. North Tonawanda, NY, USA: Multi-Health Systems Inc.Google Scholar
Kuiper, N. A., & Derry, P. A. (1982). Depressed and nondepressed content self-reference in mild depressives. Journal of Personality, 50, 6780. doi:10.1111/j.1467-6494.1982.tb00746.xCrossRefGoogle Scholar
Kurth, F., Gaser, C., & Luders, E. (2015). A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM). Nature Protocols, 10, 293304. doi:10.1038/nprot.2015.014CrossRefGoogle Scholar
Lai, C. H. (2013). Gray matter volume in major depressive disorder: A meta-analysis of voxel-based morphometry studies. Psychiatry Research – Neuroimaging, 211, 3746. doi:10.1016/j.pscychresns.2012.06.006CrossRefGoogle Scholar
Leitenberg, H., Yost, L. W., & Carroll-Wilson, M. (1986). Negative cognitive errors in children. Questionnaire development, normative data, and comparisons between children with and without self-reported symptoms of depression, low self-esteem, and evaluation anxiety. Journal of Consulting and Clinical Psychology, 54, 528536. doi:10.1037/0022-006X.54.4.528CrossRefGoogle Scholar
Liu, P., Taber-Thomas, B. C., Fu, X., & Pérez-Edgar, K. E. (2018). Biobehavioral markers of attention bias modification in temperamental risk for anxiety: A randomized control trial. Journal of the American Academy of Child and Adolescent Psychiatry, 57, 103110. doi:10.1016/j.jaac.2017.11.016CrossRefGoogle Scholar
Liu, P., Vandemeer, M. R. J., Joanisse, M. F., Barch, D. M., Dozois, D. J. A., & Hayden, E. P. (2020b). Depressogenic self-schemas are associated with smaller regional grey matter volume in never-depressed preadolescents. NeuroImage: Clinical, 28, 102422. doi:10.1016/j.nicl.2020.102422CrossRefGoogle Scholar
Liu, P., Vandermeer, M. R. J., Joanisse, M. F., Barch, D. M., Dozois, D. J. A., & Hayden, E. P. (2020a). Neural activity during self-referential processing in children at risk for depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5, 429–424.Google Scholar
Lumma, A. L., Valk, S. L., Böckler, A., Vrtička, P., & Singer, T. (2018). Change in emotional self-concept following socio-cognitive training relates to structural plasticity of the prefrontal cortex. Brain and Behavior, 8, doi:10.1002/brb3.940CrossRefGoogle Scholar
Manoach, D. S., & Agam, Y. (2013). Neural markers of errors as endophenotypes in neuropsychiatric disorders. Frontiers in Human Neuroscience, 7, doi:10.3389/fnhum.2013.00350CrossRefGoogle Scholar
McArthur, B. A., Burke, T. A., Connolly, S. L., Olino, T. M., Lumley, M. N., Abramson, L. Y., & Alloy, L. B. (2019). A longitudinal investigation of cognitive self-schemas across adolescent development. Journal of Youth and Adolescence, 48, 635647. doi:10.1007/s10964-018-00981-1CrossRefGoogle Scholar
Nejad, A. B., Fossati, P., & Lemogne, C. (2013). Self-referential processing, rumination, and cortical midline structures in major depression. Frontiers in Human Neuroscience, 7, 666. doi:10.3389/fnhum.2013.00666CrossRefGoogle Scholar
Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain-A meta-analysis of imaging studies on the self. NeuroImage, 31, 440457. doi:10.1016/j.neuroimage.2005.12.002CrossRefGoogle Scholar
Olino, T. M., Klein, D. N., Dyson, M. W., Rose, S. A., & Durbin, C. E. (2010). Temperamental emotionality in preschool-aged children and depressive disorders in parents: Associations in a large community sample. Journal of Abnormal Psychology, 119, 468478. doi:10.1037/a0020112CrossRefGoogle Scholar
Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9, 6068. doi:10.1016/j.tics.2004.12.008CrossRefGoogle Scholar
Peng, W., Chen, Z., Yin, L., Jia, Z., & Gong, Q. (2016). Essential brain structural alterations in major depressive disorder: A voxel-wise meta-analysis on first episode, medication-naive patients. Journal of Affective Disorders, 199, 114123. doi:10.1016/j.jad.2016.04.001CrossRefGoogle Scholar
Pfeifer, J. H., & Blakemore, S. J. (2012). Adolescent social cognitive and affective neuroscience: Past, present, and future. Social Cognitive and Affective Neuroscience, 7, 110. doi:10.1093/scan/nsr099CrossRefGoogle ScholarPubMed
Pfeifer, J. H., Lieberman, M. D., & Dapretto, M. (2007). “I know you are but what am I?!”: Neural bases of self- and social knowledge retrieval in children and adults. Journal of Cognitive Neuroscience, 19, 13231337. doi:10.1162/jocn.2007.19.8.1323CrossRefGoogle Scholar
Pfeifer, J. H., Masten, C. L., Borofsky, L. A., Dapretto, M., Fuligni, A. J., & Lieberman, M. D. (2009). Neural correlates of direct and reflected self-appraisals in adolescents and adults: When social perspective-taking informs self-perception. Child Development, 80, 10161038. doi:10.1111/j.1467-8624.2009.01314.xCrossRefGoogle Scholar
Pfeifer, J. H., & Peake, S. J. (2012). Self-development: Integrating cognitive, socioemotional, and neuroimaging perspectives. Developmental Cognitive Neuroscience, 2, 5569. doi:10.1016/j.dcn.2011.07.012CrossRefGoogle Scholar
