No CrossRef data available.
Published online by Cambridge University Press: 13 March 2023
We give cases in which nearby cycles commute with pushforward from sheaves on the moduli stack of shtukas to a product of curves over a finite field. The proof systematically uses the property that taking nearby cycles of Satake sheaves on the Beilinson–Drinfeld Grassmannian with parahoric reduction is a central functor together with a ‘Zorro's lemma’ argument similar to that of Xue [Smoothness of cohomology sheaves of stacks of shtukas, Preprint (2020), arXiv:2012.12833]. As an application, for automorphic forms at the parahoric level, we characterize the image of tame inertia under the Langlands correspondence in terms of two-sided cells.