Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T07:54:03.577Z Has data issue: false hasContentIssue false

Semistable reduction for overconvergent F-isocrystals, IV: local semistable reduction at nonmonomial valuations

Published online by Cambridge University Press:  21 February 2011

Kiran S. Kedlaya*
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We complete our proof that given an overconvergent F-isocrystal on a variety over a field of positive characteristic, one can pull back along a suitable generically finite cover to obtain an isocrystal which extends, with logarithmic singularities and nilpotent residues, to some complete variety. We also establish an analogue for F-isocrystals overconvergent inside a partial compactification. By previous results, this reduces to solving a local problem in a neighborhood of a valuation of height 1 and residual transcendence degree zero. We do this by studying the variation of some numerical invariants attached to p-adic differential modules, analogous to the irregularity of a complex meromorphic connection. This allows for an induction on the transcendence defect of the valuation, i.e., the discrepancy between the dimension of the variety and the rational rank of the valuation.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[1]André, Y., Filtrations de type Hasse–Arf et monodromie p-adique, Invent. Math. 148 (2002), 285317.Google Scholar
[2]Berkovich, V. G., Spectral theory and analytic geometry over non-archimedean fields (translated by N. I. Koblitz), Mathematical Surveys and Monographs, vol. 33 (American Mathematical Society, Providence, RI, 1990).Google Scholar
[3]Berthelot, P., Cohomologie rigide et cohomologie rigide à support propre. Première partie, Prépublication IRMAR 96-03, available at http://perso.univ-rennes1.fr/pierre.berthelot/.Google Scholar
[4]Boucksom, S., Favre, C. and Jonsson, M., Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci. Kyoto Univ. 44 (2008), 449494.CrossRefGoogle Scholar
[5]Caro, D., Stabilité de l’holonomie sur les variétés quasi-projectives, Preprint (2009), arXiv 0810.0304v3.Google Scholar
[6]Caro, D. and Tsuzuki, N., Overholonomicity of overconvergent F-isocrystals over smooth varieties, Preprint (2008), arXiv 803.2105v1.Google Scholar
[7]Crew, R., F-isocrystals and p-adic representations, in Algebraic geometry (Brunswick, Maine, 1985), part 2, Proceedings of Symposia in Pure Mathematics, vol. 46 (American Mathematical Society, Providence, RI, 1987), 111138.Google Scholar
[8]de Jong, A. J., Smoothness, semi-stability and alterations, Publ. Math. Inst. Hautes Études Sci. 83 (1996), 5193.CrossRefGoogle Scholar
[9]Green, B., Matignon, M. and Pop, F., On valued function fields, I, Manuscripta Math. 65 (1989), 357376.CrossRefGoogle Scholar
[10]Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, New York, 1977).CrossRefGoogle Scholar
[11]Katz, N. M., Local-to-global extensions of representations of fundamental groups, Ann. Inst. Fourier 36 (1986), 69106.CrossRefGoogle Scholar
[12]Kedlaya, K. S., A p-adic local monodromy theorem, Ann. of Math. (2) 160 (2004), 93184.CrossRefGoogle Scholar
[13]Kedlaya, K. S., Local monodromy for p-adic differential equations: an overview, Int. J. Number Theory 1 (2005), 109154.CrossRefGoogle Scholar
[14]Kedlaya, K. S., Slope filtrations revisited, Doc. Math. 10 (2005), 447525; errata, Doc. Math. 12 (2007), 361–362.CrossRefGoogle Scholar
[15]Kedlaya, K. S., Swan conductors for p-adic differential modules, I: a local construction, Algebra Number Theory 1 (2007), 269300.CrossRefGoogle Scholar
[16]Kedlaya, K. S., The p-adic local monodromy theorem for fake annuli, Rend. Semin. Mat. Padova 118 (2007), 101146.Google Scholar
[17]Kedlaya, K. S., Semistable reduction for overconvergent F-isocrystals, I: unipotence and logarithmic extensions, Compositio Math. 143 (2007), 11641212.CrossRefGoogle Scholar
[18]Kedlaya, K. S., Semistable reduction for overconvergent F-isocrystals, II: a valuation-theoretic approach, Compositio Math. 144 (2008), 657672.CrossRefGoogle Scholar
[19]Kedlaya, K. S., Semistable reduction for overconvergent F-isocrystals, III: local semistable reduction at monomial valuations, Compositio Math. 145 (2009), 143172.CrossRefGoogle Scholar
[20]Kedlaya, K. S., p-adic differential equations, Cambridge Studies in Advanced Mathematics, vol. 125 (Cambridge University Press, Cambridge, 2010).CrossRefGoogle Scholar
[21]Kedlaya, K. S., Good formal structures for flat meromorphic connections, II: excellent schemes, J. Amer. Math. Soc. 24 (2011), 183229.CrossRefGoogle Scholar
[22]Kedlaya, K. S., Swan conductors for p-adic differential modules, II: global variation, J. Inst. Math. Jussieu (2011), to appear, Preprint (2008), arXiv 0705.0031v3.Google Scholar
[23]Kedlaya, K. S. and Xiao, L., Differential modules on p-adic polyannuli, J. Inst. Math. Jussieu 9 (2010), 155201; erratum, J. Inst. Math. Jussieu 9 (2010), 669–671.CrossRefGoogle Scholar
[24]Kempf, G., Knudsen, F. F., Mumford, D. and Saint-Donat, B., Toroidal embeddings. I, Lecture Notes in Mathematics, vol. 339 (Springer, Berlin, 1973).CrossRefGoogle Scholar
[25]Krull, W., Allgemeine Bewertungstheorie, J. Math. 167 (1932), 160196.Google Scholar
[26]Kuhlmann, F.-V., Elimination of ramification I: the generalized stability theorem, Trans. Amer. Math. Soc. 362 (2010), 56975727.CrossRefGoogle Scholar
[27]Mebkhout, Z., Analogue p-adique du théorème de Turrittin et le théorème de la monodromie p-adique, Invent. Math. 148 (2002), 319351.CrossRefGoogle Scholar
[28]Milne, J. S., Étale cohomology, Princeton Mathematical Series, vol. 33 (Princeton University Press, Princeton, 1980).Google Scholar
[29]Raynaud, M. and Gruson, L., Critères de platitude et de projectivité. Techniques de ‘platification’ d’un module, Invent. Math. 13 (1971), 189.CrossRefGoogle Scholar
[30]Ribenboim, P., The theory of classical valuations (Springer, New York, 1999).CrossRefGoogle Scholar
[31]Saavedra Rivano, N., Catégories Tannakiennes, Lecture Notes in Mathematics, vol. 265 (Springer-Verlag, Berlin, 1972).CrossRefGoogle Scholar
[32]Shiho, A., Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo 9 (2002), 1163.Google Scholar
[33]Shiho, A., On logarithmic extension of overconvergent isocrystals, Preprint (2009), arXiv 0806.4394v2.CrossRefGoogle Scholar
[34]Temkin, M., Inseparable local uniformization, Preprint (2010), arXiv 0804.1554v2.Google Scholar
[35]Tsuzuki, N., On the Gysin isomorphism in rigid cohomology, Hiroshima Math. J. 29 (1999), 479527.CrossRefGoogle Scholar
[36]Zariski, O., Local uniformization on algebraic varieties, Ann. of Math. (2) 41 (1940), 852896.CrossRefGoogle Scholar
[37]Zariski, O. and Samuel, P., Commutative algebra, vol. II, Graduate Texts in Mathematics, Vol. 29 (Springer, New York, 1976), reprint of the 1960 original.Google Scholar