Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T23:55:05.872Z Has data issue: false hasContentIssue false

Comorbidities and continuities as ontogenic processes: Toward a developmental spectrum model of externalizing psychopathology

Published online by Cambridge University Press:  17 December 2013

Theodore P. Beauchaine*
Affiliation:
Ohio State University
Tiffany McNulty
Affiliation:
Ohio State University
*
Address correspondence and reprint requests to: Theodore P. Beauchaine, Department of Psychology, Ohio State University, 225 Psychology Building, 1835 Neil Avenue, Columbus, OH 43210; E-mail: [email protected].

Abstract

Research on child and adolescent mental health problems has burgeoned since the inaugural issue of Development and Psychopathology was published in 1989. In the quarter century since, static models of psychopathology have been abandoned in favor of transactional models, following the agenda set by editor Dante Cicchetti and other proponents of the discipline. The transactional approach, which has been applied to autism, depression, self-injury, and delinquency, (a) specifies vulnerabilities and risk factors across multiple levels of analysis spanning genes to cultures, (b) identifies multifinal and equifinal pathways to psychopathology, and (c) transcends traditional disciplinary boundaries. However, as noted by Rutter and Sroufe (2000), specific mechanisms of continuity, discontinuity, and comorbidity of psychopathology must be identified if we wish to understand etiology fully. In this article, we present a model of early-onset externalizing behavior in which comorbidities and continuities are viewed as ontogenic processes: products of complex longitudinal transactions between interdependent individual-level vulnerabilities (e.g., genetic, epigenetic, allostatic) and equally interdependent contextual risk factors (e.g., coercive parenting, deviant peer group affiliations, neighborhood criminality). Through interactions across levels of analysis, some individuals traverse along the externalizing spectrum, beginning with heritable trait impulsivity in preschool and ending in antisociality in adulthood. In describing our model, we note that (a) the approach outlined in the DSM to subtyping externalizing disorders continues to obscure developmental pathways to antisociality, (b) molecular genetics studies will likely not identify meaningful subtypes of externalizing disorder, and (c) ontogenic trait approaches to psychopathology are much more likely to advance the discipline in upcoming years.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. (1974). Developmental psychopathology. New York: Ronald Press.Google Scholar
Achenbach, T. M., & Edelbrock, C. S. (1984). Psychopathology of childhood. Annual Review of Psychology, 35, 227256.CrossRefGoogle ScholarPubMed
Achenbach, T. M., & Edelbrock, C. S. (1991). Manual for the Child Behavior Checklist/4–18 and 1991 profile. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
American Psychiatric Association. (1987). Diagnostic and statistical manual of mental disorders (3rd ed., rev.). Washington, DC: Author.Google Scholar
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC: Author.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.Google Scholar
Angold, A., Costello, E. J., & Erkanli, A. (1999). Comorbidity. Journal of Child Psychology and Psychiatry, 40, 5787.CrossRefGoogle ScholarPubMed
Anney, R. J., Lasky-Su, J., O'Dúshláine, C., Kenny, E., Neale, B. M., Mulligan, A., et al. (2008). Conduct disorder and ADHD: Evaluation of conduct problems as a categorical and quantitative trait in the international multicentre ADHD genetics study. American Journal of Medical Genetics, 147B, 13691378.Google ScholarPubMed
Arnold, D. S., O'Leary, S. G., Wolff, L. S., & Acker, M. M. (1993). The Parenting Scale: A measure of dysfunctional parenting in discipline situations. Psychological Assessment, 5, 137144.CrossRefGoogle Scholar
Arnsten, A. F. (2009). Stress signaling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10, 410422.CrossRefGoogle ScholarPubMed
Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106, 529550.CrossRefGoogle ScholarPubMed
Asherson, P. (2005). Clinical assessment and treatment of attention-deficit/hyperactivity disorder in adults. Expert Review of Neurotherapeutics, 5, 525539.CrossRefGoogle ScholarPubMed
Avila, C., Cuenca, I., Félix, V., Parcet, M. A., & Miranda, A. (2004). Measuring impulsivity in school-aged boys and examining its relationship with ADHD and ODD ratings. Journal of Abnormal Child Psychology, 32, 295304.CrossRefGoogle ScholarPubMed
Barkley, R. A., Murphy, K. R., & Fischer, M. (2008). ADHD in adults: What the science says. New York: Guilford Press.Google Scholar
Bava, S., & Tapert, S. F. (2010). Adolescent brain development and risk for alcohol and other drug problems. Neuropsychology Review, 20, 398413.CrossRefGoogle ScholarPubMed
Beauchaine, T. P. (2009). The role of biomarkers and endophenotypes in prevention and treatment of psychopathological disorders. Biomarkers in Medicine, 3, 13.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., & Gatzke-Kopp, L. M. (2012). Instantiating the multiple levels of analysis perspective in a program of study on externalizing behavior. Development and Psychopathology, 24, 10031018.CrossRefGoogle Scholar
Beauchaine, T. P., & Gatzke-Kopp, L. M. (2013). Genetic and environmental influences on behavior. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (2nd ed., pp. 111140). Hoboken, NJ: Wiley.Google Scholar
Beauchaine, T. P., Gatzke-Kopp, L., & Mead, H. K. (2007). Polyvagal theory and developmental psychopathology: Emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74, 174184.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Gatzke-Kopp, L. M., Neuhaus, E., Chipman, J., Reid, M. J., & Webster-Stratton, C. (2013). Sympathetic- and parasympathetic-linked cardiac function and prediction of externalizing behavior, emotion regulation, and prosocial behavior among preschoolers treated for ADHD. Journal of Consulting and Clinical Psychology, 81, 481493.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Hinshaw, S. P., & Pang, K. (2010). Comorbidity of attention-deficit/hyperactivity disorder and early-onset conduct disorder: Biological, environmental, and developmental mechanisms. Clinical Psychology: Science and Practice, 17, 327336.Google Scholar
Beauchaine, T. P., Klein, D. N., Crowell, S. E., Derbidge, C., & Gatzke-Kopp, L. M. (2009). Multifinality in the development of personality disorders: A Biology × Sex × Environment model of antisocial and borderline traits. Development and Psychopathology, 21, 735770.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Klein, D. N., Erickson, N. L., & Norris, A. L. (2013). Developmental psychopathology and the Diagnostic and Statistical Manual of Mental Disorders. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (2nd ed., pp. 29110). Hoboken, NJ: Wiley.Google Scholar
Beauchaine, T. P., Lenzenweger, M. F., & Waller, N. G. (2008). Schizotypy, taxometrics, and disconfirming theories in soft science: Comment on Rawlings, Williams, Haslam, and Claridge. Personality and Individual Differences, 44, 16521662.CrossRefGoogle Scholar
Beauchaine, T. P., & Marsh, P. (2006). Taxometric methods: Enhancing early detection and prevention of psychopathology by identifying latent vulnerability traits. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology (2nd ed., pp. 931967). Hoboken, NJ: Wiley.Google ScholarPubMed
