Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T11:11:12.781Z Has data issue: false hasContentIssue false

Vanishing of the μ-invariant of p-adic Hecke L-functions

Published online by Cambridge University Press:  24 March 2011

Haruzo Hida*
Affiliation:
Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, USA (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove vanishing of the μ-invariant of the p-adic Katz L-function in N. M. Katz [p-adic L-functions for CM fields, Invent. Math. 49 (1978), 199–297].

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[Cha90]Chai, C.-L., Arithmetic minimal compactification of the Hilbert–Blumenthal moduli spaces, Ann. of Math. (2) 131 (1990), 541554.Google Scholar
[Del71]Deligne, P., Travaux de Shimura, Séminaire Bourbaki, Exposé 389, Lecture Notes in Mathematics, vol. 244 (Springer, Berlin, 1971), 123165.Google Scholar
[Del79]Deligne, P., Variétés de Shimura: interprétation modulaire, et techniques de construction de modéles canoniques, Proc. Sympos. Pure Math. 33 (1979), 247290.CrossRefGoogle Scholar
[DR80]Deligne, P. and Ribet, K. A., Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227286.Google Scholar
[Gil91]Gillard, R., Remarques sur l’invariant mu d’Iwasawa dans le cas CM, Sémin. Théor. Nombres Bordeaux, Sér. II 3 (1991), 1326.CrossRefGoogle Scholar
[Hid04]Hida, H., p-adic automorphic forms on Shimura varieties, Springer Monographs in Mathematics (Springer, Berlin, 2004) (a list of errata available at http://www.math.ucla.edu/∼hida ).CrossRefGoogle Scholar
[Hid09]Hida, H., Irreducibility of the Igusa tower, Acta Math. Sin. (Engl. Ser.) 25 (2009), 120.CrossRefGoogle Scholar
[Hid10]Hida, H., The Iwasawa μ-invariant of p-adic Hecke L-functions, Ann. of Math. (2) 172 (2010), 41137.Google Scholar
[HT93]Hida, H. and Tilouine, J., Anticyclotomic Katz p-adic L-functions and congruence modules, Ann. Sci. Éc. Norm. Supér. (4) 26 (1993), 189259.Google Scholar
[Kat78a]Katz, N. M., p-adic L-functions for CM fields, Invent. Math. 49 (1978), 199297.CrossRefGoogle Scholar
[Kat78b]Katz, N. M., Serre–Tate local moduli, in Surfaces algébriques, Lecture Notes in Mathematics, vol. 868 (Springer, Berlin, 1978), 138202.Google Scholar
[Kot92]Kottwitz, R., Points on Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), 373444.Google Scholar
[Mum94]Mumford, D., Abelian varieties, TIFR Studies in Mathematics (Oxford University Press, Oxford, 1994).Google Scholar
[Shi66]Shimura, G., Moduli and fibre system of abelian varieties, Ann. of Math. (2) 83 (1966), 294338.Google Scholar
[Shi75]Shimura, G., On some arithmetic properties of modular forms of one and several variables, Ann. of Math. (2) 102 (1975), 491515.Google Scholar
[Shi98]Shimura, G., Abelian varieties with complex multiplication and modular functions (Princeton University Press, Princeton, 1998).CrossRefGoogle Scholar
[Shi00]Shimura, G., Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs, vol. 82 (American Mathematical Society, Providence, RI, 2000).Google Scholar