Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T13:40:19.740Z Has data issue: false hasContentIssue false

Profinite detection of 3-manifold decompositions

Published online by Cambridge University Press:  07 January 2019

Henry Wilton
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK email [email protected]
Pavel Zalesskii
Affiliation:
Department of Mathematics, University of Brasília, 70910-9000 Brasília, Brazil email [email protected]

Abstract

The profinite completion of the fundamental group of a closed, orientable $3$-manifold determines the Kneser–Milnor decomposition. If $M$ is irreducible, then the profinite completion determines the Jaco–Shalen–Johannson decomposition of $M$.

Type
Research Article
Copyright
© The Authors 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aschenbrenner, M., Friedl, S. and Wilton, H., 3-manifold groups, Series of Lecture Notes in Mathematics (European Mathematical Society (EMS), Zürich, 2015).Google Scholar
Agol, I., Bounds on exceptional Dehn filling II , Geom. Topol. 14 (2010), 19211940.Google Scholar
Agol, I., The virtual Haken conjecture , Doc. Math. 18 (2013), 10451087; with an appendix by Agol, D. Groves, and J. Manning.Google Scholar
Bridson, M. R., Conder, M. D. E. and Reid, A. W., Determining Fuchsian groups by their finite quotients , Israel J. Math. 214 (2016), 141.Google Scholar
Bridson, M. R. and Reid, A. W., Profinite rigidity, fibering, and the figure-eight knot, Preprint (2015), arXiv:1505.07886v1.Google Scholar
Bridson, M. R., Reid, A. W. and Wilton, H., Profinite rigidity and surface bundles over the circle , Bull. Lond. Math. Soc. 49 (2017), 831841.Google Scholar
Boileau, M. and Friedl, S., The profinite completion of 3-manifold groups, fiberedness and the Thurston norm, Preprint (2015), arXiv:1505.07799.Google Scholar
Cavendish, W., Finite-sheeted covering spaces and solenoids over 3-manifolds, PhD thesis, Princeton University (ProQuest LLC, Ann Arbor, MI 2012).Google Scholar
Chagas, S. C. and Zalesskii, P. A., Hereditary conjugacy separability of free products with amalgamation , J. Pure Appl. Algebra 217 (2013), 598607.Google Scholar
Cotton-Barratt, O., Detecting ends of residually finite groups in profinite completions , Math. Proc. Cambridge Philos. Soc. 155 (2013), 379389.Google Scholar
Dicks, W., Groups, trees and projective modules, Lecture Notes in Mathematics, vol. 790 (Springer, Berlin, 1980).Google Scholar
Dicks, W. and Dunwoody, M. J., Groups acting on graphs, Cambridge Studies in Advanced Mathematics, vol. 17 (Cambridge University Press, Cambridge, 1989).Google Scholar
Fine, B. and Rosenberger, G., Conjugacy separability of Fuchsian groups and related questions , in Combinatorial group theory (College Park, MD, 1988), Contemporary Mathematics, vol. 109 (American Mathematical Society, Providence, RI, 1990), 1118.Google Scholar
Funar, L., Torus bundles not distinguished by TQFT invariants , Geom. Topol. 17 (2013), 22892344; with an appendix by Funar and Andrei Rapinchuk.Google Scholar
Grunewald, F., Jaikin-Zapirain, A. and Zalesskii, P. A., Cohomological goodness and the profinite completion of Bianchi groups , Duke Math. J. 144 (2008), 5372.Google Scholar
Grunewald, F. J., Pickel, P. F. and Segal, D., Polycyclic groups with isomorphic finite quotients , Ann. of Math. (2) 111 (1980), 155195.Google Scholar
Hamilton, E., Wilton, H. and Zalesskii, P. A., Separability of double cosets and conjugacy classes in 3-manifold groups , J. Lond. Math. Soc. (2) 87 (2013), 269288.Google Scholar