Beauchaine, T. P., Neuhaus, E., Brenner, S. L., & Gatzke-Kopp, L. (2008). Ten good reasons to consider biological processes in prevention and intervention research. Development and Psychopathology, 20, 745774.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Neuhaus, E., Zalewski, M., Crowell, S. E., & Potapova, N. (2011). The effects of allostatic load on neural systems subserving motivation, mood regulation, and social affiliation. Development and Psychopathology, 23, 975999.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., & Zalewski, M. (in press). Physiological and developmental mechanisms of emotional lability in coercive relationships. In Dishion, T. J. & Snyder, J. J. (Eds.), Oxford handbook of coercive relationship dynamics. New York: Oxford University Press.Google Scholar
Becker, K., El-Faddagh, M., Schmidt, M. H., Esser, G., & Laucht, M. (2008). Interaction of dopamine transporter genotype with prenatal smoke exposure on ADHD symptoms. Journal of Pediatrics, 152, 263269.CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.CrossRefGoogle ScholarPubMed
Berridge, K. C. (2003). Pleasures of the brain. Brain and Cognition, 52, 106128.CrossRefGoogle ScholarPubMed
Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neuroscience, 26, 507513.CrossRefGoogle ScholarPubMed
Biederman, J., Petty, C. R., Evans, M., Small, J., & Faraone, S. V. (2010). How persistent is ADHD? A controlled 10-year follow-up study of boys with ADHD. Psychiatry Research, 177, 299304.CrossRefGoogle ScholarPubMed
Bodmer, W., & Bonilla, C. (2008). Common and rare variants in multifactorial susceptibility to common diseases. Nature Genetics, 40, 695701.CrossRefGoogle ScholarPubMed
Boomsma, D. I., Koopsman, J. R., Van Doornen, L. J., & Orlebeke, J. F. (1994). Genetic and social influences on starting to smoke: A study of Dutch adolescent twins and their parents. Addiction, 89, 219226.CrossRefGoogle Scholar
Bradley, R. H., & Corwyn, R. F. (2008). Infant temperament, parenting, and externalizing behavior in first grade: A test of the differential susceptibility hypothesis. Journal of Child Psychology and Psychiatry, 49, 124131.CrossRefGoogle Scholar
Brennan, P. A., Grekin, E. R., & Mednick, S. A. (1999). Maternal smoking during pregnancy and adult male criminal outcomes. Archives of General Psychiatry, 56, 215219.CrossRefGoogle ScholarPubMed
Brenner, S. L., Beauchaine, T. P., & Sylvers, P. D. (2005). A comparison of psychophysiological and self-report measures of BAS and BIS activation. Psychophysiology, 42, 108115.CrossRefGoogle ScholarPubMed
Brown, S. M., Manuck, S. B., Flory, J. D., & Harari, A. R. (2006). Neural basis of individual differences in impulsivity: Contributions of corticolimbic circuits for behavioral arousal and control. Emotion, 6, 239245.CrossRefGoogle ScholarPubMed
Bubenikova-Valesovaa, V., Kacerb, P., Syslovab, K., Rambousekb, L., Janovskyc, M., Schutovad, B., et al. (2009). Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring. International Journal of Developmental Neuroscience, 27, 525530.CrossRefGoogle Scholar
Burnett, M. L., & Cicchetti, D. (Eds.). (2012). Multilevel approaches to understanding antisocial behavior: Current research and future directions [Special Issue]. Development and Psychopathology, 24, 7031155.CrossRefGoogle Scholar
Burt, S. A. (2009). Rethinking environmental contributions to child and adolescent psychopathology: A meta-analysis of shared environmental influences. Psychological Bulletin, 135, 608637.CrossRefGoogle ScholarPubMed
Burt, S. A., Krueger, R. F., McGue, M., & Iacono, W. G. (2001). Sources of covariation among attention-deficit/hyperactivity disorder, oppositional defiant disorder, and conduct disorder: The importance of shared environment. Journal of Abnormal Psychology, 110, 516525.CrossRefGoogle ScholarPubMed
Bush, G., Valera, E. M., & Seidman, L. J. (2005). Functional neuroimaging of attention-deficit/hyperactivity disorder: A review and suggested future directions. Biological Psychiatry, 57, 12731284.CrossRefGoogle ScholarPubMed
Campbell, S. B., Shaw, D. S., & Gilliom, M. (2000). Early externalizing behavior problems: Toddlers and preschoolers at risk for later maladjustment. Development and Psychopathology, 12, 467488.CrossRefGoogle ScholarPubMed
Carmona, S., Hoekzema, E., Ramos-Quiroga, J. A., Richarte, V., Canals, C., Bosch, R., et al. (2011). Response inhibition and reward anticipation in medication-naïve adults with attention-deficit/hyperactivity disorder: A within-subject case-control neuroimaging study. Human Brain Mapping, 33, 23502361.CrossRefGoogle ScholarPubMed
Caron, C., & Rutter, M. (1991). Comorbidity in child psychopathology: Concepts, issues and research strategies. Journal of Child Psychology and Psychiatry, 32, 10631080.CrossRefGoogle ScholarPubMed
Casey, B. J., & Jones, R. M. (2010). Neurobiology of the adolescent brain and behavior: Implications for substance use disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 11891201.Google ScholarPubMed
Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry, 167, 509527.CrossRefGoogle Scholar
Caspi, A., Langley, K., Milne, B., Moffitt, T. E., O'Donovan, M., Owen, M. J., et al. (2008). A replicated molecular genetic basis for subtyping antisocial behavior in children with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 65, 203210.CrossRefGoogle ScholarPubMed
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.CrossRefGoogle ScholarPubMed
Castellanos, F. X., & Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nature Reviews Neuroscience, 3, 617628.CrossRefGoogle ScholarPubMed
Churchwell, J. C., Morris, A. M., Heurtelou, N. M., & Kesner, R. P. (2009). Interactions between the prefrontal cortex and amygdala during delay discounting and reversal. Behavioral Neuroscience, 123, 11851196.CrossRefGoogle ScholarPubMed
Cicchetti, D. (1984). The emergence of developmental psychopathology. Child Development, 55, 17.CrossRefGoogle ScholarPubMed
Cicchetti, D. (1989). Developmental psychopathology: Some thoughts on its evolution. Development and Psychopathology, 1, 14.CrossRefGoogle Scholar
Cicchetti, D. (Ed.). (1996). Regulatory process [Special Issue]. Development and Psychopathology, 8, 1305.CrossRefGoogle Scholar
Cicchetti, D. (2006). Development and psychopathology. In Cicchetti, D. and Cohen, D. J. (Eds.), Developmental psychopathology: Vol. 1. Theory and method (pp. 123). Hoboken, NJ: Wiley.Google Scholar
Cicchetti, D. (2008). A multiple-levels-of-analysis perspective on research in developmental psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (pp. 2757). Hoboken, NJ: Wiley.Google Scholar
Cicchetti, D., Ackerman, B. P., & Izard, C. (Eds.). (1995). Emotions in developmental psychopathology [Special Issue]. Development and Psychopathology, 7, 1226.CrossRefGoogle Scholar
Cicchetti, D., & Blender, J. A. (2004). A multiple-levels-of-analysis approach to the study of developmental processes in maltreated children. Proceedings of the National Academy of Sciences, 101, 1732517326.CrossRefGoogle Scholar
Cicchetti, D., & Cannon, T. D. (1999). Neurodevelopmental processes in the ontogenesis and epigenesis of psychopathology [Special Issue]. Development and Psychopathology, 11, 375654.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Cohen, D. J. (Eds.). (1995a). Developmental psychopathology: Vol. 1. Theory and method. New York: Wiley.Google Scholar
Cicchetti, D., & Cohen, D. J. (Eds.). (1995b). Developmental psychopathology: Vol. 2. Risk, disorder, and adaptation. New York: Wiley.Google Scholar
Cicchetti, D., & Cohen, D. J. (Eds.). (2006a). Developmental psychopathology: Vol. 1. Theory and method (2nd ed.). New York: Wiley.Google Scholar
Cicchetti, D., & Cohen, D. J. (Eds.). (2006b). Developmental psychopathology: Vol. 2. Developmental neuroscience (2nd ed.). New York: Wiley.Google Scholar
