Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T14:46:03.307Z Has data issue: false hasContentIssue false

On weighted-blowup formulae of genus zero orbifold Gromov–Witten invariants

Published online by Cambridge University Press:  19 July 2023

Bohui Chen
Affiliation:
Department of Mathematics, Sichuan University, Chengdu 610065, China [email protected]
Cheng-Yong Du
Affiliation:
School of Mathematical Science, V. C. & V. R. Key Lab, and Laurent Mathematics Center, Sichuan Normal University, Chengdu 610068, China [email protected]

Abstract

In this paper, we provide a new approach to prove some weighted-blowup formulae for genus zero orbifold Gromov–Witten invariants. As a consequence, we show the invariance of symplectically rational connectedness with respect to weighted-blowup along positive centers. Furthermore, we use this method to give a new proof to the genus zero relative-orbifold correspondence of Gromov–Witten invariants.

Type
Research Article
Copyright
© 2023 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by the National Natural Science Foundation of China (No. 11890663, No. 12071322, No. 11826102, No. 11890660), by the National Key R&D Program of China (No. 2020YFA0714000), by Sichuan Science and Technology Program (No. 2022JDTD0019), and by Sichuan University, China (No. 1082204112190).

References

Abramovich, D., Cadman, C. and Wise, J., Relative and orbifold Gromov–Witten invariants, Algebr. Geom. 4 (2017), 472500.Google Scholar
Abramovich, D. and Fantechi, B., Orbifold thechniques in degeneration formulas, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), 519579.Google Scholar
Abramovich, D., Graber, T. and Vistoli, A., Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008), 13371398.CrossRefGoogle Scholar
Adem, A., Leida, J. and Ruan, Y., Orbifolds and stringy topology, Cambridge Tracts in Mathematics, vol. 171 (Cambridge University Press, Cambridge, 2007).CrossRefGoogle Scholar
Andreini, E., Jiang, Y. and Tseng, H.-H., Gromov–Witten theory of root gerbes I: structure of genus 0 moduli spaces, J. Differential Geom. 99 (2015), 145.CrossRefGoogle Scholar
Cadman, C., Using stacks to impose tangency conditions on curves, Amer. J. Math. 129 (2007), 405427.CrossRefGoogle Scholar
Chen, B., Du, C.-Y. and Hu, J., Weighted-blowup correspondence of orbifold Gromov–Witten invariants and applications, Math. Ann. 374 (2019), 14591523.CrossRefGoogle Scholar
Chen, B., Du, C.-Y. and Wang, R., Double ramification cycles with orbifold targets, Acta Math. Sin. (Engl. Ser.) 38 (2022), 13331376.CrossRefGoogle Scholar
Chen, B., Li, A.-M., Sun, S. and Zhao, G., Relative orbifold Gromov–Witten theory and degeneration formula, Preprint (2011), arXiv:1110.6803.Google Scholar
Chen, W. and Ruan, Y., Orbifold Gromov–Witten theory, in Orbifolds in mathematics and physics, eds Adem, A., Morava, J. and Ruan, Y., Contemporary Mathematics, vol. 310 (American Mathematical Society, Providence, RI, 2002), 2586.CrossRefGoogle Scholar
Chen, W. and Ruan, Y., A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), 131.CrossRefGoogle Scholar
Coates, T., Corti, A., Lee, Y.-P. and Tseng, H.-H., The quantum orbifold cohomology of weighted projective spaces, Acta Math. 202 (2009), 139193.CrossRefGoogle Scholar
Du, C.-Y., Weighted blow-up of Gromov–Witten invariants of orbifold Riemannian surfaces along smooth points (in Chinese), Sci. Sin. Math. 47 (2017), 409422.Google Scholar
Du, C.-Y., Weighted blowup formulae of Gromov–Witten invariants along curves and surfaces (in Chinese), Sci. Sin. Math. 53 (2023), 6580.Google Scholar
