Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T14:48:24.018Z Has data issue: false hasContentIssue false

Period sheaves via derived de Rham cohomology

Published online by Cambridge University Press:  06 October 2021

Haoyang Guo
Affiliation:
Max Planck Institute for Mathematics, Vivatsgasse 7, Bonn53111, [email protected]
Shizhang Li
Affiliation:
Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI48109, [email protected]

Abstract

In this paper we give an interpretation, in terms of derived de Rham complexes, of Scholze's de Rham period sheaf and Tan and Tong's crystalline period sheaf.

Type
Research Article
Copyright
© 2021 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreatta, F. and Iovita, A., Comparison isomorphisms for smooth formal schemes, J. Inst. Math. Jussieu 12 (2013), 77151; MR 3001736.10.1017/S1474748012000643CrossRefGoogle Scholar
António, J., Spreading out the Hodge filtration in the non-archimedean geometry, Preprint (2020), arXiv:2005.00774.Google Scholar
Avramov, L. L., Locally complete intersection homomorphisms and a conjecture of Quillen on the vanishing of cotangent homology, Ann. of Math. (2) 150 (1999), 455487; MR 1726700.10.2307/121087CrossRefGoogle Scholar
Beilinson, A., $p$-adic periods and derived de Rham cohomology, J. Amer. Math. Soc. 25 (2012), 715738; MR 2904571.10.1090/S0894-0347-2012-00729-2CrossRefGoogle Scholar
Berthelot, P., Cohomologie cristalline des schémas de caractéristique $p>0$, Lecture Notes in Mathematics, vol. 407 (Springer, Berlin–New York, 1974); MR 0384804.Google Scholar
Bhatt, B., Completions and derived de Rham cohomology, Preprint (2012), arXiv:1207.6193.Google Scholar
Bhatt, B., p-adic derived de Rham cohomology, Preprint (2012), arXiv:1204.6560.Google Scholar
Bhatt, B., Morrow, M. and Scholze, P., Topological Hochschild homology and integral $p$-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 199310; MR 3949030.CrossRefGoogle Scholar
Brinon, O., Représentations $p$-adiques cristallines et de de Rham dans le cas relatif, Mém. Soc. Math. Fr. (N.S.) 112 (2008); MR 2484979.Google Scholar
Colmez, P., Une construction de ${\boldsymbol B}_{{\rm d}{\rm R}}^{+}$, Rend. Semin. Mat. Univ. Padova 128 (2012), 109130 (2013); MR 3076833.CrossRefGoogle Scholar
Faltings, G., Crystalline cohomology and p-adic Galois-representations, in Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) (Johns Hopkins University Press, Baltimore, MD, 1989), 2580; MR 1463696.Google Scholar
Fontaine, J.-M., Le corps des périodes p-adiques, Astérisque 223 (1994), 59–111, with an appendix by Pierre Colmez, Périodes $p$-adiques (Bures-sur-Yvette, 1988); MR 1293971.Google Scholar
Fresnel, J. and van der Put, M., Rigid analytic geometry and its applications, Progress in Mathematics, vol. 218 (Birkhäuser, Boston, 2004); MR 2014891.10.1007/978-1-4612-0041-3CrossRefGoogle Scholar
Gabber, O. and Ramero, L., Almost ring theory, Lecture Notes in Mathematics, vol. 1800 (Springer, Berlin, 2003); MR 2004652.CrossRefGoogle Scholar
Guo, H., Crystalline cohomology of rigid analytic spaces, Preprint (2020), http://guests.mpim-bonn.mpg.de/hguo/Bdrcrystalline.Google Scholar
Huber, R., Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, vol. E30 (Friedr. Vieweg & Sohn, Braunschweig, 1996); MR 1734903.CrossRefGoogle Scholar
Illusie, L., Complexe cotangent et déformations. I, Lecture Notes in Mathematics, vol. 239 (Springer, Berlin–New York, 1971); MR 0491680.CrossRefGoogle Scholar
Illusie, L., Complexe cotangent et déformations. II, Lecture Notes in Mathematics, vol. 283 (Springer, Berlin–New York, 1972); MR 0491681.CrossRefGoogle Scholar
Katz, N. M. and Oda, T., On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ. 8 (1968), 199213; MR 237510.Google Scholar
Li, S., On rigid varieties with projective reduction, J. Algebraic Geom. 29 (2020), 669690; MR 4158462.CrossRefGoogle Scholar
Scholze, P., Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245313; MR 3090258.10.1007/s10240-012-0042-xCrossRefGoogle Scholar
Scholze, P., $p$-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi 1 (2013), e1; MR 3090230.10.1017/fmp.2013.1CrossRefGoogle Scholar
Scholze, P., $p$-adic Hodge theory for rigid-analytic varieties—corrigendum [MR3090230], Forum Math. Pi 4 (2016), e6; MR 3535697.10.1017/fmp.2016.4CrossRefGoogle Scholar
The Stacks Project Authors, Stacks Project (2020), https://stacks.math.columbia.edu.Google Scholar
Tan, F. and Tong, J., Crystalline comparison isomorphisms in $p$-adic Hodge theory: the absolutely unramified case, Algebra Number Theory 13 (2019), 15091581; MR 4009670.10.2140/ant.2019.13.1509CrossRefGoogle Scholar