Cicchetti, D., & Cohen, D. J. (Eds.). (2006c). Developmental psychopathology: Vol. 3. Risk, disorder, and adaptation (2nd ed.). New York: Wiley.Google Scholar
Cicchetti, D., & Dawson, G. (Eds.). (2002). Multiple levels of analysis [Special Issue]. Development and Psychopathology, 14, 417666.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Hinshaw, S. P. (2003). Conceptual, methodological, and statistical issues in developmental psychopathology: A Special Issue in honor of Paul E. Meehl [Special Issue]. Development and Psychopathology, 15, 497832.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Posner, M. (Eds.). (2005). Integrating cognitive and affective neuroscience and developmental psychopathology [Special Issue]. Development and Psychopathology, 17, 569891.CrossRefGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (Eds.). (1996). Developmental pathways: Diversity in process and outcome [Special Issue]. Development and Psychopathology, 8, 597666.CrossRefGoogle Scholar
Cicchetti, D., Rogosch, F. A., & Thibodeau, E. L. (2012). The effects of child maltreatment on early signs of antisocial behavior: Genetic moderation by tryptophan hydroxylase, serotonin transporter, and monaoamine oxidase A genes. Development and Psychopathology, 24, 907928.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Toth, S. L. (1998). The development of depression in children and adolescents. American Psychologist, 53, 221241.CrossRefGoogle ScholarPubMed
Cloninger, C. R. (1987). A systematic method for clinical description and classification of personality variants. Archives of General Psychiatry, 44, 573588.CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
Colantuoni, C., Lipska, B. K., Ye, T., Hyde, T. M., Tao, R., Leek, J. T., et al. (2011). Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature, 478, 519523.CrossRefGoogle ScholarPubMed
Colvin, M., Cullen, F. T., & Vander ven, T. (2002). Coercion, social support, and crime: An emerging theoretical consensus. Criminology, 40, 1942.CrossRefGoogle Scholar
Conners, C. K., Sitarenios, G., Parker, J. D. A., & Epstein, J. N. (1998). The revised Conners’ Parent Rating Scale (CPRS–R): Factor structure, reliability, and criterion validity. Journal of Abnormal Child Psychology, 26, 257268.CrossRefGoogle ScholarPubMed
Covault, J., Tennen, H., Armeli, S., Conner, T. S., Herman, A. I., Cillessen, A., et al. (2007). Interactive effects of the serotonin transporter 5-HTTLPR polymorphism and stressful life events on college student drinking and drug use. Biological Psychiatry, 61, 609616.CrossRefGoogle ScholarPubMed
Crews, F., He, J., & Hodge, C. (2007). Adolescent cortical development: A critical period of vulnerability for addiction. Pharmacology Biochemistry and Behavior, 86, 189199.CrossRefGoogle ScholarPubMed
Crocker, N. A., Fryer, S. L., & Mattson, S. N. (2013). Exposure to teratogens as a risk factor for psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (2nd ed., pp. 285316). Hoboken, NJ: Wiley.Google Scholar
Crowell, S. E., Beauchaine, T. P., & Linehan, M. (2009). The development of borderline personality: Extending Linehan's theory. Psychological Bulletin, 135, 495510.CrossRefGoogle ScholarPubMed
Crowell, S. E., Derbidge, C., & Beauchaine, T. P. (in press). Developmental approaches to understanding self-injury and suicidal behaviors. In Nock, M. K. (Ed.), Oxford handbook of suicide and self-injury. New York: Oxford University Press.Google Scholar
Davies, P. T., Sturge-Apple, M. L., Cicchetti, D., Manning, L. G., & Vonhold, S. E. (2012). Pathways and processes of risk in associations among maternal antisocial personality symptoms, interparental aggression, and preschoolers’ psychopathology. Development and Psychopathology, 24, 807832.CrossRefGoogle ScholarPubMed
Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6, 1334.CrossRefGoogle ScholarPubMed
Dawson, G. (2008). Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Development and Psychopathology, 20, 775803.CrossRefGoogle ScholarPubMed
Derbidge, C., & Beauchaine, T. P. (in press). A developmental model of self-inflicted injury, borderline personality, and suicide risk. In Lewis, M. & Rudolph, K. (Eds.), Handbook of developmental psychopathology (3rd ed.). New York: Springer.Google Scholar
Decety, J., Michalska, K. J., Akitsuki, Y., & Lahey, B. B. (2009). Atypical empathic responses in adolescents with aggressive conduct disorder: A functional MRI investigation. Biological Psychology, 80, 203211.CrossRefGoogle ScholarPubMed
De Sanctis, V. A., Nomura, Y., Newcorn, J. H., & Halperin, J. M. (2012). Childhood maltreatment and conduct disorder: Independent predictors of criminal outcomes in ADHD youth. Child Abuse and Neglect, 36, 782789.CrossRefGoogle ScholarPubMed
De Sanctis, V. A., Trampush, J. W., Harty, S. C., Marks, D. J., Newcorn, J. H., Miller, C. J., et al. (2008). Childhood maltreatment and conduct disorder: Independent predictors of adolescent substance use disorders in youth with attention-deficit/hyperactivity disorder. Journal of Clinical Child and Adolescent Psychology, 37, 785793.CrossRefGoogle ScholarPubMed
DeYoung, C. G., Getchell, M., Koposov, R. A., Yrigollen, C. M., Haeffel, G. J., Klinteberg, B., et al. (2010). Variation in the catechol-o-methyltransferase val158met polymorphism associated with conduct disorder and ADHD symptoms among adolescent male delinquents. Psychiatric Genetics, 20, 2024.CrossRefGoogle Scholar
Dick, D. M., Viken, R. J., Kapiro, J., Pulkkinen, L., & Rose, R. J. (2005). Understanding the covariation among childhood externalizing symptoms: Genetic and environmental influences on conduct disorder, attention-deficit/hyperactivity disorder, and oppositional defiant disorder symptoms. Journal of Abnormal Child Psychology, 33, 219229.CrossRefGoogle ScholarPubMed
Dickstein, S. G., Bannon, K., Castellanos, X. F., & Milham, M. P. (2006). The neural correlates of attention-deficit/hyperactivity disorder: An ALE meta-analysis. Journal of Child Psychology and Psychiatry, 47, 10511062.CrossRefGoogle ScholarPubMed
Dishion, T. J., McCord, J., & Poulin, F. (1999). When interventions harm. American Psychologist, 54, 755764.CrossRefGoogle ScholarPubMed
Dishion, T. J., & Racer, K. H. (2013). Development of adult antisocial behavior. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (2nd ed., pp. 453487). Hoboken, NJ: Wiley.Google Scholar
Drabick, D. A. G., Gadow, K. D., & Sprafkin, J. (2006). Co-occurrence of conduct disorder and depression in a clinic-based sample of boys with ADHD. Journal of Child Psychology and Psychiatry, 47, 766774.CrossRefGoogle Scholar
Durston, S. (2003). A review of the biological bases of ADHD: What have we learned from imaging studies? Mental Retardation and Developmental Disabilities Reviews, 9, 184195.CrossRefGoogle ScholarPubMed
Ellis, B. J., Del Giudice, M., & Shirtcliff, E. A. (2013). Beyond allostatic load: The stress response system as a mechanism of conditional adaptation. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (2nd ed., pp. 251284).Google Scholar
Fairchild, G., Passamonti, L., Hurford, G., Hagan, C. C., von dem Hagen, E. A. H., van Goozen, S. H. M., et al. (2011). Brain structure abnormalities in early-onset and adolescent-onset conduct disorder. American Journal of Psychiatry, 168, 624633.CrossRefGoogle ScholarPubMed
Faraone, S. V., & Mick, E. (2010). Molecular genetics of attention-deficit/hyperactivity disorder. Psychiatric Clinics of North America, 33, 159180.Google ScholarPubMed
Fergusson, D. M., Swain-Campbell, N. R., & Horwood, L. J. (2002). Deviant peer affiliations, crime and substance use: A fixed effects regression analysis. Journal of Abnormal Child Psychology, 30, 419430.CrossRefGoogle ScholarPubMed