Hempel, J., Some 3-manifold groups with the same finite quotients, Preprint (2014),arXiv:1409.3509.Google Scholar
Jaikin-Zapirain, A., Recognition of being fibred for compact 3-manifolds, Preprint (2017),http://verso.mat.uam.es/∼andrei.jaikin/preprints/fibering.pdf.Google Scholar
Kochloukova, D. H. and Zalesskii, P. A., Profinite and pro-p completions of Poincaré duality groups of dimension 3 , Trans. Amer. Math. Soc. 360 (2008), 19271949.Google Scholar
Kropholler, P. H. and Roller, M. A., Splittings of Poincaré duality groups. II , J. Lond. Math. Soc. (2) 38 (1988), 410420.Google Scholar
Lackenby, M. and Meyerhoff, R., The maximal number of exceptional Dehn surgeries , Invent. Math. 191 (2013), 341382.Google Scholar
Minasyan, A., Hereditary conjugacy separability of right-angled Artin groups and its applications , Groups Geom. Dyn. 6 (2012), 335388.Google Scholar
Nikolov, N. and Segal, D., On finitely generated profinite groups. I. Strong completeness and uniform bounds , Ann. of Math. (2) 165 (2007), 171238.Google Scholar
Ribes, L., Profinite graphs and groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol. 66 (Springer, Cham, 2017).Google Scholar
Ribes, L. and Zalesskii, P., Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol. 40, second edition (Springer, Berlin, 2010).Google Scholar
Scott, P., Subgroups of surface groups are almost geometric , J. Lond. Math. Soc. (2) 17 (1978), 555565.Google Scholar
Scott, P., Correction to: ‘Subgroups of surface groups are almost geometric’ , J. Lond. Math. Soc. (2) 32 (1985), 217220.Google Scholar
Serre, J.-P., Galois cohomology (Springer, Berlin, 1997); translated from the French by P. Ion and revised by the author.Google Scholar
Strebel, R., A remark on subgroups of infinite index in Poincaré duality groups , Comment. Math. Helv. 52 (1977), 317324.Google Scholar
Symonds, P. and Weigel, T., Cohomology of p-adic analytic groups , in New horizons in pro-p groups, Progress in Mathematics, vol. 184 (Birkhäuser, Boston, 2000), 349410.Google Scholar
Ueki, J., The profinite completions of knot groups determine the Alexander polynomials , Algebr. Geom. Topol. 18 (2018), 30133030.Google Scholar
Wilkes, G., Profinite properties of 3-manifold groups, PhD thesis, University of Oxford (2017).Google Scholar
Wilkes, G., Profinite rigidity for Seifert fibre spaces , Geom. Dedicata 188 (2017), 141163.Google Scholar
Wilkes, G., Profinite rigidity of graph manifolds and JSJ decompositions of 3-manifolds , J. Algebra 502 (2018), 538587.Google Scholar
Wilkes, G., Profinite completions, cohomology and JSJ decompositions of compact 3-manifolds, New Zealand J. Math., to appear. Preprint (2018), arXiv:1802.09282.Google Scholar
Wilton, H. and Zalesskii, P., Profinite properties of graph manifolds , Geom. Dedicata 147 (2010), 2945.Google Scholar
Wilton, H. and Zalesskii, P., Distinguishing geometries using finite quotients , Geom. Topol. 21 (2017), 345384.Google Scholar
Wise, D. T., The structure of groups with a quasi-convex hierarchy, Ann. of Math. Stud., to appear. Preprint (2012), http://goo.gl/3ctNvX.Google Scholar
Zalesskii, P. A., Profinite groups, without free nonabelian pro-p-subgroups, that act on trees , Mat. Sb. 181 (1990), 5767.Google Scholar
Zalesskii, P. A. and Mel’nikov, O. V., Subgroups of profinite groups acting on trees , Mat. Sb. 135 (1988), 419439.Google Scholar
Zalesskii, P. A. and Mel’nikov, O. V., Fundamental groups of graphs of profinite groups , Algebra i Analiz 1 (1989), 117135.Google Scholar