Fan, H. and Lee, Y.-P., Towards a quantum Lefschetz hyperplane theorem in all genera, Geom. Topol. 23 (2019), 493512.CrossRefGoogle Scholar
Fan, H., Wu, L. and You, F., Structures in genus-zero relative Gromov–Witten theory, J. Topol. 13 (2020), 269307.CrossRefGoogle Scholar
Fan, H., Wu, L. and You, F., Higher genus relative Gromov–Witten theory and double ramification cycles, J. Lond. Math. Soc. (2) 103 (2021), 15471576.CrossRefGoogle Scholar
Graber, T. and Pandharipande, R., Localization of virtual classes, Invent. Math. 135 (1999), 487518.CrossRefGoogle Scholar
Graber, T. and Vakil, R., Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J. 130 (2005), 137.CrossRefGoogle Scholar
Guillemin, V. and Sternberg, S., Birational equivalence in the symplectic category, Invent. Math. 97 (1989), 485522.CrossRefGoogle Scholar
He, W. and Hu, J., Orbifold Gromov–Witten invariants of weighted blow-up at smooth points, Acta Math. Sin. (Engl. Ser.) 31 (2015), 825846.CrossRefGoogle Scholar
Hu, J., Gromov–Witten invariants of blow-ups along points and curves, Math. Z. 233 (2000), 709739.CrossRefGoogle Scholar
Hu, J., Gromov–Witten invariants of blow-ups along surfaces, Compos. Math. 125 (2001), 345352.CrossRefGoogle Scholar
Hu, J., Li, T.-J. and Ruan, Y., Birational cobordism invariance of uniruled symplectic manifolds, Invent. Math. 172 (2008), 231275.CrossRefGoogle Scholar
Ionel, E.-N. and Parker, T., Relative Gromov–Witten invariants, Ann. Math. 157 (2003), 4596.CrossRefGoogle Scholar
Ionel, E.-N. and Parker, T., The symplectic sum formula for Gromov–Witten invariants, Ann. Math. 159 (2004), 9351025.CrossRefGoogle Scholar
Janda, F., Pandharipande, R., Pixton, A. and Zvonkine, D., Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017), 221266.CrossRefGoogle Scholar
Janda, F., Pandharipande, R., Pixton, A. and Zvonkine, D., Double ramification cycles with target varieties, J. Topol. 13 (2020), 17251766.CrossRefGoogle Scholar
Ke, H.-Z., Gromov–Witten invariants under blow-ups along $(-1,-1)$-curves, Michigan Math. J. 69 (2020), 515531.CrossRefGoogle Scholar
Lai, H.-H., Gromov–Witten invariants of blow-ups along submanifolds with convex normal bundles, Geom. Topol. 13 (2009), 148.CrossRefGoogle Scholar
Li, J., Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001), 509578.CrossRefGoogle Scholar
Li, J., A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002), 199293.CrossRefGoogle Scholar
Li, A.-M. and Ruan, Y., Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3-folds, Invent. Math. 145 (2001), 151218.CrossRefGoogle Scholar
Liu, C.-C. M., Localization in Gromov–Witten theory and orbifold Gromov–Witten theory, in Handbook of moduli, Volume II, eds Farkas, G. and Morrison, I., Advanced Lectures in Mathematics (ALM), vol. 25 (International Press and Higher Education Press of China, Somerville, MA, 2013), 353425.Google Scholar
Manolache, C., Virtual pull-backs, J. Algebraic Geom. 21 (2011), 201245.CrossRefGoogle Scholar
Moerdijk, I. and Pronk, D., Orbifolds, sheaves and groupoids, K-Theory 12 (1997), 321.CrossRefGoogle Scholar
Mustaţǎ, A. M. and Mustaţǎ, A., The structure of a local embedding and Chern classes of weighted blow-ups, J. Eur. Math. Soc. (JEMS) 14 (2012), 17391794.CrossRefGoogle Scholar
Tang, X. and Tseng, H.-H., A quantum Leray–Hirsch theorem for banded gerbes, J. Differential Geom. 119 (2021), 459511.CrossRefGoogle Scholar
Tseng, H.-H. and You, F., Higher genus relative and orbifold Gromov–Witten invariants, Geom. Topol. 24 (2020), 27492779.CrossRefGoogle Scholar
Tseng, H.-H. and You, F., A Gromov–Witten theory for simple normal-crossing pairs without log geometry, Comm. Math. Phys. 401 (2023), 803–839.CrossRefGoogle Scholar