Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T06:16:48.341Z Has data issue: false hasContentIssue false

A support theorem for the Hitchin fibration: the case of $\text{SL}_{n}$

Published online by Cambridge University Press:  26 April 2017

Mark Andrea de Cataldo*
Affiliation:
Department of Mathematics, Stony Brook University, Stony Brook, NY 11794-3651, USA email [email protected]

Abstract

We prove that the direct image complex for the $D$-twisted $\text{SL}_{n}$ Hitchin fibration is determined by its restriction to the elliptic locus, where the spectral curves are integral. The analogous result for $\text{GL}_{n}$ is due to Chaudouard and Laumon. Along the way, we prove that the Tate module of the relative Prym group scheme is polarizable, and we also prove $\unicode[STIX]{x1D6FF}$-regularity results for some auxiliary weak abelian fibrations.

Type
Research Article
Copyright
© The Author 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beilinson, A., Bernstein, I. N. and Deligne, P., Faisceaux pervers, Astérisque, vol. 100 (Société Mathématique de France, Paris, 1981).Google Scholar
Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21 (Springer, Berlin, 1990).Google Scholar
Chaudouard, P.-H. and Laumon, G., Le lemme fondamental pondéré. II. Énoncés cohomologiques , Ann. of Math. (2) 176 (2012), 16471781.Google Scholar
Chaudouard, P.-H. and Laumon, G., Un théorème du support pour la fibration de Hitchin , Ann. Inst. Fourier (Grenoble) 66 (2016), 711727.Google Scholar
Conrad, B., A modern proof of Chevalley’s theorem on algebraic groups , J. Ramanujan Math. Soc. 17 (2002), 118.Google Scholar
Deligne, P., Le déterminant de la cohomologie , in Current trends in arithmetical algebraic geometry, Arcata, CA, 1985, Contemporary Mathematics, vol. 67 (American Mathematical Society, Providence, RI, 1987), 93177.Google Scholar
Grothendieck, A., Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes , Publ. Math. Inst. Hautes Études Sci. 8 (1961), 5205.Google Scholar
Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des scheémas et des morphismes de sch’emas IV , Publ. Math. Inst. Hautes Études Sci. 32 (1967), 5333.Google Scholar
Fantechi, B., Gottsche, L. and van Straten, D., Euler number of the compactified Jacobian and multiplicity of rational curves , J. Algebraic Geom. 8 (1999), 115133.Google Scholar
Hausel, T. and Pauly, C., Prym varieties of spectral covers , Geom. Topol. 16 (2012), 16091638.Google Scholar
Lange, H. and Birkenhake, C., Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.  302 (Springer, Berlin, 1992).Google Scholar
Maulik, D. and Yun, Z., Macdonald formula for curves with planar singularities , J. Reine Angew. Math. 694 (2014), 2748.Google Scholar
Migliorini, L. and Shende, V., A support theorem for Hilbert schemes of planar curves , J. Eur. Math. Soc. (JEMS) 15 (2013), 23532367.CrossRefGoogle Scholar
Migliorini, L. and Shende, V., Higher discriminants and the topology of algebraic maps, Preprint (2013), arXiv:1307.4059.Google Scholar
Migliorini, L., Shende, V. and Viviani, F., A support theorem for Hilbert schemes of planar curves, II, Preprint (2015), arXiv:1508.07602.Google Scholar
Milne, J. S., Algebraic groups, The theory of groups schemes of finite type over a field, http://www.jmilne.org/math/CourseNotes/ala.html.Google Scholar
Milne, J. S., Étale cohomology, Princeton Mathematical Series, vol. 33 (Princeton University Press, Princeton, NJ, 1980).Google Scholar
Mumford, D., Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay (Oxford University Press, London 1970).Google Scholar
Ngô, B. C., Fibration de Hitchin et endoscopie , Invent. Math. 164 (2006), 399453.CrossRefGoogle Scholar
Ngô, B. C., Le lemme fondamental pour les algèbres de Lie , Publ. Math. Inst. Hautes Études Sci. 111 (2010), 1169.Google Scholar
Ngô, B. C., Decomposition theorem and abelian fibration , in On the stabilization of the trace formula, Stabilization of the Trace Formula, Shimura Varieties, and Arithmetic Applications, vol. 1 (International Press, Somerville, MA, 2011), 253264.Google Scholar
Nitsure, N., Moduli space of semistable pairs on a curve , Proc. Lond. Math. Soc. (3) 62 (1991), 275300.Google Scholar
Rapagnetta, A., Melo, M. and Viviani, F., Fourier–Mukai and autoduality for compactified Jacobians, I, Preprint (2012), arXiv:1207.7233.Google Scholar
Reid, M., Chapters on algebraic surfaces , in Complex algebraic geometry, Park City, UT, 1993, IAS/Park City Mathematics Series, vol. 3 (American Mathematical Society, Providence, RI, 1997), 3159.Google Scholar
Schaub, D., Courbes spectrales et compactifications de jacobiennes , Math. Z. 227 (1998), 295312.Google Scholar
Grothendieck, A. and Demazure, M., Séminaire de Géométrie Algébrique, Schémas en Groupes (SGA 3), vol. I, Lecture Notes in Mathematics, vol. 151 (Springer, Heidelberg, 1970).Google Scholar
Grothendieck, A. and Demazure, M., Séminaire de Géométrie Algébrique, Schémas en Groupes (SGA 3), vol. II, Lecture Notes in Mathematics, vol. 152 (Springer, Heidelberg, 1970).Google Scholar
Grothendieck, A., Raynaud, M. and Rim, D. S., Groups de Monodromie en Géométrie Agébrique (SGA 7), vol. I, Lecture Notes in Mathematics, vol. 288 (Springer, Heidelberg, 1972).Google Scholar
Shende, V., Hilbert schemes of points on a locally planar curve and the Severi strata of its versal deformation , Compos. Math. 148 (2012), 531547.Google Scholar
Simpson, C., Moduli of representations of the fundamental group of a smooth projective variety. I , Publ. Math. Inst. Hautes Études Sci. 79 (1994), 47129.Google Scholar
Simpson, C., Moduli of representations of the fundamental group of a smooth projective variety. II , Publ. Math. Inst. Hautes Études Sci. 80 (1995), 579.Google Scholar
Soulé, C., Lectures on Arakelov geometry, Cambridge Studies in Advanced Mathematics, vol. 33 (Cambridge University Press, Cambridge, 1992).Google Scholar