First, M. B. (2005). Mutually exclusive versus co-occurring diagnostic categories: The challenge of diagnostic comorbidity. Psychopathology, 38, 206210.CrossRefGoogle ScholarPubMed
Floresco, S. B., & Magyar, O. (2006). Mesocortical dopamine modulation of executive functions: Beyond working memory. Psychopharmacology, 188, 567585.CrossRefGoogle ScholarPubMed
Foley, M., McClowry, S. G., & Castellanos, F. X. (2008). The relationship between attention-deficit/hyperactivity disorder and child temperament. Journal of Applied Developmental Psychology, 29, 157169.CrossRefGoogle Scholar
Forbes, E. E., & Dahl, R. E. (2005). Neural systems of positive affect: Relevance to understanding child and adolescent depression? Development and Psychopathology, 17, 827850.CrossRefGoogle ScholarPubMed
Fowles, D. C. (1988). Psychophysiology and psychopathology: A motivational approach. Psychophysiology, 25, 373391.CrossRefGoogle ScholarPubMed
Frick, P. J., & Marsee, M. A. (2006). Psychopathy and developmental pathways to antisocial behavior in youth. In Patrick, C. J. (Ed.), Handbook of psychopathy (pp. 353375). New York: Guilford Press.Google Scholar
Frick, P. J., Stickle, T. R., Dandreaux, D. M., Farrell, J. M., & Kimonis, E. R. (2005). Callous–unemotional traits in predicting the severity and stability of conduct problems and delinquency. Journal of Abnormal Child Psychology, 33, 471487.CrossRefGoogle ScholarPubMed
Frick, P. J., & White, S. F. (2008). Research Review: The importance of callous–unemotional traits for developmental models of aggressive and antisocial behavior. Journal of Child Psychology and Psychiatry, 49, 359375.CrossRefGoogle ScholarPubMed
Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: A review using an integrative framework. Psychological Bulletin, 134, 3160.CrossRefGoogle ScholarPubMed
Gatzke-Kopp, L. M. (2011). The canary in the coalmine: Sensitivity of mesolimbic dopamine to environmental adversity during development. Neuroscience & Biobehavioral Reviews, 35, 794803.CrossRefGoogle ScholarPubMed
Gatzke-Kopp, L., & Beauchaine, T. P. (2007a). Central nervous system substrates of impulsivity: Implications for the development of attention-deficit/hyperactivity disorder and conduct disorder. In Coch, D., Dawson, G., & Fischer, K. (Eds.), Human behavior and the developing brain: Atypical development (pp. 239263). New York: Guilford Press.Google Scholar
Gatzke-Kopp, L., & Beauchaine, T. P. (2007b). Prenatal nicotine exposure and the development of conduct disorder: Direct and passive effects. Child Psychiatry and Human Development, 38, 255269.CrossRefGoogle Scholar
Gatzke-Kopp, L. M., Beauchaine, T. P., Shannon, K. E., Chipman-Chacon, J., Fleming, A. P., Crowell, S. E., et al. (2009). Neurological correlates of reward responding in adolescents with and without externalizing behavior disorders. Journal of Abnormal Psychology, 118, 203213.CrossRefGoogle ScholarPubMed
Gatzke-Kopp, L. M., Greenberg, M. T., Fortunato, C. K., & Coccia, M. A. (2012). Aggression as an equifinal outcome of distinct neurocognitive and neuroaffective processes. Development and Psychopathology, 24, 9851002.CrossRefGoogle ScholarPubMed
Gau, S. S.-F., Ni, H.-C., Shang, C.-Y., Soong, W.-T., Wu, Y.-Y., Lin, L.-Y., et al. (2010). Psychiatric comorbidity among children and adolescents with and withpout persistent attention-deficit/hyperactivity disorder. Australian and New Zealand Journal of Psychiatry, 44, 135143.CrossRefGoogle ScholarPubMed
George, O., & Koob, G. F. (2010). Individual differences in prefrontal cortex function and the transition from drug use to drug dependence. Neuroscience & Biobehavioral Reviews, 35, 232247.CrossRefGoogle ScholarPubMed
Gerard, J. M., & Buehler, C. (2004). Cumulative environmental risk and youth problem behavior. Journal of Marriage and Family, 66, 702720.CrossRefGoogle Scholar
Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of pediatric brain development: What have we learned and where are we going? Neuron, 67, 728734.CrossRefGoogle ScholarPubMed
Gillespie, C. F., Phifer, J., Bradley, B., & Ressler, K. J. (2009). Risk and resilience: Genetic and environmental influences on development of the stress response. Depression and Anxiety, 26, 984992.CrossRefGoogle ScholarPubMed
Gizer, I. R., Ficks, C., & Waldman, I. D. (2009). Candidate gene studies of ADHD: A meta-analytic review. Human Genetics, 126, 5190.CrossRefGoogle ScholarPubMed
Glover, V. (2011). Annual Research Review: Prenatal stress and the origins of psychopathology: An evolutionary perspective. Journal of Child Psychology and Psychiatry, 52, 356367.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101, 81748179.CrossRefGoogle ScholarPubMed
Goldsmith, H. H., Pollak, S. D., & Davidson, R. J. (2008). Developmental neuroscience perspectives on emotion regulation. Child Development Perspectives, 2, 132140.CrossRefGoogle ScholarPubMed
Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nature Reviews Neuroscience, 12, 652669.CrossRefGoogle ScholarPubMed
Gottesman, I. I. (1963). Genetic aspects of intelligent behavior. In Ellis, N. R. (Ed.), Handbook of mental deficiency (pp. 253296). New York: McGraw–Hill.Google Scholar
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636645.CrossRefGoogle ScholarPubMed
Gottesman, I. I., & Shields, J. (1966). Schizophrenia in twins: 16 years’ consecutive admissions to a psychiatric clinic. British Journal of Psychiatry, 112, 809818.CrossRefGoogle ScholarPubMed
Gray, J. A. (1987). The neuropsychology of emotion and personality. In Stahl, S. M., Iversen, S. D., & Goodman, E. C. (Eds.), Cognitive neurochemistry (pp. 171190). Oxford: Oxford University Press.Google Scholar
Gunnar, M. R., Wenner, J. A., Thomas, K. M., Glatt, C. E., McKenna, M. C., & Clark, A. G. (2012). The brain-derived neurotrophic factor factor Val66Met polymorphism moderates early deprivation effects on attention problems. Development and Psychopathology, 24, 12151223.CrossRefGoogle ScholarPubMed
Halperin, J. M., & Schulz, K. P. (2006). Revisiting the role of the prefrontal cortex in the patho-physiology of attention-deficit/hyperactivity disorder. Psychological Bulletin, 132, 560581.CrossRefGoogle Scholar
Hanson, J. L., Chung, M. K., Avants, B. B., Shirtcliff, E. A., Gee, J. C., Davidson, R. J., et al. (2010). Early stress is associated with alterations in the orbitofrontal cortex: A tensor-based morphometry investigation of brain structure and behavioral risk. Journal of Neuroscience, 30, 74667472.CrossRefGoogle ScholarPubMed
Heatherton, T. F. (2011). Neuroscience of self and self-regulation. Annual Review of Psychology, 62, 363390.CrossRefGoogle ScholarPubMed
Heatherton, T. F., & Wagner, D. D. (2011). Cognitive neuroscience of self-regulation failure. Trends in Cognitive Sciences, 15, 132139.CrossRefGoogle ScholarPubMed
Hinshaw, S. P. (1987). On the distinction between attention-deficit/hyperactivity and conduct problems/aggression in child psychopathology. Psychological Bulletin, 101, 443463.CrossRefGoogle Scholar
Hinshaw, S. P., Henker, B., Whalen, C. K., Erhardt, D., & Dunnington, R. E. (1989). Aggressive, prosocial, and nonsocial behavior in hyperactive boys: Dose effects of methylphenidate in naturalistic settings. Journal of Consulting and Clinical Psychology, 57, 636643.CrossRefGoogle ScholarPubMed
Hinshaw, S. P., Lahey, B. B., & Hart, E. L. (1993). Issues of taxonomy and comorbidity in the development of conduct disorder. Development and Psychopathology, 5, 3149.CrossRefGoogle Scholar
Hirshfeld-Becker, D. R., Biederman, J., Faraone, S. V., Violette, H., Wrightsman, J., & Rosenbaum, J. F. (2002). Temperamental correlates of disruptive behavior disorders in young children: Preliminary findings. Biological Psychiatry, 50, 563574.CrossRefGoogle Scholar
