Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T08:45:06.319Z Has data issue: false hasContentIssue false

The Weitzenböck machine

Published online by Cambridge University Press:  23 February 2010

Uwe Semmelmann
Affiliation:
Mathematisches Institut, Universität zu Köln, Weyertal 86-90, D-50931 Köln, Germany (email: [email protected])
Gregor Weingart
Affiliation:
Instituto de Matematicas (Unidad Cuernavaca), Universidad Nacional Autonoma de Mexico, Avenida Universidad s/n, Colonia Lomas de Chamilpa, 62210 Cuernavaca, Morelos, Mexico (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Weitzenböck formulas are an important tool in relating local differential geometry to global topological properties by means of the so-called Bochner method. In this article we give a unified treatment of the construction of all possible Weitzenböck formulas for all irreducible, non-symmetric holonomy groups. We explicitly construct a basis of the space of Weitzenböck formulas. This classification allows us to find customized Weitzenböck formulas for applications such as eigenvalue estimates or Betti number estimates.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2010

References

[1]Branson, T. and Hijazi, O., Bochner–Weitzenböck formulas associated with the Rarita–Schwinger operator, Internat. J. Math. 13 (2002), 137182.CrossRefGoogle Scholar
[2]Calderbank, D., Gauduchon, P. and Herzlich, M., Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000), 214255.CrossRefGoogle Scholar
[3]Fegan, H. D., Conformally invariant first order differential operators, Q. J. Math. Oxford (2) 27 (1976), 371378.CrossRefGoogle Scholar
[4]Gauduchon, P., Structures de Weyl et theoremes d’annulation sur une variete conforme autoduale, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 18 (1991), 563629.Google Scholar
[5]Homma, Y., Casimir elements and Bochner identities on Riemannian manifolds, Progress in Mathematical Physics, vol. 34 (Birkhäuser, Boston, MA, 2004).CrossRefGoogle Scholar
[6]Homma, Y., Bochner–Weitzenböck formulas and curvature actions on Riemannian manifolds, Trans. Amer. Math. Soc. 358 (2006), 87114.CrossRefGoogle Scholar
[7]Semmelmann, U. and Weingart, G., Vanishing theorems for quaternionic Kähler manifolds, J. Reine Angew. Math. 544 (2002), 111132.Google Scholar
[8]Semmelmann, U., Killing forms on G2- and Spin(7)-manifolds, J. Geom. Phys. 56 (2006), 17521766.CrossRefGoogle Scholar