Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T03:25:20.705Z Has data issue: false hasContentIssue false

Proper isometric actions of hyperbolic groups on $L^p$-spaces

Published online by Cambridge University Press:  26 February 2013

Bogdan Nica*
Affiliation:
Mathematisches Institut, Georg-August Universität Göttingen, Bunsenstrasse 3–5, D-37073 Göttingen, Germany (email: [email protected])

Abstract

We show that every non-elementary hyperbolic group $\G $ admits a proper affine isometric action on $L^p(\bd \G \times \bd \G )$, where $\bd \G $ denotes the boundary of $\G $ and $p$ is large enough. Our construction involves a $\G $-invariant measure on $\bd \G \times \bd \G $ analogous to the Bowen–Margulis measure from the ${\rm CAT}(-1)$ setting, as well as a geometric, Busemann-type cocycle. We also deduce that $\G $ admits a proper affine isometric action on the first $\ell ^p$-cohomology group $H^1_{(p)}(\G )$ for large enough $p$.

Type
Research Article
Copyright
Copyright © 2013 The Author(s) 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Ada94]Adams, S., Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups, Topology 33 (1994), 765783.Google Scholar
[BFGM07]Bader, U., Furman, A., Gelander, T. and Monod, N., Property (T) and rigidity for actions on Banach spaces, Acta Math. 198 (2007), 57105.Google Scholar
[BlHV08]Bekka, B., de la Harpe, P. and Valette, A., Kazhdan’s property (T), New Mathematical Monographs, vol. 11 (Cambridge University Press, Cambridge, 2008).Google Scholar
[BHM11]Blachère, S., Haïssinsky, P. and Mathieu, P., Harmonic measures versus quasiconformal measures for hyperbolic groups, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 683721.Google Scholar
[Bou95]Bourdon, M., Structure conforme au bord et flot géodésique d’un ${\rm CAT}(-1)$-espace, Enseign. Math. (2) 41 (1995), 63102.Google Scholar
[Bou]Bourdon, M., Cohomologie et actions isométriques propres sur les espaces $L_p$, in Geometry, topology and dynamics in negative curvature, Proceedings of the 2010 Bangalore Conference, to appear.Google Scholar
[BP03]Bourdon, M. and Pajot, H., Cohomologie $\ell _p$ et espaces de Besov, J. Reine Angew. Math. 558 (2003), 85108.Google Scholar
[CCJJV01]Cherix, P.-A., Cowling, M., Jolissaint, P., Julg, P. and Valette, A., Groups with the Haagerup property (Gromov’s a-T-menability), Progress in Mathematics, vol. 197 (Birkhäuser, Basel, 2001).Google Scholar
[Coo93]Coornaert, M., Mesures de Patterson–Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993), 241270.Google Scholar
[EN12]Emerson, H. and Nica, B., Finitely summable Fredholm modules for boundary actions of hyperbolic groups, Preprint (2012), arXiv:1208.0856.Google Scholar
[FP82]Figà-Talamanca, A. and Picardello, M. A., Spherical functions and harmonic analysis on free groups, J. Funct. Anal. 47 (1982), 281304.Google Scholar
[Fur02]Furman, A., Coarse-geometric perspective on negatively curved manifolds and groups, in Rigidity in dynamics and geometry (Springer, 2002), 149166.Google Scholar
[KB02]Kapovich, I. and Benakli, N., Boundaries of hyperbolic groups, in Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), Contemporary Mathematics, vol. 296 (American Mathematical Society, Providence, RI, 2002), 3993.Google Scholar
[Min05]Mineyev, I., Flows and joins of metric spaces, Geom. Topol. 9 (2005), 403482.Google Scholar
[Min07]Mineyev, I., Metric conformal structures and hyperbolic dimension, Conform. Geom. Dyn. 11 (2007), 137163.Google Scholar
[MY02]Mineyev, I. and Yu, G., The Baum–Connes conjecture for hyperbolic groups, Invent. Math. 149 (2002), 97122.Google Scholar
[Nic12]Nica, B., The Mazur–Ulam theorem, Expo. Math. 30 (2012), 397398.Google Scholar
[Pan89]Pansu, P., Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 177212.Google Scholar
[Rud87]Rudin, W., Real and complex analysis, third edition (McGraw-Hill, New York, NY, 1987).Google Scholar
[Sul79]Sullivan, D., The density at infinity of a discrete group of hyperbolic motions, Publ. Inst. Hautes Études Sci. 50 (1979), 171202.Google Scholar
[Yu05]Yu, G., Hyperbolic groups admit proper affine isometric actions on $\ell ^p$-spaces, Geom. Funct. Anal. 15 (2005), 11441151.Google Scholar