Hollander, E., Zohar, J., Sirovatka, P. J., & Regier, D. A. (Eds.). (2011). Obsessive–compulsive spectrum disorders: Refining the research agenda for DSM-V. Washington, DC: American Psychiatric Association.Google Scholar
Hunter, A. L., Minnis, H., & Wilson, P. (2011). Altered stress responses in children exposed to early adversity: A systematic review of salivary cortisol studies. Stress, 14, 614626.CrossRefGoogle ScholarPubMed
Insel, T. R., Cuthbert, B. N., Garvey, M. A., Heinssen, R. K., Pine, D. S., Quinn, K. J., et al. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167, 748751.CrossRefGoogle Scholar
Jensen, P. (2003). Comorbidity and child psychopathology: Recommendations for the next decade. Journal of Abnormal Child Psychology, 31, 293300.CrossRefGoogle ScholarPubMed
Kalivas, P. W. (2008). Addiction as a pathology in prefrontal cortical regulation of corticostriatal habit circuitry. Neurotoxicity Research, 14, 185189.CrossRefGoogle ScholarPubMed
Kalivas, P. W., & Nakamura, M. (1999). Neural systems for behavioral activation and reward. Current Opinion in Neurobiology, 9, 223227.CrossRefGoogle ScholarPubMed
Kapoor, A., Petropoulos, S., & Matthews, S. G. (2008). Fetal programming of hypothalamic–pituitary–adrenal (HPA) axis function and behavior by synthetic glucocorticoids. Brain Research Reviews, 57, 586595.CrossRefGoogle ScholarPubMed
Keijsers, L., Loeber, R., Branje, S., & Meeus, W. (2011). Bidirectional links and concurrent development of parent–child relationships and boys’ offending behavior. Journal of Abnormal Psychology, 120, 878889.CrossRefGoogle ScholarPubMed
Kendall, P. C., & Drabick, D. A. G. (Eds.). (2010). Comorbidity in children's mental health [Special Issue]. Clinical Psychology: Science and Practice, 17, 265359.Google Scholar
Kessler, R. C., Chiu, W., Demler, O., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 617627.CrossRefGoogle ScholarPubMed
Kiff, C. J., Lengua, L. J., & Zalewski, M. (2011). Nature and nurturing: Parenting in the context of child temperament. Clinical Child and Family Psychology Review, 14, 251301.CrossRefGoogle ScholarPubMed
Kim, M. J., Loucks, R. A., Palmer, A. L., Brown, A. C., Solomon, K. M., Marchante, A. N., et al. (2011). Structural and functional connectivity of the amygdala: From normal emotion to pathological anxiety. Behavioural Brain Research, 223, 403410.CrossRefGoogle ScholarPubMed
Kim, S., & Kochanska, G. (2012). Child temperament moderates effects of parent–child mutuality on self-regulation: A relationship-based path for emotionally negative infants. Child Development, 83, 12751289.CrossRefGoogle ScholarPubMed
Kim, S., & Lee, D. (2011). Prefrontal cortex and impulsive decision making. Biological Psychiatry, 69, 11401146.CrossRefGoogle ScholarPubMed
Klein, D. N., & Riso, L. P. (1993). Psychiatric disorders: Problems of boundaries and comorbidity. In Costello, C. G. (Ed.), Basic issues in psychopathology (pp. 1966). New York: Guilford Press.Google Scholar
Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. Brain Imaging, 12, 36833687.Google ScholarPubMed
Koehl, M., Lemaire, V., Vallee, M., Abrous, N., Piazza, P. V., Mayo, W., et al. (2001). Long-term neurodevelopmental and behavioral effects of perinatal life events in rats. Neurotoxicity Research, 3, 6583.CrossRefGoogle ScholarPubMed
Koopsman, J. R., Slutzke, W. S., Heath, A. C., Neale, M. C., & Boomsma, D. I. (1999). The genetics of smoking initiation and quantity smoked in Dutch adolescent and young adult twins. Behavior Genetics, 29, 383393.Google Scholar
Koopsman, J. R., van Doornen, L. J., & Boomsma, D. I. (1997). Association between alcohol use and smoking in adolescent and young adult twins: A bivariate genetic analysis. Alcoholism: Clinical and Experimental Research, 21, 537546.Google Scholar
Krueger, R. F., Hicks, B. M., Patrick, C. J., Carlson, S. R., Iacono, W. G., & McGue, M. (2002). Etiologic connections among substance dependence, antisocial behavior, and personality: Modeling the externalizing spectrum. Journal of Abnormal Psychology, 111, 411424.CrossRefGoogle ScholarPubMed
Krueger, R. F., Markon, K. E., Patrick, C. J., Benning, S. D., & Kramer, M. (2007). Linking antisocial behavior, substance use, and personality: An integrative quantitative model of the adult externalizing spectrum. Journal of Abnormal Psychology, 116, 645666.CrossRefGoogle ScholarPubMed
Kuperman, S., Schlosser, S. S., Kramer, J. R., Bucholz, K., Hesselbrock, V., Reich, T., et al. (2001). Developmental sequence from disruptive behavior diagnosis to adolescent alcohol dependence. American Journal of Psychiatry, 158, 20222026.CrossRefGoogle ScholarPubMed
Kupper, N. H. M., Willemsen, G., van den Berg, M., de Boer, D., Posthuma, D., Boomsma, D. I., et al. (2004). Heritability of ambulatory heart rate variability. Circulation, 110, 27922796.CrossRefGoogle ScholarPubMed
Laakso, A., Wallius, E., Kajander, J., Bergman, J., Eskola, O., Solin, O., et al. (2003). Personality traits and striatal dopamine synthesis capacity in healthy subjects. American Journal of Psychiatry, 160, 904910.CrossRefGoogle ScholarPubMed
Lahey, B. B., Van Hulle, C. A., Singh, A. L., Waldman, I. D., & Rathouz, P. J. (2011). Higher-order genetic and environmental structure of prevalent forms of child and adolescent psychopathology. Archives of General Psychiatry, 68, 181189.CrossRefGoogle ScholarPubMed
Laine, T. P. J., Ahonen, A., Räsänen, P., & Tiihonen, J. (2001). Dopamine transporter density and novelty seeking among alcoholics. Journal of Addictive Disease, 20, 95100.CrossRefGoogle ScholarPubMed
Lansford, J. E., Malone, P. S., Dodge, K. A., Pettit, G. S., & Bates, J. E. (2010). Developmental cascades of peer rejection, social information processing biases, and aggression during middle childhood. Development and Psychopathology, 22, 593602.CrossRefGoogle ScholarPubMed
Leckman, J. F., Weissman, M. M., Merikangas, K. R., Pauls, D. L., & Prusoff, B. A. (1983). Panic disorder and major depression: Increased risk of depression, alcoholism, panic, and phobic disorders in families of depressed probands with panic disorder. Archives of General Psychiatry, 40, 10551060.Google ScholarPubMed
Lenroot, R. K., Schmitt, J. E., Ordaz, S. J., Wallace, G. L., Neale, M. C., Lerch, J. P., et al. (2007). Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Human Brain Mapping, 30, 163174.CrossRefGoogle Scholar
Lilienfeld, S. O. (2003). Comorbidity between and within childhood externalizing and internalizing disorders: Reflections and directions. Journal of Abnormal Child Psychology, 31, 285291.CrossRefGoogle ScholarPubMed
Loeber, R., & Hay, D. (1997). Key issues in the development of aggression and violence from childhood to early adulthood. Annual Review of Psychology, 48, 371410.CrossRefGoogle ScholarPubMed
Loeber, R., & Keenan, K. (1994). Interaction between conduct disorder and its comorbid conditions: Effects of age and gender. Clinical Psychology Review, 14, 497523.CrossRefGoogle Scholar
Lorber, M. F., & Egeland, B. (2011). Parenting and infant difficulty: Testing a mutual exacerbation hypothesis to predict early onset conduct problems. Child Development, 82, 20062020.CrossRefGoogle ScholarPubMed
Louilot, A., LeMoal, M., & Simon, H. (1989). Opposite influences of dopaminergic pathways to the prefrontal cortex or the septum on the dopaminergic transmission in the nucleus accumbens: An in vivo voltammetric study. Neuroscience, 29, 4556.CrossRefGoogle ScholarPubMed
Lynam, D. R. (1996). The early identification of chronic offenders: Who is the fledgling psychopath? Psychological Bulletin, 120, 209234.CrossRefGoogle ScholarPubMed
