Hostname: page-component-5cf477f64f-n7lw4 Total loading time: 0 Render date: 2025-03-27T23:00:35.608Z Has data issue: false hasContentIssue false

Restriction of p-adic representations of GL2(Qp) to parahoric subgroups

Published online by Cambridge University Press:  24 March 2025

Andrea Dotto*
Affiliation:
University of Chicago, 5734 South University Avenue, Chicago, IL 60637, USA [email protected]

Abstract

Without using the $p$-adic Langlands correspondence, we prove that for many finite-length smooth representations of $\mathrm {GL}_2(\mathbf {Q}_p)$ on $p$-torsion modules the $\mathrm {GL}_2(\mathbf {Q}_p)$-linear morphisms coincide with the morphisms that are linear for the normalizer of a parahoric subgroup. We identify this subgroup to be the Iwahori subgroup in the supersingular case, and $\mathrm {GL}_2(\mathbf {Z}_p)$ in the principal series case. As an application, we relate the action of parahoric subgroups to the action of the inertia group of $\mathrm {Gal}(\overline {\mathbf {Q}}_p/\mathbf {Q}_p)$, and we prove that if an irreducible Banach space representation $\Pi$ of $\mathrm {GL}_2(\mathbf {Q}_p)$ has infinite $\mathrm {GL}_2(\mathbf {Z}_p)$-length, then a twist of $\Pi$ has locally algebraic vectors. This answers a question of Dospinescu. We make the simplifying assumption that $p > 3$ and that all our representations are generic.

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barthel, L. and Livné, R., Irreducible modular representations of ${\rm GL_2}$ of a local field, Duke Math. J. 75 (1994), 261292; MR 1290194.Google Scholar
Breuil, C., Sur quelques représentations modulaires et $p$-adiques de ${\rm GL}_2({\rm Q}_p)$. I, Compos. Math. 138 (2003), 165188; MR 2018825.CrossRefGoogle Scholar
Breuil, C., Sur quelques représentations modulaires et $p$-adiques de ${\rm GL}_2({\rm Q}_p)$. II, J. Inst. Math. Jussieu 2 (2003), 2358; MR 1955206.Google Scholar
Breuil, C. and Paškūnas, V., Towards a modulo $p$ Langlands correspondence for ${\rm GL_2}$, Mem. Amer. Math. Soc. 216 (2012); MR 2931521.Google Scholar
Casselman, W., The restriction of a representation of ${\rm GL}_{2}(k)$ to ${\rm GL}_{2}(\mathfrak {o})$, Math. Ann. 206 (1973), 311318; MR 0338274.Google Scholar
Colmez, P. and Dospinescu, G., Completés universels de représentations de ${\rm GL}_2(\Bbb {Q}_p)$, Algebra Number Theory 8 (2014), 14471519; MR 3267142.CrossRefGoogle Scholar
Dospinescu, G., Paškūnas, V. and Schraen, B., Infinitesimal characters in arithmetic families, Preprint (2020), arXiv:2012.01041.Google Scholar
Hu, Y. and Wang, H., On some mod $p$ representations of quaternion algebra over $\mathbb {Q}_p$, Preprint (2022), arXiv:2201.01464.Google Scholar
Hu, Y. and Wang, H., On some $p$-adic and mod $p$ representations of quaternion algebra over $\mathbb {Q}_p$, J. Reine Angew. Math. 812 (2024), 163210.Google Scholar
Morra, S., Explicit description of irreducible ${\rm GL_2}({\rm Q}_p)$-representations over $\overline {\boldsymbol F}_p$, J. Algebra 339 (2011), 252303; MR 2811322.Google Scholar
Morra, S., Invariant elements for $p$-modular representations of ${\rm GL}_2({\rm Q}_p)$, Trans. Amer. Math. Soc. 365 (2013), 66256667; MR 3105765.Google Scholar
Morra, S., Sur les atomes automorphes de longueur 2 de ${\rm GL}_2({\rm Q}_p)$, Doc. Math. 22 (2017), 777823; MR 3650223.Google Scholar
Paškūnas, V., Extensions for supersingular representations of ${\rm GL_2}(\mathbb {Q}_p)$, Astérisque 331 (2010), 317353; MR 2667891.Google Scholar
Paškūnas, V., The image of Colmez's Montreal functor, Publ. Math. Inst. Hautes Études Sci. 118 (2013), 1191; MR 3150248.Google Scholar
Paškūnas, V., On some consequences of a theorem of J. Ludwig, Preprint (2018), arXiv:1804.07567.Google Scholar
Serre, J.-P., Arbres, amalgames, ${\rm SL}_{2}$, Astérisque, No. 46, Société Mathématique de France, Paris, 1977, Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass; MR 0476875.Google Scholar
Vignéras, M.-F., Représentations l-modulaires d'un groupe réductif p-adique avec l ≠ p, Progress in Mathematics, vol. 137 (Birkhäuser, Boston, MA, 1996); MR 1395151.Google Scholar