Prieto, S. L., Cole, D. A., & Tageson, C. W. (1992). Depressive self-schemas in clinic and nonclinic children. Cognitive Therapy and Research, 16, 521534. doi:10.1007/BF01175139CrossRefGoogle Scholar
Quevedo, K., Ng, R., Scott, H., Smyda, G., Pfeifer, J. H., & Malone, S. (2017). The neurobiology of self-processing in abused depressed adolescents. Development and Psychopathology, 29, 10571073. doi:10.1017/S0954579416001024CrossRefGoogle Scholar
Ramel, W., Goldin, P. R., Eyler, L. T., Brown, G. G., Gotlib, I. H., & McQuaid, J. R. (2007). Amygdala reactivity and mood-congruent memory in individuals at risk for depressive relapse. Biological Psychiatry, 61, 231239. doi:10.1016/j.biopsych.2006.05.004CrossRefGoogle Scholar
Raschle, N., Zuk, J., Ortiz-Mantilla, S., Sliva, D. D., Franceschi, A., Grant, P. E., … Gaab, N. (2012). Pediatric neuroimaging in early childhood and infancy: Challenges and practical guidelines. Annals of the New York Academy of Sciences, 1252, 4350. doi:10.1111/j.1749-6632.2012.06457.xCrossRefGoogle Scholar
Romund, L., Golde, S., Lorenz, R. C., Raufelder, D., Pelz, P., Gleich, T., … Beck, A. (2017). Neural correlates of the self-concept in adolescence – A focus on the significance of friends. Human Brain Mapping, 38, 987996. doi:10.1002/hbm.23433CrossRefGoogle Scholar
Rothbart, M. K., & Bates, J. E. (2006). Temperament. In Eisenberg, W. D. & Lerner, R. M. (Eds.), Handbook of child psychology: Social, emotional, and personality development (pp. 99166). Hoboken, NJ, US: John Wiley & Sons Inc.Google Scholar
Sacher, J., Neumann, J., Fünfstück, T., Soliman, A., Villringer, A., & Schroeter, M. L. (2012). Mapping the depressed brain: A meta-analysis of structural and functional alterations in major depressive disorder. Journal of Affective Disorders, 140, 142148. doi:10.1016/j.jad.2011.08.001CrossRefGoogle Scholar
Schmaal, L., Hibar, D. P., Sämann, P. G., Hall, G. B., Baune, B. T., Jahanshad, N., … Veltman, D. J. (2017). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group. Molecular Psychiatry, 22, 900909. doi:10.1038/mp.2016.60CrossRefGoogle Scholar
Siemer, M. (2005). Mood-congruent cognitions constitute mood experience. Emotion, 5, 296308. doi:10.1037/1528-3542.5.3.296CrossRefGoogle Scholar
Somerville, L. H., Jones, R. M., & Casey, B. J. (2010). A time of change: Behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain and Cognition, 72, 124133. doi:10.1016/j.bandc.2009.07.003CrossRefGoogle Scholar
Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20, 327348. doi:10.1007/s11065-010-9148-4CrossRefGoogle Scholar
Tanaka, C., Matsui, M., Uematsu, A., Noguchi, K., & Miyawaki, T. (2013). Developmental trajectories of the fronto-temporal lobes from infancy to early adulthood in healthy individuals. Developmental Neuroscience, 34, 477487. doi:10.1159/000345152CrossRefGoogle Scholar
Thai, N., Taber-Thomas, B. C., & Pérez-Edgar, K. E. (2016). Neural correlates of attention biases, behavioral inhibition, and social anxiety in children: An ERP study. Developmental Cognitive Neuroscience, 19, 200210. doi:10.1016/j.dcn.2016.03.008CrossRefGoogle Scholar
Tzelgov, J., & Henik, A. (1991). Suppression situations in psychological research: Definitions, implications, and applications. Psychological Bulletin, 109, 524536. doi:10.1037/0033-2909.109.3.524CrossRefGoogle Scholar
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273289. doi:10.1006/nimg.2001.0978CrossRefGoogle Scholar
Vulser, H., Lemaitre, H., Artiges, E., Miranda, R., Penttilä, J., Struve, M., … Stephens, D. (2015). Subthreshold depression and regional brain volumes in young community adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 54, 832840. doi:10.1016/j.jaac.2015.07.006CrossRefGoogle Scholar
Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A., & Ochsner, K. N. (2008). Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron, 59, 10371050. doi:10.1016/j.neuron.2008.09.006CrossRefGoogle Scholar
Warren, R. E., Carroll, J. B., Davies, P., & Richman, B. (1973). The American heritage word frequency book. The American Journal of Psychology, 86, 207. doi:10.2307/1421864CrossRefGoogle Scholar
Wisco, B. E. (2009). Depressive cognition: Self-reference and depth of processing. Clinical Psychology Review, 29, 382392. doi:10.1016/j.cpr.2009.03.003CrossRefGoogle Scholar
Zupan, B. A., Hammen, C., & Jaenicke, C. (1987). The effects of current mood and prior depressive history on self-schematic processing in children. Journal of Experimental Child Psychology, 43, 149158. doi:10.1016/0022-0965(87)90056-7CrossRefGoogle Scholar
Supplementary material: File

Liu et al. supplementary material

Liu et al. supplementary material

Download Liu et al. supplementary material(File)
File 23.5 KB