Lynam, D. R. (1998). Early identification of the fledgling psychopath: Locating the psychopathic child in the current nomenclature. Journal of Abnormal Psychology, 107, 566575.CrossRefGoogle ScholarPubMed
Lynam, D. R., Caspi, A., Moffitt, T. E., Wikström, P. H., Loeber, R., & Novak, S. (2000). The interaction between impulsivity and neighborhood context in offending: The effects of impulsivity are stronger in poorer neighborhoods. Journal of Abnormal Psychology, 109, 563574.CrossRefGoogle ScholarPubMed
Martel, M. N., & Nigg, J. T. (2006). Child ADHD and personality/temperament traits of reactive and effortful control, resiliency, and emotionality. Journal of Child Psychology and Psychiatry, 47, 11751183.CrossRefGoogle ScholarPubMed
Martin-Soelch, C., Leenders, K. L., Chevalley, A.-F., Missimer, J., Kunig, S., Magyar, A., et al. (2001). Reward mechanisms in the brain and their role in dependence: Evidence from neurophysiological and neuroimaging studies. Brain Research Reviews, 36, 139149.CrossRefGoogle ScholarPubMed
Masten, A. S. (2006). Developmental psychopathology: Pathways to the future. International Journal of Behavioral Development, 30, 4754.CrossRefGoogle Scholar
Matthys, W., Vanderschuren, L. J. M. J., & Schutter, D. J. L. G. (2012). The neurobiology of oppositional defiant disorder and conduct disorder: Altered functioning in three mental domains. Development and Psychopathology, 25. Advance online publication.Google ScholarPubMed
Maughan, B., Rowe, R., Messer, J., Goodman, R., & Meltzer, H. (2004). Conduct disorder and oppositional defiant disorder in a national sample: Developmental epidemiology. Journal of Child Psychology and Psychiatry, 45, 606621.CrossRefGoogle Scholar
McCormick, C. M., & Mathews, I. Z. (2010). Adolescent development, hypothalamic–pituitary–adrenal function, and programming of adult learning and memory. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34, 756765.CrossRefGoogle ScholarPubMed
McGue, M., Iacono, W. G., Legrand, L. N., & Elkins, I. (2001). Origins and consequences of age at first drink: II. Familial risk and heritability. Alcoholism: Clinical and Experimental Research, 25, 11661173.CrossRefGoogle ScholarPubMed
Mead, H. K., Beauchaine, T. P., & Shannon, K. E. (2010). Neurobiological adaptations to violence across development. Development and Psychopathology, 22, 122.CrossRefGoogle ScholarPubMed
Meaney, M. J., Brake, W., & Gratton, A. (2002). Environmental regulation of the development of mesolimbic dopamine systems: A neurobiological mechanism for vulnerability to drug use? Psychoneuroendocrinology, 27, 127138.CrossRefGoogle Scholar
Medici, F., Hawa, M., Ianari, A., Pyke, D. A., & Leslie, R. D. (1999). Concordance rate for type II diabetes mellitus in monozygotic twins: Actuarial analysis. Diabetologia, 42, 146150.CrossRefGoogle ScholarPubMed
Meehl, P. E. (1962). Schizotaxia, schizotypy, schizophrenia. American Psychologist, 17, 827838.CrossRefGoogle Scholar
Meehl, P. E. (1995). Bootstraps taxometrics: Solving the classification problem in psychopathology. American Psychologist, 50, 266275.CrossRefGoogle ScholarPubMed
Meier, M. H., Slutske, W. S., Arndt, S., & Cadoret, R. J. (2008). Impulsive and callous traits are more strongly associated with delinquent behavior in higher risk neighborhoods among boys and girls. Journal of Consulting and Clinical Psychology, 117, 377385.Google ScholarPubMed
Meier, M. H., Slutzke, W. S., Heath, A. C., & Martin, N. G. (2011). Sex differences in genetic and environmental influences on childhood conduct disorder and adult antisocial behavior. Journal of Abnormal Psychology, 120, 377388.CrossRefGoogle ScholarPubMed
Miller, G. E., & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110, 4048.CrossRefGoogle ScholarPubMed
Milner, P. M. (1991). Brain stimulation reward: A review. Canadian Journal of Psychology, 45, 136.CrossRefGoogle ScholarPubMed
Minabe, Y., Ashby, C. R., Heyser, C., Spear, L. P., & Wang, R. Y. (1992). The effects of prenatal cocaine exposure on spontaneously active midbrain dopamine neurons in adult male offspring: An electrophysiological study. Brain Research, 586, 152156.CrossRefGoogle ScholarPubMed
Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100, 674701.CrossRefGoogle ScholarPubMed
Monuteaux, M. C., Biederman, J., Doyle, A. E., Mick, E., & Faraone, S. V. (2009). Genetic risk for conduct disorder symptom subtypes in an ADHD sample: Specificity to aggressive symptoms. Journal of the American Academy of Child & Adolescent Psychiatry, 48, 757764.CrossRefGoogle Scholar
MTA Cooperative Group. (1999). A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 56, 10731086.CrossRefGoogle Scholar
Muris, P., & Ollendick, T. H. (2005). The role of temperament in the etiology of child psychopathology. Clinical Child and Family Psychology Review, 8, 271289.CrossRefGoogle ScholarPubMed
Myers, M. G., Stewart, D. G., & Brown, S. A. (1998). Progression from conduct disorder to antisocial personality disorder following treatment for adolescent substance use. American Journal of Psychiatry, 155, 479485.CrossRefGoogle Scholar
Neiderhiser, J. M., Reiss, D., Pedersen, N. L., Lichtenstein, P., Spotts, E. L., Hansson, K., et al. (2004). Genetic and environmental influences on mothering of adolescents: A comparison of two samples. Developmental Psychology, 40, 335351.CrossRefGoogle ScholarPubMed
Neuhaus, E., & Beauchaine, T. P. (2013). Impulsivity and vulnerability to psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (2nd ed., pp. 197226). Hoboken, NJ: Wiley.Google Scholar
Neuman, R. J., Lobos, E., Reich, W., Henderson, C. A., Sun, L. W., & Todd, R. D. (2007). Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype. Biological Psychiatry, 61, 13201328.CrossRefGoogle Scholar
Oberlin, B. G., Dzemidzic, M., Bragulat, V., Lehigh, C. A., Talavage, T., O'Connor, S. J., et al. (2012). Limbic responses to reward cues correlate with antisocial trait density in heavy drinkers. NeuroImage, 60, 644652.CrossRefGoogle ScholarPubMed
O'Connor, T. G., Deater-Deckard, K., Fulker, D., Rutter, M., & Plomin, R. (1998). Genotype–environment correlations in late childhood and adolescence: Antisocial behavior problems and coercive parenting. Developmental Psychology, 34, 970981.CrossRefGoogle ScholarPubMed
Oswald, L. M., Wong, D. F., McCaul, M., Zhou, Y., Kuwabara, H., Choi, L., et al. (2005). Relationships among ventral striatal dopamine release, cortisol secretion, and subjective responses to amphetamine. Neuropsychopharmacology, 30, 821832.CrossRefGoogle ScholarPubMed
Pardini, D. (2008). Novel insights into longstanding theories of bidirectional parent–child influences: Introduction to the Special Section. Journal of Abnormal Child Psychology, 36, 627631.CrossRefGoogle Scholar
Patrick, C. J., Hicks, B. M., Krueger, R. F., & Lang, A. R. (2005). Relations between psychopathy facets and externalizing in a criminal offender sample. Journal of Personality Disorders, 19, 339356.CrossRefGoogle Scholar
Patterson, G. R. (1982). Coercive family process. Eugene, OR: Castalia.Google Scholar
Patterson, G. R., Chamberlain, P., & Reid, J. B. (1982). A comparative evaluation of parent training procedures. Behavior Therapy, 13, 638650.CrossRefGoogle Scholar
Patterson, G. R., DeBaryshe, B. D., & Ramsey, E. (1989). A developmental perspective on antisocial behavior. American Psychologist, 44, 329335.CrossRefGoogle ScholarPubMed
Patterson, G. R., DeGarmo, D. S., & Knutson, N. M. (2000). Hyperactive and antisocial behaviors: Comorbid or two points in the same process? Development and Psychopathology, 12, 91107.CrossRefGoogle ScholarPubMed
