Published online by Cambridge University Press: 30 May 2018
Let $X$ be a smooth complex projective variety with basepoint $x$ . We prove that every rigid integral irreducible representation $\unicode[STIX]{x1D70B}_{1}(X\!,x)\rightarrow \operatorname{SL}(3,\mathbb{C})$ is of geometric origin, i.e., it comes from some family of smooth projective varieties. This partially generalizes an earlier result by Corlette and the second author in the rank 2 case and answers one of their questions.