Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T02:09:14.529Z Has data issue: false hasContentIssue false

Towards a symplectic version of the Chevalley restriction theorem

Published online by Cambridge University Press:  02 March 2017

Michael Bulois
Affiliation:
Univ. Lyon, UJM-Saint-Etienne, CNRS UMR 5208, Institut Camille Jordan, 42023 Saint-Etienne, France email [email protected]
Christian Lehn
Affiliation:
Fakultät für Mathematik, Technische Universität Chemnitz, Reichenhainer Straße 39, 09126 Chemnitz, Germany email [email protected]
Manfred Lehn
Affiliation:
Institut für Mathematik, Johannes Gutenberg–Universität Mainz, 55099 Mainz, Germany email [email protected]
Ronan Terpereau
Affiliation:
Max Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany email [email protected] Current address:Institut de Mathématiques de Bourgogne - UMR 5584 du CNRS Université de Bourgogne, 9 avenue Alain Savary, BP 47870 - 21078 DIJON Cedex, France

Abstract

If $(G,V)$ is a polar representation with Cartan subspace $\mathfrak{c}$ and Weyl group $W$, it is shown that there is a natural morphism of Poisson schemes $\mathfrak{c}\oplus \mathfrak{c}^{\ast }/W\rightarrow V\oplus V^{\ast }/\!\!/\!\!/G$. This morphism is conjectured to be an isomorphism of the underlying reduced varieties if$(G,V)$ is visible. The conjecture is proved for visible stable locally free polar representations and some other examples.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beauville, A., Symplectic singularities , Invent. Math. 139 (2000), 541549.Google Scholar
Becker, T., On the existence of symplectic resolutions of symplectic reductions , Math. Z. 265 (2009), 343363.Google Scholar
Crawley-Boevey, W., Normality of Marsden–Weinstein reductions for representations of quivers , Math. Ann. 325 (2003), 5579.CrossRefGoogle Scholar
Dadok, J. and Kac, V., Polar representations , J. Algebra 92 (1985), 504524.Google Scholar
Decker, W., Greuel, G.-M., Pfister, G. and Schönemann, H., Singular: a computer algebra system for polynomial computations, version 4-0-2 (2015), http://www.singular.uni-kl.de.Google Scholar
Grayson, D. and Stillman, M., Macaulay2: a software system for research in algebraic geometry and commutative algebra, version 1.9.2 (2016), http://www.math.uiuc.edu/Macaulay2/.Google Scholar
Hunziker, M., Classical invariant theory for finite reflection groups , Transform. Groups 2 (1997), 147163.CrossRefGoogle Scholar
Joseph, A., On a Harish-Chandra homomorphism , C. R. Math. Acad. Sci. 324 (1997), 759764.Google Scholar
Jung, B., Ein symplektischer Scheibensatz, Diplomarbeit, Johannes Gutenberg-Universität Mainz (2009).Google Scholar
Kac, V., Some remarks on nilpotent orbits , J. Algebra 64 (1980), 190213.Google Scholar
Kac, V., Infinite-dimensional Lie algebras, third edition (Cambridge University Press, Cambridge, 1990).Google Scholar
Kaledin, D. B., Symplectic singularities from the Poisson point of view , J. Reine Angew. Math. 600 (2006), 135156.Google Scholar
van Leeuwen, M. A. A., Cohen, A. M. and Lisser, B., LiE: a package for Lie group computations (Computer Algebra Nederland, Amsterdam, 1992).Google Scholar
Lehn, C., Polare Darstellungen und symplektische Reduktion, Diplomarbeit, Johannes Gutenberg-Universität Mainz (2007).Google Scholar
Lehn, M. and Sorger, C., A symplectic resolution for the binary tetrahedral group , in Geometric methods in representation theory II, Séminaires et Congrès, vol. 24-II, ed. Brion, M. (Société Mathématique de France, Paris, 2012), 429435.Google Scholar
Luna, D., Slices étales , in Sur les groupes algébriques, Mémoires de la Société Mathématique de France, vol. 33 (Société Mathématique de France, Paris, 1973), 81105.Google Scholar
Mumford, D. and Fogarty, J., Geometric invariant theory, second edition (Springer, Berlin, 1982).CrossRefGoogle Scholar
Panyushev, D., The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties , Compositio Math. 94 (1994), 181199.Google Scholar
Panyushev, D., On the irreducibility of commuting varieties associated to involutions of simple Lie algebras , Funct. Anal. Appl. 38 (2004), 3844.Google Scholar
Panyushev, D. and Yakimova, Y., Symmetric pairs and associated commuting varieties , Math. Proc. Cambridge Philos. Soc. 143 (2007), 307321.CrossRefGoogle Scholar
Popov, V. L., Irregular and singular loci of commuting varieties , Transform. Groups 13 (2008), 819837.Google Scholar
Popov, V. L. and Vinberg, E. B., Invariant theory , in Algebraic geometry, IV: Encyclopaedia of Mathematical Sciences, vol. 55 (Springer, Berlin, 1994), 123278; translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 55 (1989), 137–309.Google Scholar
Procesi, C., Invariants of commuting matrices, Preprint (2015), arXiv:1501.05190.Google Scholar
Richardson, R., Commuting varieties of semisimple Lie algebras and algebraic groups , Compositio Math. 38 (1979), 311327.Google Scholar
Schwarz, G., Representations of simple Lie groups with regular rings of invariants , Invent. Math. 49 (1978), 167191.CrossRefGoogle Scholar
Schwarz, G., When polarizations generate , Transform. Groups 12 (2007), 761767.Google Scholar
Terpereau, R., Schémas de Hilbert invariants et théorie classique des invariants, PhD thesis, Université de Grenoble (2012), arXiv:1211.1472.Google Scholar
Terpereau, R., Invariant Hilbert schemes and desingularizations of symplectic reductions for classical groups , Math. Z. 277 (2014), 339359.Google Scholar
Tevelev, E. A., On the Chevalley restriction theorem , J. Lie Theory 10 (2000), 323330.Google Scholar
Vinberg, E., The Weyl group of a graded Lie algebra , Math. USSR Izvestija 10 (1976), 463495.Google Scholar
Zariski, O. and Samuel, P., Commutative algebra (Van Nostrand, Princeton, 1958).Google Scholar