Patterson, G. R., Dishion, T. J., & Bank, L. (1984). Family interaction: A process model of deviancy training. Aggressive Behavior, 10, 253267.3.0.CO;2-2>CrossRefGoogle Scholar
Pedhazur, E. (1997). Multiple regression in behavioral research (3rd ed.). New York: Harcourt Brace.Google Scholar
Perry, J. L., Joseph, J. E., Jiang, Y., Zimmerman, R. S., Kelly, T. H., Darna, M., et al. (2011). Prefrontal cortex and drug abuse vulnerability: Translation to prevention and treatment interventions. Brain Research Reviews, 65, 124149.CrossRefGoogle ScholarPubMed
Peters, J., Kalivas, P. W., & Quirk, G. J. (2009). Extinction circuits for fear and addiction overlap in prefrontal cortex. Learning and Memory, 16, 279288.CrossRefGoogle ScholarPubMed
Pharo, H., Sim, C., Graham, M., Gross, J., & Hayne, H. (2011). Risky business: Executive function, personality, and reckless behavior during adolescence and emerging adulthood. Behavioral Neuroscience, 125, 970978.CrossRefGoogle ScholarPubMed
Phillips, A. G., Blaha, C. D., & Fibiger, H. C. (1989). Neurochemical correlates of brain-stimulation reward measured by ex vivo and in vivo analyses. Neuroscience & Biobehavioral Reviews, 13, 99104.CrossRefGoogle ScholarPubMed
Phillips, K. A., Stein, D. J., Rauch, S. L., Hollander, E., Fallon, B. A., Barsky, A., et al. (2010). Should an obsessive–compulsive spectrum grouping of disorders be included in DSM-V? Depression and Anxiety, 27, 528555.CrossRefGoogle ScholarPubMed
Phillips, P. E., Walton, M. E., & Jhou, T. C. (2007). Calculating utility: Preclinical evidence for cost-benefit analysis by mesolimbic dopamine. Psychopharmacology, 191, 483495.CrossRefGoogle ScholarPubMed
Pollak, S. D. (2008). Mechanisms linking early experience and the emergence of emotions: Illustrations from the study of maltreated children. Current Directions in Psychological Science, 17, 370375.CrossRefGoogle Scholar
Pollak, S. D. (2011). Early social experience and the ontogenesis of emotion regulatory behavior in children. Developments in Primatology: Progress and Prospects, 36, 333341.Google Scholar
Popper, K. R. (1985). The aim of science. In Miller, D. (Ed.), Popper selections (pp. 162170). Princeton, NJ: Princeton University Press. (Original work published 1957)Google Scholar
Porteus, S. D. (1965). Porteus maze tests: Fifty years application. Palo Alto, CA: Pacific Books.Google Scholar
Preskorn, S. H., & Baker, B. (2002). The overlap of DSM-IV syndromes: Potential implications for the practice of polypsychopharmacology, psychiatric drug development, and the human genome project. Journal of Psychiatric Practice, 8, 170177.CrossRefGoogle ScholarPubMed
Quay, H. C. (1993). The psychobiology of undersocialized aggressive conduct disorder: A theoretical perspective. Development and Psychopathology, 5, 165180.CrossRefGoogle Scholar
Raudino, A., Fergusson, D. M., Woodward, L. J., & Horwood, L. J. (2012). The intergenerational transmission of conduct problems. Social Psychiatry and Psychiatric Epidemiology. Advance online publication.Google ScholarPubMed
Richters, J. E., & Cicchetti, D. (1993). Toward a developmental perspective on conduct disorder. Development and Psychopathology, 5, 14.CrossRefGoogle Scholar
Riggs, A. D., Russo, V. E. A, & Martienssen, R. A. (1996). Epigenetic mechanisms of gene regulation. Plainview, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Robins, L. N. (1966). Deviant children grown up. Baltimore, MD: Williams & Wilkins.Google Scholar
Rolls, E. T., Rolls, B. J., Kelly, P. H., Shaw, S. G., Wood, R. J., & Dale, R. (1974). The relative attenuation of self-stimulation, eating, and drinking produced by dopamine receptor blockade. Psychopharmacologia, 38, 219230.CrossRefGoogle ScholarPubMed
Rubia, K. (2011). “Cool” inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus “hot” vetromedial orbitofrontal-limbic dysfunction in conduct disorder: A review. Biological Psychiatry, 69, e69e87.CrossRefGoogle Scholar
Rubia, K., Halari, R., Cubillo, A., Mohammad, M., & Taylor, E. (2009). Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naïve children with ADHD during a rewarded continuous performance task. Neuropharmacology, 57, 640652.CrossRefGoogle ScholarPubMed
Rubia, K., Halari, R., Mohammad, M., Taylor, E., & Brammer, M. (2011). Methylphenidate normalizes frontocingulate underactivation during error processing in attention-deficit/hyperactivity disorder. Biological Psychiatry, 70, 255262.CrossRefGoogle ScholarPubMed
Rubia, K., Smith, A., Halari, R., Matukura, F., Mohammad, M., Taylor, E., et al. (2009). Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure attention-deficit/hyperactivity disorder during sustained attention. American Journal of Psychiatry, 166, 8394.CrossRefGoogle ScholarPubMed
Rutter, M. (2006). Genes and behavior: Nature–nurture interplay explained. Oxford: Blackwell.Google Scholar
Rutter, M. (2012). Annual research review: Resilience: Clinical implications. Journal of Child Psychology and Psychiatry. Advance online publication.Google ScholarPubMed
Rutter, M., Moffitt, T. E., & Caspi, A. (2006). Gene–environment interplay and psychopathology: Multiple varieties but real effects. Journal of Child Psychology and Psychiatry, 47, 226261.CrossRefGoogle ScholarPubMed
Rutter, M., & Sroufe, L. A. (2000). Developmental psychopathology: Concepts and challenges. Development and Psychopathology, 12, 265296.CrossRefGoogle ScholarPubMed
Sagvolden, T., Johansen, E. B., Aase, H., & Russell, V. A. (2005). A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behavioral and Brain Sciences, 28, 397468.CrossRefGoogle ScholarPubMed
Sanislow, C. A., Pine, D. S., Quinn, K. J., Kozak, M. J., Garvey, M. A., Heinssen, R. K., et al. (2010). Developing constructs for psychopathology research: Research domain criteria. Journal of Abnormal Psychology, 119, 631639.CrossRefGoogle ScholarPubMed
Saudino, L. J. (2009). The development of temperament from a behavioral genetics perspective. Advances in Child Development and Behavior, 37, 201231.CrossRefGoogle ScholarPubMed
Scheres, A., Milham, M. P., Knutson, B., & Castellanos, F. X. (2007). Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biological Psychiatry, 61, 720724.CrossRefGoogle ScholarPubMed
Schmidt, L. A., Fox, N. A., Perez-Edgar, K., & Hamer, D. H. (2009). Linking gene, brain, and behavior: DRD4, frontal asymmetry, and temperament. Psychological Science, 20, 831837.CrossRefGoogle ScholarPubMed
Schoenbauma, G., & Shahamd, Y. (2008). The role of orbitofrontal cortex in drug addiction: A review of preclinical studies. Biological Psychiatry, 63, 256262.CrossRefGoogle Scholar
Schott, B. H., Minuzzi, L., Krebs, R. M., Elmenhorst, E., Lang, M., Winz, O. H., et al. (2008). Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. Journal of Neuroscience, 28, 1431114319.CrossRefGoogle ScholarPubMed
Shannon, K. E., Sauder, C., Beauchaine, T. P., & Gatzke-Kopp, L. (2009). Disrupted effective connectivity between the medial frontal cortex and the caudate in adolescent boys with externalizing behavior disorders. Criminal Justice and Behavior, 36, 11411157.CrossRefGoogle Scholar
Shannon Bowen, K. E., & Gatzke-Kopp, L. M. (2013). Brain injury as a risk factor for psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (2nd ed., pp. 317340). Hoboken, NJ: Wiley.Google Scholar
Slotkin, T. A. (1998). Fetal nicotine or cocaine exposure: Which one is worse? Journal of Pharmacology and Experimental Therapeutics, 285, 931945.Google ScholarPubMed
Sneider, H., Boomsma, D. I., van Doornen, L. J. P., & DeGeus, E. J. C. (1997). Heritability of respiratory sinus arrhythmia: Dependency on task and respiration rate. Psychophysiology, 34, 317328.CrossRefGoogle Scholar
Snyder, J., Edwards, P., McGraw, K., Kilgore, K., & Holton, A. (1994). Escalation and reinforcement in mother–child conflict: Social processes associated with the development of physical aggression. Developmental and Psychopathology, 6, 305321.CrossRefGoogle Scholar
Snyder, J., Schrepferman, L., McEachern, A., Barner, S., Johnson, K., & Provines, J. (2008). Peer deviancy training and peer coercion: Dual processes associated with early-onset conduct problems. Child Development, 79, 252268.CrossRefGoogle ScholarPubMed
Snyder, J., Schrepferman, L., Oeser, J., Patterson, G., Stoolmiller, M., Johnson, K., et al. (2005). Deviancy training and association with deviant peers in young children: Occurrence and contribution to early-onset conduct problems. Development and Psychopathology, 17, 397413.CrossRefGoogle ScholarPubMed
Snyder, J., Schrepferman, L., & St. Peter, C. (1997). Origins of antisocial behavior: Negative reinforcement and affect dysregulation of behavior as socialization mechanisms in family interaction. Behavior Modification, 21, 187215.CrossRefGoogle ScholarPubMed
Spear, L. P. (2007). Assessment of adolescent neurotoxicity: Rationale and methodological considerations. Neurotoxicology and Teratology, 29, 19.CrossRefGoogle ScholarPubMed
Sroufe, L. A. (1997). Psychopathology as an outcome of development. Development and Psychopathology, 9, 251268.CrossRefGoogle ScholarPubMed
Sroufe, L. A. (2009). The concept of development in developmental psychopathology. Child Development Perspectives, 3, 178183.CrossRefGoogle ScholarPubMed
Sroufe, L. A., & Rutter, M. (1984). The domain of developmental psychopathology. Child Development, 55, 1729.CrossRefGoogle ScholarPubMed
Stanwood, G. D., Washington, R. A., Shumsky, J. S., & Levitt, P. (2001). Prenatal cocaine exposure produces consistent developmental alterations in dopamine-rich regions of the cerebral cortex. Neuroscience, 106, 514.CrossRefGoogle ScholarPubMed
Stein, D. J., Fineberg, N. A., Bienvenu, O. J., Denys, D., Lochner, C., Nestadt, G., et al. (2010). Should OCD be classified as an anxiety disorder in DSM-V? Depression and Anxiety, 27, 495506.CrossRefGoogle ScholarPubMed
Sterling, P., & Eyer, J. (1988). Allostasis: A new paradigm to explain arousal pathology. In Fisher, S. & Reason, J. (Eds.), Handbook of life stress, cognition, and health (pp. 629649). New York: Wiley.Google Scholar
Sterzera, P., Stadlerb, C., Poustkab, F., & Kleinschmidta, A. (2007). A structural neural deficit in adolescents with conduct disorder and its association with lack of empathy. NeuroImage, 37, 335342.CrossRefGoogle Scholar
Stringaris, A., Maughan, B., & Goodman, R. (2010). What's in a disruptive disorder? Temperamental antecedents of oppositional defiant disorder: Findings from the Avon Longitudinal Study. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 474483.Google Scholar
Sullivan, R. M., & Brake, W. G. (2003). What the rodent prefrontal cortex can teach us about attention-deficit/hyperactivity disorder: The critical role of early developmental events on prefrontal function. Behavior and Brain Research, 146, 4355.CrossRefGoogle ScholarPubMed
Swartz, J. R. (1999). Dopamine projections and frontal systems function. In Miller, B. L. & Cummings, J. L. (Eds.), The human frontal lobes: Functions and disorders (pp. 159173). New York: Guilford PressGoogle Scholar
Tackett, J. L. (2010). Toward an externalizing spectrum in DSM-V: Incorporating developmental concerns. Child Development Perspectives, 4, 161167.CrossRefGoogle Scholar
Thayer, J., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37, 141153.CrossRefGoogle ScholarPubMed
Thomas, M. J., Beurrier, C., Bonci, A., & Malenka, R. C. (2001). Long-term depression in the nucleus accumbens: A neural correlate of behavioral sensitization to cocaine. Nature Neuroscience, 4, 12171223.CrossRefGoogle ScholarPubMed
Thorell, L. B., & Wȧhlstedt, C. (2006). Executive functioning deficits in relation to symptoms of ADHD and/or ODD in preschool children. Infant and Child Development, 15, 503518.CrossRefGoogle Scholar
Tisch, S., Silberstein, P., Limousin-Dowsey, P., & Jahanshahi, M. (2004). The basal ganglia: Anatomy, physiology, and pharmacology. Psychiatric Clinics of North America, 27, 757759.CrossRefGoogle ScholarPubMed
Tuvblad, C., Zheng, M., Raine, A., & Baker, L. A. (2009). A common genetic factor explains the covariation among ADHD, ODD, and CD symptoms in 9–10-year-old boys and girls. Journal of Abnormal Child Psychology, 37, 153167.CrossRefGoogle Scholar
van Harmelen, A.-L., van Tol, M.-J., Demenescu, L. R., van der Wee, N. J. A., Veltman, D. J., Aleman, A. et al. (2013). Enhanced amygdala reactivity to emotional faces in adults reporting childhood emotional maltreatment. Social Cognitive and Affective Neuroscience, 8, 362369.Google Scholar
Vezina, P. (2004). Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neuroscience & Biobehavioral Reviews, 27, 827839.CrossRefGoogle ScholarPubMed
Viken, R. J., Kaprio, J., Koskenvuo, M., & Rose, R. J. (1999). Longitudinal analyses of the determinants of drinking and of drinking to intoxication in adolescent twins. Behavior Genetics, 29, 455461.CrossRefGoogle ScholarPubMed
Vles, J., Feron, F., Hendriksen, J., Jolles, J., van Kroonenburgh, M., & Weber, W. (2003). Methylphenidate down-regulates the dopamine receptor and transporter system in children with attention deficit hyperkinetic disorder. Neuropediatrics, 34, 7780.Google ScholarPubMed
Volkow, N. D., Fowler, J. S., & Wang, G. J. (2004). The addicted human brain viewed in light of imaging studies: Brain circuits and treatment strategies. Neuropharmacology, 47, 313.CrossRefGoogle ScholarPubMed
Volkow, N. D., Fowler, J. S., Wang, G. J., Baler, R., & Telang, F. (2009). Imaging dopamine's role in drug abuse and addiction. Neuropharmacology, 56 (Suppl. 1), 38.CrossRefGoogle ScholarPubMed
Volkow, N. D., Fowler, J. S., Wang, G., Ding, Y., & Gatley, S. J. (2002). Mechanism of action of methylphenidate: Insights from PET imaging studies. Journal of Attention Disorders, 6, S31S43.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G.-J., Kollins, S. H., Wigal, T. L., Newcorn, J. H., Telang, F., et al. (2009). Evaluating dopamine reward pathway in ADHD: Clinical implications. Journal of the American Medical Association, 302, 10841091.CrossRefGoogle ScholarPubMed
Wakschlag, L. S., Lahey, B. B., Loeber, R., Green, S. M., Gordon, R. A., & Leventhal, B. L. (1997). Maternal smoking during pregnancy and the risk of conduct disorder in boys. Archives of General Psychiatry, 54, 670676.CrossRefGoogle ScholarPubMed
Waldman, I. D., & Lahey, B. B. (2013). Oppositional defiant disorder, conduct disorder, and juvenile delinquency. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (2nd ed., pp. 411452). Hoboken, NJ: Wiley.Google Scholar
Waller, N. G., & Meehl, P. E. (1998). Multivariate taxometric procedures. Thousand Oaks, CA: Sage.Google Scholar
Webster-Stratton, C., Reid, M. J., & Beauchaine, T. P. (2011). Combining parent and child training for young children with attention-deficit/hyperactivity disorder. Journal of Clinical Child and Adolescent Psychology, 40, 191203.CrossRefGoogle Scholar
Welsh, M. C., Pennington, B. F., & Groisser, D. B. (1991). A normative-developmental study of executive function: A window on prefrontal function in children. Developmental Neuropsychology, 7, 131149.CrossRefGoogle Scholar
Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. Biological Psychiatry, 57, 13361346.CrossRefGoogle ScholarPubMed
Zepf, F. D., Holtmann, M., Stadler, C., Demisch, L., Schmitt, M., Wöckel, L., et al. (2008). Diminished serotonergic functioning in hostile children with ADHD: Tryptophan depletion increases behavioural inhibition. Pharmacopsychiatry, 41, 6065.CrossRefGoogle ScholarPubMed